
Efficient and Robust Trace Anomaly Detection for
Large-Scale Microservice Systems

Shenglin Zhang†§, Zhongjie Pan†, Heng Liu†, Pengxiang Jin†, Yongqian Sun∗†, Qianyu Ouyang¶

Jiaju Wang†, Xueying Jia†, Yuzhi Zhang†, Hui Yang‡, Yongqiang Zou‡, Dan Pei¶
†Nankai University, {zhongjie, lheng, wangjiaju, jinpengxiang}@mail.nankai.edu.cn

{zhangsl, sunyongqian, zyz}@nankai.edu.cn, jiaxueying20@gmail.com
‡Accumulus Technologies (Tianjin) Co., Ltd, {hui.yang, yongqiang.zou}@yunzhanghu.com

§Haihe Laboratory of Information Technology Application Innovation
¶Tsinghua University, oyqy19@mails.tsinghua.edu.cn, peidan@tsinghua.edu.cn

Abstract—Microservice invocation anomalies can have a detri-
mental impact on user experience and service revenue. While
existing trace anomaly detection approaches typically focus on
anomalies in response time and invocation structure, they often
overlook the importance of using fine-grained features to detect
anomalies. Additionally, trace data obtained from real-world
scenarios is typically accompanied by noise, which can hinder
the effectiveness of anomaly detection approaches. Furthermore,
large-scale trace data can significantly impact model training
efficiency. To address these challenges, we propose TraceSieve,
an unsupervised trace anomaly detection method that accurately
detects trace anomalies. Our approach leverages an auto-encoder
architecture within an adversarial training framework to filter
out noise data. Additionally, we integrate VGAE-EWC, which
combines Variational Graph Auto-Encoder (VGAE) with Elastic
Weight Consolidation (EWC), to overcome the challenges of
enormous time consumption during the training phase. Finally,
we localize the root cause of trace anomalies. Our proposed
method is evaluated using two different datasets, and our results
demonstrate that TraceSieve achieves an F1-score of 0.970 and
0.925, respectively, outperforming state-of-the-art trace anomaly
detection approaches.

Index Terms—microservice, trace, failure detection

I. INTRODUCTION

As a company’s business operations scale up, the corre-
sponding processes become increasingly complex, necessitat-
ing the adoption of advanced approaches such as microservice
architecture [1]. In contrast to traditional monolithic service
architecture, microservice architecture employs a modular
approach where service instances are partitioned into small,
self-contained units that can be independently deployed and
scaled [2]. The scalability, reusability, and independent de-
ployment benefits of microservice architecture have made it
the prevailing trend in software development. Nonetheless,
the reliability issues that happen in microservice systems
can greatly influence customers’ satisfaction and business
revenue. It is estimated that the average hourly cost of system’s
downtime is between $301,000 and $400,000 [3].

To ensure the reliability of microservice systems, it is im-
portant to timely detect anomalies and localize the root causes
of anomalies. To this end, operators carefully record the trace
data among microservices. Trace tracks the users’ requests

∗ Yongqian Sun is the corresponding author.

Service A

Execution 8 Recorded Information

3171c96e4f39c950

sy1slu4inul0fi2smialwo8hiat4q5cv

6yam2kcju46lrs2nvysdu51ii3zrgtaj

1642226961827245

1642226961878004

doCollectionReceiveFunc

Service A

traceID

executionID

parentID

start time

end time

function name

end service name

Start

Service B Service C

Service D Service E

1

29

7

64

83

Execution

5

10
Execution 2 Recorded Information

3171c96e4f39c950

ux2sdgeppdmlzzl5q4h3l4x3ql4voz

61jtthdv7ydox6nlaieige3xg9d73jpf

1642226961687440

1642226961726055

doCollectionPayFunc

Service C

traceID

executionID

parentID

start time

end time

function name

end service name

Fig. 1. An example of trace in a microservice system (Service X means a
microservice).

related invocations and executions among microservices in
detail. For example, Figure 1 shows a trace of a microservice
system. The trace recorded the processing time of each service
as well as the execution time of requesting and responding.
The left part of the figure shows the over structure of the
request, while the right part shows the detailed information of
execution 2 and 8. By analyzing such information, operators
can identify the happening of an anomaly and localize the root
cause of an anomaly.

Trace-based anomaly detection and root cause localization
have been a topic of great interest over the years. A prevalent
initial step in this process involves converting the traces into
numerical vectors, which enables the application of machine
learning techniques. Some approaches [4], [5] define features
such as the frequencies of different service operations. Others
[6], [7] enumerate the call path to consider structural feature,
and then take the metrics on path into vectors.

However, most existing approaches ignore the detailed in-
formation carried by traces. We contend that leveraging this
detailed information is essential for achieving more accurate
anomaly detection and fine-grained root cause localization.
The information carried by traces can be categorized into
three aspects: structural, service processing, and transmis-
sion execution, which correspond to three types of system

1

anomalies (§ II-B). Structural information typically represents
logical errors. Service processing information signifies internal
service errors. Transmission execution information indicates
networking issues. To perform a more comprehensive analysis,
it is imperative to consider these three types of information.
However, effectively utilizing this information faces two sig-
nificant challenges.
1) Mixed normal and anomalous data. Traces inherently

record both normal and abnormal invocations. However,
manually labeling these anomalies can be time-consuming
and error-prone. Consequently, identifying normal and ab-
normal traces in practice becomes challenging. Incorporat-
ing both normal and abnormal data in training can signif-
icantly compromise the performance of machine learning
models due to the presence of noise in the data. For
instance, in our collaborating company, abnormal traces
constitute approximately 1% of the total traces. To conduct
a preliminary study, we manually cleaned the traces from
one week and assessed the impact of noise on the models’
performance. As listed in Table I, this amount of noise can
considerably degrade the performance of the models.

2) Large data volume. Traces are recorded in large volumes
[4], [8]. For example, our cooperated company pipelines
generate about three million traces in a single day. We
take the data of one week to conduct pilot experiments.
It takes more than 192 hours (8 days) to train existing
trace analysis approaches, which is unacceptable for the
company to detect abnormal operations in real-time.

TABLE I
THE IMPACT OF MIXED NORMAL AND ANOMALOUS DATA

Approach F1 trained on
cleaned data

F1 trained on
raw data Impact

MultimodalTrace [9] 0.809 0.337 0.472↓
AEVB [10] 0.831 0.328 0.503↓

TraceAnomaly [7] 0.828 0.385 0.443↓
TraceCRL [11] 0.860 0.427 0.433↓

Sage [12] 0.847 0.326 0.521↓

To address the above challenges, we propose TraceSieve,
an unsupervised framework for trace-based anomaly detection
and root cause localization. First, we filter the abnormal data
from raw data by an auto-encoder architecture within an ad-
versarial training framework. We further design VGAE-EWC,
which combines variational graph auto-encoder (VGAE) with
an incremental training strategy using the elastic weight con-
solidation (EWC) method, to reduce the time cost of model
training. Our contributions can be summarized as follows:
1) We introduce a noise filtering method based on Generative

Adversarial Networks (GANs) to eliminate interference
from noise during the training data preprocessing stage,
thus addressing the first challenge. We remove noise data
through a custom threshold calculated from each trace’s
noise level (§ III-B2).

2) To tackle the challenge posed by large-scale training data,
we propose VGAE-EWC, which combines VGAE with an

incremental training strategy using the elastic weight con-
solidation (EWC) method. Our approach involves dividing
the training data into multiple segments and training the
model incrementally while accepting feedback from online
detection through hyperparameters. This strategy enables
us to improve training efficiency and the efficacy of the
model simultaneously (§ III-C).

3) We conduct extensive experiments using two datasets,
one of which is collected from a large-scale microservice
system deployed in an e-commerce company. The results
show that our framework detects trace anomalies in mi-
croservices with an average F1-score of 0.970 and 0.925,
outperforming baseline methods by 0.235 and 0.119 on
average, respectively (§ IV).

II. BACKGROUND

A. Microservices and Traces

Microservice systems are large-scale distributed online sys-
tems that consist of thousands of isolated microservice in-
stances constantly calling each other [2]. The process of
calling microservice instances in a specific order is referred to
as a trace [9], [13]. Due to the invocation patterns commonly
found in microservice systems, a trace is constructed in a chain
of microservice instance invocations. Executions in a trace
record various features such as start time, end time, function
name, and end service name when invocations occur. These
features can be used to rearrange and analyze traces.

A trace in a microservice architecture can form a directed
graph that consists of a sequence of executions, each of which
corresponds to an invocation between two microservices [2].
Traces and executions are both assigned a unique identifier
to differentiate them from others. Each execution contains
information about the microservice instance being invoked,
such as the function name and the end service name to
which the invocation is directed. Moreover, each execution
in a trace has a parent execution that generates the invocation
to the current execution, except for the first execution in the
trace. Distributed traces play an important role in microservice
systems. A variety of open-source distributed trace recording
infrastructures, including Jaeger [14], Zipkin [15], SkyWalk-
ing [16], OpenTracing [17], and ES-APM have been developed
in recent years to support the development of distributed traces.
In the studied company, ES-APM was deployed by operators
to collect trace data.

Previous methods for detecting anomalies in traces have
primarily focused on response time and invocation structure
features [7], [18]. While these methods have demonstrated
relatively impressive detection results, they do not make use
of all available features, which can limit the effectiveness of
anomaly detection. For instance, each execution in a trace
contains time features, as depicted in Figure 1. The start time
denotes the moment when the service sends a request, and
the end time denotes the moment when the service receives
a response. Through these time features, we can calculate the
processing time at the services and the waiting time at the
executions, as shown in Equation 1:

2

PT (E) = ST (6)− ET (5)

WT (5) = ET (5)− ST (5)
(1)

Here, ST (5) and ST (6) are the start time of Execution 5
and Execution 6, and ET (5) is the end time of Execution
5. PT (E) represents the invocation gaps, which we refer
to as processing time at Service E. WT (5) represents the
time consumed during request transmission and waiting in
the queue, which we refer to as waiting time for Execution
5. These features enable us to gain a closer insight into the
invocations between executions in a trace. By leveraging these
features, we can detect many different anomalies in a trace
with high accuracy.

B. Trace Anomaly

We identify three types of common anomalies: processing
time (PT), waiting time (WT), and structural anomaly. Waiting
time and processing time anomalies can be determined by
deviations in their values from the distribution of normal
values. Structural anomalies can be determined by unusual
calling structures.

B

Start

1

2
4

5
3

(a) Normal

6

A

C B

Start

1

2
4

5
3

(b) PT Anomalous

6

A

C

B

Start

1

2
4

5
3

(c) WT Anomalous

6

A

C B

Start

1

2
5

4

3

(d) Structure Anomalous

6

A

C

PT(C)↑

WT(2)↑

Fig. 2. Examples of normal trace and three types of anomalous traces.

• Processing time anomaly. This type of anomaly is often
associated with internal service errors, which may be due
to issues like resource contention, inefficient algorithms,
software bugs, etc. Figure 2(b) shows an example of
processing time anomaly. The processing time of Service
C in the anomalous trace increases rapidly in a short time,
which is beyond the normal range.

• Waiting time anomaly. This type of anomaly is often
associated with networking issues, which can be caused

by problems like network congestion, packet loss, high
latency, etc. Figure 2(c) shows an example of waiting
time anomaly. The waiting time of Execution 2 in the
anomalous trace increases rapidly in a short time, which
is beyond the normal range.

• Structural anomaly. This type of anomaly is often
associated with logical errors within the system, which
can lead to unexpected behavior. Figure 2(d) shows an
example of structural anomaly. Instead of the normal
executions between Service A and Service C, incorrect
executions are made between Service B and Service C.

III. TRACESIEVE APPROACH

A. Design Overview

This paper proposes an unsupervised trace anomaly de-
tection method, named TraceSieve, which is based on the
variational graph auto-encoder (VGAE [19]) to effectively and
efficiently detect trace anomalies. Figure 3 illustrates the over-
all framework of TraceSieve, which comprises three stages:
data preprocessing, offline training, and online detection.

Data Preprocessing

Historical

Traces

Denoised

Data
VGAE-EWC

Model

Online Detection

Offline Training

Online

Traces

Detection

Results

Noise

Filtering

Features

Feature

Extraction

Features

Anomaly

Detection

Incremental

Training

Feature

Extraction

Root Cause

Localization

Anomalous

Services & Executions

Fig. 3. The overview framework of TraceSieve.

In the data preprocessing stage, historical trace data is
subjected to feature extraction and noise filtering processes.
Specifically, we extract the numerical features of a trace and
represent them in a trace feature matrix (TFM), while the
structural features are transformed into an adjacency matrix.
To mitigate the influence of three types of noise on anomaly
detection, we propose an auto-encoder architecture within an
adversarial training framework inspired by GANs [20]. Then,
we adopt the VGAE-EWC model for offline training.

During online detection, each new trace is first converted
into the TFM and adjacency matrix representations. The
trained model then computes the negative log-likelihood
(NLL) as the anomaly score for each new trace. Finally,
instead of manually determining a threshold for anomalous
traces, we utilize the p-value to automatically decide the
threshold based on the anomaly score. The p-value is set at a
commonly used level of 0.001 for statistical hypothesis testing
missions.

B. Data Preprocessing

1) Feature Extracting: We extract three types of features,
namely processing time, invocation structure, and waiting
time, to represent a trace. Following the approach proposed

3

in [7], we reconstruct the invocation path of a trace to extract
the execution time and start time of each span. Compared to
the STV approach, we introduce a new data structure called
trace feature matrix (TFM) to store the features extracted from
traces. The execution time of each span is stored in the first
dimension of the TFM in the order of the invocation path.
Next, we calculate the waiting time of each service using
the method described in Eq.1 and store them in the second
dimension of the TFM in the same order as the execution time.
Regarding the invocation structure, we use a sparse matrix,
referred to as the adjacency matrix, to store each end service
in a trace in the order of the invocation path. When a trace is
transformed into an invocation graph, each service serves as a
node in the graph, and the invocations between two services
correspond to the non-zero elements in the adjacency matrix.

Figure 4 illustrates the TFM and adjacency matrix of the
sample trace depicted in Figure 1.

Waiting Time Processing Time

WT(1) 0

WT(2) PT1(A)

WT(3) PT2(A)

WT(4) PT1(C)

WT(5) PT2(C)

WT(6) PT(E)

WT(7) PT(D)

WT(8) PT3(C)

WT(9) PT(B)

WT(10) PT3(A)

Trace Feature Matrix (TFM)

0

Adjacency Matrix

1 0000001

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

1

1
0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0
0

1

0

0

0

1

1

0

0
0

0

0

0

0

0

0

1

0
0

0

0

1

1

0

0

1

0
0

0

0

0

0

1

0

0

0

0
0

0

0

0

1

0

0

0

0

0

0

Fig. 4. The TFM and adjacency matrix of the example trace.

2) Noise Filtering: A modern microservice system at a
large scale always involves a considerable amount of invo-
cation data (traces) and operation instances. As a result, it
is challenging to ensure the quality of all the collected trace
data, as there may be issues with the recording process due to
machine malfunction or manual errors. Our analysis reveals
that the proportion of noise in the trace data is typically
minimal (around 1%), which can be classified into three
types that are similar to trace anomalies: waiting time noise,
processing time noise, and invocation structure noise. Among
these types of noise, invocation structure noise constitutes the
largest proportion (around 70%). The percentage of waiting
time noise and processing time noise is 25% and 5%, respec-
tively. Nevertheless, noise remains a significant obstacle to the
model’s ability to learn standard patterns during the offline
training process.

To address the issue of noisy trace data, we propose an auto-
encoder architecture within an adversarial training framework,
which is inspired by the Generative Adversarial Networks
(GANs) [20]. The proposed approach is an unsupervised
neural network comprising a generator (G) and two discrim-

inators (D1 and D2). The generator aims to generate trace
data to maximize the probability of the discriminators making
mistakes. The discriminators, on the other hand, reconstruct
features from traces and classify them as real or generated.

Fig. 5. The structure of noise filtering module.

The GAN architecture includes two auto-encoders (A1 and
A2) that use the same generator G. We extract features from
traces through data preprocessing, which we denote as F , and
fi represents features from one trace.

F = {f1, f2, . . . , fn}
A1 (F) = D1 (G (F))

F
′
= F ∪A1 (F)

A2

(
F

′
)
= D2

(
G
(
F

′
)) (2)

Figure 5 shows the execution process of the proposed
GAN-based approach. Initially, the two auto-encoders (A1

and A2) reconstruct the normal input features F. During the
training process, A1 interferes with A2’s judgment, and A2

determines whether the data is real (F) or generated (A1(F)).
The proposed approach effectively reduces the impact of noise
in trace data and improves the quality of the data used for
offline training.

More details extend in the following:
• Stage 1: Reconstruct Traces. Input features F are en-

coded by generator G into the latent variable Z and then
reconstructed by discriminators D1 and D2 in turn. The
specific implementation principles are given by Eq. 2:

LA1
= ||F −A1(F)||2

LA2
= ||A2(A1(F))−A2(F)||2

(3)

Here, LA1
and LA2

represent the loss function of auto-
encoders A1 and A2, respectively.

• Stage 2: Classification. After processing input features,
the objective of A2 is to discriminate between raw trace
features and reconstructed trace features from A1. Features
from A1 are encoded repeatedly into Z. According to the
adversarial training framework, the objective of A1 is to
minimize the distinction between F and the output of A2,
while the objective of A2 is to maximize it. The objective
function can be written as:

4

min
A1

max
A2

||F −A2(A1(F))||2 (4)

This accounts for the following loss functions:

LA1 =
1

n
||F −A1(F)||2 + (1− 1

n
)||F −A2(A1(F))||2

LA2 =
1

n
||F −A2(F)||2 + (1− 1

n
)||F −A2(A1(F))||2

(5)

After features from traces have undergone two rounds of
calculation, the anomaly score can be defined as follows:

S (F) = α||F −A1(F)||2+(1−α)||F −A2(A1(F))||2 (6)

Here, α is a parameter that determines the proportion of the
two loss functions from A1 and A2. The size of α determines
the sensitivity of the noise filtering process, as discussed in
§ IV-E.

C. VGAE-EWC

A
N × N

F
N × 2

q∅(Z|G)
GCN

Z
N × K

pλ(Z) A
N × N

F
N × 2

pθ(F|A, Z)

p(A|Z)

Fig. 6. A general architecture of VGAE.

Our VGAE design is presented in Figure 6, where F and
A represent the trace feature matrix and adjacency matrix,
respectively, of the same trace. N denotes the number of
invocations in the trace. Our VGAE leverages a Graph Con-
volutional Network (GCN) as an encoder to encode F and
A into hidden features. Subsequently, the hidden features
are passed through the encoder to obtain the variational
posterior distribution qϕ(Z|A,F). Further, a fully-connected
network is employed to decode graph-level Z back into node-
level features, which are used to generate the reconstructed
Â and F̂ . Here, qϕ(z|A,F) and pθ(N,A,F|z) denote the
encoder and decoder of the main Variational Autoencoder
(VAE), respectively. Specifically, Aij and Fi follow Bernoulli
and Gaussian distributions, respectively. Additionally, pθ(z)
represents a learned RealNVP prior [21]. The loss function of
our proposed method TraceSieve is formulated as follows:

Loss = γ ·KLD[q(Z|F) || p(Z)]− Eq(Z|A, F)[log p(A|Z)] (7)

where γ is a hyperparameter that balances the proportion of
KL-divergence.

However, the application of the general VGAE for training
the detection model reveals a significant increase in both
training time and memory cost. Although the issue of high
memory cost can be resolved using simple techniques such as
parallel computing and distributed input, the training time can-
not be mitigated by these methods. To address this problem,
we propose a novel approach, VGAE-EWC, which combines
VGAE with an incremental training strategy called Elastic
Weight Consolidation (EWC) to significantly reduce training

time. EWC is a method that enables continual model learning
by restricting the plasticity of synapses that are essential to
previous tasks [22]. This method constrains important param-
eters to stay close to their old values. Given a dataset D and
the biases θ of the linear projection, we can use Bayes’ rule
to calculate the conditional probability p(D |θ) as follows:

log p(θ|D) = log p(D |θ) + log p(θ)− log p(D) (8)

It can be observed that log p(D |θ) is the negative of the loss
function for −L (θ). Assuming that DA and DB constitute
the dataset D , the Eq.8 can be rearranged as follows for task
A(DA) that has been used for training and task B (DB) to be
trained:

log p(θ|D) = log p(DB |θ) + log p(θ|DA)− log p(DB) (9)

As a result, all the parameters defined in the entire dataset
D will depend only on the loss function of task B, which is
log p(DB |θ). The trained information of task A is stored in
the posterior distribution p(θ|DA). During training of the two
tasks, the focus is on minimizing the loss function of task B
as follows:

L (θ) = LB(θ) +
∑
i

λ

2
Fi(θi − θ∗A,i)

2 (10)

Here, λ represents the weight of the last task compared to
the next, θ∗A is the optimal parameter of task A, and F is the
Fisher information matrix [23] used to measure the importance
of the parameters θ∗A.

To avoid the exponential increase in training time due to
large-scale data, we iteratively train the VGAE-EWC model
using multiple datasets obtained by dividing the trace data of
a specific number of days by day.

D. Anomaly Score

During the testing process, it is necessary to assign an
anomaly score to each trace to discern whether it is anomalous.
The negative log-likelihood (NLL) is a commonly utilized
anomaly score in other trace anomaly detection methodologies,
and it reflects the extent to which a graph G deviates from
the normal pattern that is learned by the model. Monte Carlo
integration is a popular method for calculating the NLL [24].
Specifically, the NLL of a graph G can be expressed as:

NLLG = − log pmodel(G)

= − logEqϕ(z|G,N)

[
pθ(G,N, z)

qϕ(z|G,N)

]
≈ − log

[
1

L

L∑
l=1

pθ(N,A,X, z(l))

qϕ(z(l)|G,N)

] (11)

where z(l) is a sample from qθ(z|G,N), and L is the number
of samples. The NLL predominantly calculates the dissimilar-
ity between the reconstructed graphs and the original traces,
which can be derived from Eq. 7.

Directly using negative log-likelihoods (NLLs) to iden-
tify anomalous traces can result in a problem. Nalisnick et

5

al. [25] observed that deep generative models, including Vari-
ational Autoencoders (VAEs), exhibit low NLLs for out-of-
distribution data when compared to regular training data. They
did not propose practical solutions to address this issue. We
propose a new strategy for computing the anomaly score. Let
p∗ represent the distribution of testing data. The expectation
of NLLs (Ep∗ [NLLx]) can be expressed as the sum of the
Kullback-Leibler (KL) divergence of p∗ on the model pmodel

and the data entropy (H[p∗]). The KL divergence measures
the difference between testing data and the model, which
is always ≥ 0. However, the data entropy is not controlled
by the model, unlike the KL divergence. If the data entropy
of the testing data (H[p∗]) is no greater than the training
data (H[ptraining]), the NLLs on the testing data could be
lower than the training data. This problem is referred to as
the entropy gap. To address this issue, we propose a new
strategy. After analyzing thousands of traces, we observed that
the standard deviations (STDs) of xi for anomalous traces are
generally more significant than the expected data. Therefore,
we can decrease the entropy gap by clipping the STDs
of p(xi|A, z). Specifically, we clip the STDs by computing
σ̃i = minσi, σstd99.9, where σi and σ̃i represent the STDs of
xi before and after clipping, respectively, and σstd99.9 is the
boundary value of the 99.9% of the STDs. As σ̃i < σi usually
holds for anomalous traces, their NLLs can increase, thereby
deviating from the normal distribution.

E. Online Detection

TraceSieve trains a fine-tuned VGAE-EWC model for online
detection of anomalies in new trace data. In this stage, oper-
ators extract features and construct the TFM and the adjacent
matrix for each new trace, which are then fed into the pre-
trained model to calculate the anomaly score using Eq.11 and
the distribution learned from the training set. As the traces in
the studied company are dynamic, it is not feasible to manually
set a fixed threshold to classify anomalous scores. Following
previous works in trace anomaly detection [7], [9], [10], we
propose to use the p-value approach to distinguish anomalous
scores. We set the p-value threshold at 0.001, following the
standard criterion commonly used in statistical hypothesis
testing.

F. Localizing Root Cause

When an anomalous trace is detected in the online detection
period, the mission of root cause localization is to identify the
root microservice that caused the system failure, such as a
service request timeout, waiting queue overrun, or incorrect
interface dependency. The abnormal features of the microser-
vice and its corresponding invocation path are used to clearly
interpret the root cause.

Our root cause localization algorithm leverages the phys-
ical significance of the trace feature matrix, where each
dimension represents an execution and includes the waiting
and processing times. When an anomalous trace is detected,
TraceSieve searches the training set to identify which trace
feature matrices are homogeneous (i.e., have the same valid

dimensions) with the trace feature matrix of the anomalous
trace. If no homogeneous trace feature matrix is found, Trace-
Sieve determines that the anomalous trace has an invocation
structure anomaly. To further investigate the anomalous trace,
TraceSieve identifies the trace feature matrix with the longest
common invocation path with the homogeneous trace feature
matrix of the anomalous trace.

For each valid dimension in the anomalous trace, TraceSieve
calculates and stores the mean µ and standard deviation σ of
the waiting and processing times from the training set. Because
the waiting and processing times have different distributions,
TraceSieve applies the z-score normalization strategy to mea-
sure the abnormality of the values in the anomalous trace’s
trace feature matrix. Specifically, for a value x in the trace
feature matrix, TraceSieve calculates the anomaly severity as
follows:

Anomaly Score(xi) =
xi − µx

σx

µx =

∑
i∈N xi

N

σx =

∑
i∈N (xi − µx)

2

N

(12)

where x is either the waiting time or the processing time, and
has a set of µx and σx respectively. Among these abnormalities
of values in the trace feature matrix, TraceSieve selects the
top k abnormal features by their severity values. Finally,
TraceSieve maps the abnormal features to their corresponding
microservices in the trace feature matrix to identify the top k
abnormal microservices.

IV. EVALUATION

In this study, we aim to answer the following research
questions (RQs) through extensive experimentation:
RQ1. How does the performance of TraceSieve compare to
baseline methods in terms of trace anomaly detection, includ-
ing both effectiveness and training time?
RQ2. How does the precision of TraceSieve compare to
baseline methods in root cause localization?
RQ3. What are the significant technical contributions of
TraceSieve, including feature extraction, noise filtering, and
incremental training, and how do these modules contribute to
its overall performance?
RQ4. How do the hyperparameters of TraceSieve impact its
performance, and what are the optimal settings for these
parameters?

TABLE II
THE DETAILS OF DATASETS

Dataset # Microservice Instances # Failures # Trace Records
D1 10 1191820 23520998
D2 9 8442 36705835

A. Experiment Setup

1) Datasets: To evaluate the performance of TraceSieve,
we conducted extensive experiments on two datasets, one

6

TABLE III
THE EFFECTS OF TraceSieve IN COMPARISON WITH DIFFERENT APPROACHES ON TWO DATASETS

Dataset Approach WT IS PT Total Time (h)P R F1 P R F1 P R F1 P R F1

D1

CFG [26] 0.851 0.873 0.862 - - - 0.832 0.865 0.848 0.652 0.749 0.697 90
CPD [27] - - - 0.923 0.947 0.935 - - - 0.478 0.682 0.562 96

MultimodalTrace [9] 0.812 0.857 0.834 0.631 0.764 0.691 0.795 0.823 0.809 0.747 0.807 0.776 126.7
AEVB [10] 0.827 0.784 0.805 - - - 0.803 0.772 0.787 0.634 0.687 0.659 683.2

TraceAnomaly [7] 0.866 0.820 0.842 0.886 0.791 0.836 0.873 0.848 0.860 0.867 0.819 0.842 315
TraceCRL [11] 0.883 0.796 0.864 0.867 0.849 0.852 0.906 0.887 0.891 0.895 0.824 0.874 159.6

TraceSieve 0.984 0.972 0.978 0.965 0.973 0.969 0.971 0.962 0.966 0.973 0.968 0.970 4.3

D2

CFG [26] 0.802 0.839 0.820 - - - 0.817 0.831 0.826 0.610 0.722 0.661 46
CPD [27] - - - 0.905 0.933 0.919 - - - 0.443 0.634 0.522 48

MultimodalTrace [9] 0.537 0.675 0.598 0.651 0.760 0.701 0.553 0.664 0.603 0.580 0.700 0.634 62.8
AEVB [10] 0.823 0.804 0.813 - - - 0.796 0.751 0.773 0.610 0.684 0.645 314.2

TraceAnomaly [7] 0.849 0.716 0.777 0.704 0.658 0.680 0.863 0.797 0.829 0.805 0.722 0.761 139.1
TraceCRL [11] 0.861 0.795 0.837 0.752 0.718 0.739 0.885 0.827 0.860 0.829 0.769 0.808 165.2

TraceSieve 0.889 0.938 0.913 0.892 0.981 0.934 0.943 0.866 0.903 0.915 0.936 0.925 7.6

open-source and one real-world. The details of the datasets
are provided in Table II, which includes the number of
microservice instances, the number of failures that occurred
in the microservice instances, and the total number of trace
records in each dataset.
• Dataset 1 (D1) is the Generic AIOps Atlas (GAIA) dataset

provided by CloudWise1. GAIA comprises multi-modal
data, including metrics, logs, and traces, recorded from
the MicroSS benchmark system2, which simulates user
logins using QR codes in a microservice environment.
The dataset includes over 6,500 metrics, 7,000,000 log
items, and detailed trace data continuously collected over
two weeks. The dataset also simulates system failures
by controlling user behavior and mimicking erroneous
manipulations to the system. We use a testing set of 3,232
normal traces, 1,564 waiting time anomaly traces, 1,238
invocation structure anomaly traces, and 976 processing
time anomaly traces.

• Dataset 2 (D2) is collected from a large-scale microservice
system operated by an e-commerce company. We use two
weeks of data as the training set. Due to the difficulty
of obtaining labeled data, we inject failures into the sys-
tem using chaos engineering, such as microservice pub-
lish dependency order exceptions, Elastic Load Balancing
(ELB) network issues, and downstream service throttling.
Professional operators labeled the traces and classified
anomaly types. We use a testing set of 3,962 normal
traces, 1,132 waiting time anomaly traces, 1,098 invocation
structure anomaly traces, and 925 processing time anomaly
traces. Unfortunately, we cannot make this dataset publicly
available due to a non-disclosure agreement.

2) Environment and Parameters: The implementation of
TraceSieve is in Python 3.7.12, with PyTorch 1.10.0 serving
as the primary deep learning framework. The experiments are
conducted on a server with two 16C32T Intel(R) Xeon(R)
Gold 5218 CPU @ 2.30 GHz, one NVIDIA(R) Tesla(R)

1https://github.com/CloudWise-OpenSource
2https://github.com/CloudWise-OpenSource/GAIA-

DataSet/tree/main/MicroSS

V100S, and 188 GB of RAM. A batch size of 128, learning
rate of 0.001, and 50 epochs are used for all deep learning
models.

3) Baselines: To evaluate the performance of TraceSieve
on anomaly detection, we employ six recently proposed trace
anomaly detection methods as baseline methods, including
CFG [26], CPD [27], AVEB [10], MultimodalTrace [9],
TraceAnomaly [7], and TraceCRL [11], which have been
introduced in related work. Since CFG and CPD do not employ
deep learning methods, we provide the important parameter
settings for the remaining three methods. For AEVB, we set
the window size to 32. For MultimodalTrace, we use two
LSTMs to process the input data and set the weight of the
two loss functions to 0.5 each. For TraceAnomaly, we set the
dimension of the latent variable z to 10.

To evaluate the precision of TraceSieve in root cause local-
ization, we use three recently proposed root cause localization
methods, including TraceAnomaly [7], MicroRank [28], and
TraceRCA [29]. We mainly provide the parameter settings
for the following two methods: MicroRank and TraceRCA.
For MicroRank, we set the damping factor d to 0.85 and the
preference vector weight φ to the default value of 0.5. And
for TraceRCA, we use the default values of 1, 0.1, and 0.1,
respectively, for these three parameters δad, δfs, and δspt.

4) Performance Metrics: In the context of anomaly de-
tection, we compute an anomaly score for each trace in the
test set, and subsequently classify the traces as anomalous or
not based on a predefined threshold for the anomaly score.
The problem of trace anomaly detection can be formulated as
a binary classification problem for each trace, with the F1-
score being a widely used performance metric. The F1-score
is computed using true positive samples (TP), false positive
samples (FP), and false negatives samples (FN) obtained from
the failure detection model.

• Precision: the proportion of predicted positive samples
that are true positive samples, which can be calculated as:
Precision = TP

TP+FP .
• Recall: the proportion of true positive samples that are

correctly predicted as positive, which can be calculated as:

7

Recall = TP
TP+FN .

• F1-score: the harmonic mean of precision and recall that
provides a balance between the two metrics, which can be
calculated as: F1 − score = 2× precision×recall

precision+recall .
To detect and evaluate anomalies for different types of traces,
we conduct experiments separately for each type of trace
anomaly. We also compute the best F1-score for failure-
incorporative data, which includes all types of failures in the
traces. The best F1-score is defined as the optimal threshold
value that maximizes the F1-score when the threshold value
is unknown.

In the context of root cause localization, we use precision
at top-k (P@k) as a commonly used metric for ranking, which
indicates the probability that the top-k microservices identified
by the approach contain the root cause.

B. TraceSieve vs. Baseline Algorithms (RQ1)

Table III lists the average precision, recall and F1-score
of TraceSieve and baseline approaches on the two datasets,
where WT, IS, PT represent waiting time, invocation structure
and processing time. TraceSieve outperforms all the baseline
approaches on both datasets, with the average best F1-score
of 0.97 and 0.925, respectively. To evaluate the effect on
different types of trace anomaly, we classify the anomalies
and detect them respectively. In order to ensure the accuracy
of our detection of each type of anomaly, we ensure that
each anomalous trace in the testing set contains only one
corresponding anomaly type. Moreover, we also combine
the different anomalies together and calculate the average
precision, recall and F1-score.

Due to the baseline approaches only extract response time
from traces, they can not detect anomalous traces which
have a processing time anomaly. AEVB achieves the lowest
performance on D1. Meanwhile, MultimodalTrace achieves
lowest on D2. They both use LSTM based deep learning
model to detect trace anomalies. However, both of them
regard traces as sequences, which mainly reconstruct using
timestamps recorded. According to the results, AEVB and
MultimodalTrace are relatively good at detecting execution
time anomalies that happened in a trace, but failed to detect
invocation structure anomalies. CFG focuses on execution
time anomaly detection, while CPD focuses on invocation
structure anomaly detection. Both of them can only detect one
type of trace anomaly. TraceAnomaly do better at detecting
execution time anomaly than invocation structure anomaly.
The overall detection performance of TraceCRL is better than
TraceAnomaly on both datasets, although its effectiveness in
detecting invocation structure anomalies is slightly worse.

TraceSieve is effective in detecting different types of trace
anomalies, with the average best F1-score obviously higher
than existing methods. Compared with the best-performing
baseline approach, the best F1-score of TraceSieve outperform
it by 0.096 and 0.117 on the two datasets, respectively.

As for efficiency, we also evaluate the time cost for model
training of all the baseline approaches and TraceSieve. Ta-
ble III lists the time that approaches use to train an anomaly

detection model on training set. CFG takes the least amount
of time on training, about 90h and 46h, due to its simple
calculation of similarity among traces. The same result goes
for CPD, which only cost 96h and 48h. The remaining four
methods that take the least time are over 5 days and 2 days,
respectively. Especially, AEVB has the longest training time,
about 683.2h and 314.2h, due to the using of multi-modal
LSTM. Although our approach spends about 4.3h and 7.6h
on training, we propose a more complex data structure for
feature information extraction and construct invocation graph
for traces, which compensates for the over-time on training
model.

C. Root Cause Localization of TraceSieve (RQ2)

Besides anomaly detection, we also compare the precision
of TraceSieve in root cause localization with baseline ap-
proaches on D1 and D2, listed in Table IV. We can find
that the precision of TraceSieve in root cause localization is
better than baseline approaches, which reaches 0.98 at P@3
on both datasets. TraceSieve especially has a good result
on P@1, which can demonstrate that TraceSieve has strong
discrimination for abnormal microservices. Since our results
are root-caused features in a trace, we evaluate our model
locating the three types of anomalous traces, which is shown
in Table V.

TABLE IV
THE PRECISION OF ROOT CAUSE LOCALIZATION IN COMPARISON WITH

DIFFERENT APPROACHES

Dataset Approach P@1 P@2 P@3

D1

MEPFL [5] 0.41 0.47 0.53
TraceAnomaly [30] 0.65 - -

TraceRCA [29] 0.69 0.72 0.79
MicroRank [28] 0.76 0.83 0.88

Sage [31] 0.82 0.86 0.92
TraceSieve 0.92 0.95 0.98

D2

MEPFL [5] 0.32 0.41 0.49
TraceAnomaly [30] 0.60 - -

TraceRCA [29] 0.67 0.68 0.73
MicroRank [28] 0.72 0.83 0.85

TraceSieve 0.90 0.94 0.98

TABLE V
THE F1-SCORE (F1) OF ROOT CAUSE LOCALIZATION IN THREE ANOMALY

TYPES ON TWO DATASETS

Dataset F1(WT) F1(IS) F1(PT)
D1 0.98 0.97 0.97
D2 0.91 0.93 0.90

D. Contributions of TraceSieve (RQ3)

We conduct a series of experiments to evaluate the con-
tributions of key components of TraceSieve. During these
experiments, we construct three alternatives of TraceSieve,
which are:
(1) TraceSieve using STV. To show the importance of trace

feature matrix (TFM) in feature extraction, we change the
TFM into STV used in existing methods.

8

(2) TraceSieve w/o GAN. To study the effect of noise filtering
in data preprocessing, we remove GAN from TraceSieve.

(3) TraceSieve w/o EWC. To evaluate the performance of
incremental training , we remove the elastic EWC from
TraceSieve.

Table VI lists the average precision, recall and best F1-
score of the three alternative mentioned above on two datasets.
When the TFM of TraceSieve is replaced by the original STV,
both precision and recall decrease. It shows that TFM is more
efficient than STV for extracting feature information from
traces. Both precision and recall decrease when the denoising
module is removed, demonstrating that noise filtering can
reduce false positives by preventing TraceSieve from learning
patterns of anomalous traces. We also injected three types of
abnormal trace in different proportions shown in Table VII.

TABLE VI
COMPARISON BETWEEN TraceSieve AND DIFFERENT MODEL ALTERNATIVE

Dataset Approach P R F1 Time (h)

D1

using STV 0.923 0.917 0.920 3.7
w/o GAN 0.927 0.941 0.932 4.5
w/o EWC 0.975 0.986 0.980 60.1
TraceSieve 0.973 0.968 0.970 4.3

D2

using STV 0.864 0.842 0.853 6.9
w/o GAN 0.894 0.903 0.898 7.3
w/o EWC 0.929 0.948 0.938 100.3
TraceSieve 0.915 0.936 0.925 7.6

TABLE VII
COMPARISON OF DENOISING PERFORMANCE IN DIFFERENT TYPES OF

NOISE AT DIFFERENT INJECTION RATIOS

Failure Type Noise Rate F1(ND) F1(D)

WT failure

0.1% 0.891 0.947
0.4% 0.887 0.943
0.7% 0.862 0.935
1% 0.858 0.932

PT failure

0.1% 0.883 0.919
0.4% 0.881 0.907
0.7% 0.875 0.902
1% 0.868 0.900

IS failure

0.1% 0.520 0.834
0.4% 0.517 0.826
0.7% 0.509 0.818
1% 0.496 0.803

As for removing EWC, Table VI shows that when Trace-
Sieve adds EWC, the precision and recall slightly reduce. But
when we consider the training time cost between TraceSieve
and TraceSieve without EWC, we find that time cost in model
training decreases remarkably through the incremental training
method.

E. TraceSieve Hyperparameters Sensitivity(RQ4)

We mainly discuss the effect of three hyperparameters in
data preprocessing and online detection on TraceSieve.

Figure 7a shows the average best F1-score of TraceSieve
changes with different values of γ, hyperparameter in loss
function. Specifically, we increase γ from 0.0 to 1.0. From the
results, we can find that when γ is at 0.1, TraceSieve has the
best average F1-score. If γ continuously increase, it will affect

0.0 0.2 0.4 0.6 0.8 1.0
0.6

0.7

0.8

0.9

1.0

F 1
-s

co
re

1
2

(a) The performance of different γ.

0.2 0.4 0.6 0.8 1.00.80

0.85

0.90

0.95

1.00

F 1
-s

co
re

1
2

(b) The performance of different λ.

0.0 0.2 0.4 0.6 0.8 1.0
0.90

0.92

0.94

0.96

F 1
-s

co
re

1
2

(c) The performance of different α.

Fig. 7. The effect of different hyperparameters.

the choosing on the threshold of anomaly score, degrading
TraceSieve’s performance. Thus, we pick 0.1 as the γ.

Then we focus on λ, which is a hyperparameter in EWC
during incremental training. Figure 7b shows how the average
best F1-score of TraceSieve changes as λ varies. Through the
experiment, we change λ from 0.1 to 0.9 with a step size of
0.2. According to the result, we observe that the variation of
λ does not impact the accuracy of TraceSieve significantly. In
this paper, we set λ = 0.5.

We also change the size of α in noise filtering. We gradually
increase the value of α. Figure 7c shows the impact of
changing α on average F1-score. We observe that when α
is 0.1, the F1-score reaches the top. Then it keeps decreasing
as the α increases. According to the analysis, we set α = 0.1.

V. DEPLOYMENT AND DETECTION

We install and deploy TraceSieve in the production environ-
ment of a large-scale e-commerce company. First, operators
use the developed automated data collection tool to collect
RPC log data in the production environment. The tool then
pushes the collected log data input into Elastic APM3, a
widely used application performance monitoring system built
on the Elastic Stack. It provides data storage and indexing and
analysis and visualization of data. Elastic APM processes log
data into call chain data and stores it. During offline training,
operators use the trace data for the last week to train the model
firstly and learn the existing transaction invocation patterns of
the company. During online detection, the trace data in the
production environment is obtained in real-time from Elastic
APM, and the latest trained model is used to detect anomalies.
Due to the important and large amount of data generated on
weekdays, we adopt the strategy of updating the detection

3https://www.elastic.co/

9

model by incremental training on weekends periodically and
conducting online detection on weekdays, which can make bet-
ter use of new data to improve the effectiveness of the model.
Since the scale of abnormal transaction invocation from data
is tiny, our TraceSieve can achieve full coverage of failures
that appeared in data. Since the production environment of
this financial trading company is relatively stable, we rarely
find abnormal traces. But, we still find the three types of trace
anomalies we propose during the online detection stage, shown
in Figure 8.

gateway

Start

search

database

1

2

3

6

5

4

WT(5) = 1438507μs

(a)

gateway

Start

search

database

1

2

3

6

5

4

PT(gateway) = 115687μs

(b)

scan

Start

login

pay

1

2

3

6

5

4

(c)

Fig. 8. Different types of anomalous trace in the studied company.

Figure 8a shows an instance of waiting time anomaly that
appeared in trace. We can find that the waiting time of
Execution 5 reaches over 1,000,000µs, which deviates from
the distribution of normal traces.

Figure 8b shows an instance of processing time anomaly
that appeared in trace. The waiting time of Service gateway
reaches 115,687µs, which is significantly above the range of
normal waiting times.

Figure 8c shows an instance of structure anomaly that
appeared in trace. It is obvious that Execution 3 and Execution
4 disappear in the trace compared to the normal pattern, which
represents the invocation between Service login and Service
pay crashes down.

VI. RELATED WORK

Many researchers have contributed to applying traces in the
natural production environment. In the microservice system,
traces are often used to help maintain the safe operation of
the system. Li et al. [32] conduct an empirical survey on
the industrial environment and demonstrate that distributed
traces are widely used for failure detection in microservice
systems. Similarly, Luo et al. [33] makes an excellent effort
to analyze distributed traces in the microservice system of
Alibaba, which significantly promotes the development of
trace anomaly detection.

Trace Anomaly Detection. More and more researchers
focused on machine learning methods. AVEB [10] establishes
a multi-modal LSTM (Long-Short-Term-Memory) architecture
to learn the sequence execution patterns of normal traces.
MultimodalTrace [9] is a trace anomaly detection method

that presents a deep learning model for sequence learning to
model the causal relationship between the service instances
in a trace, using the single-modality, sequential text data.
It detects dependent and parallel tasks using the model to
reconstruct the execution path. TraceAnomaly [7] is a trace
anomaly detection method that only considers service-level
traces (operations not considered). It adopts posterior flow
based variational autoencoders (VAE) to detect anomalous
traces. It extracts the execution time of each span from traces
and reconstructs invocation path through parent node to create
service trace vector (STV). TraceCRL [11] uses representation
learning approach based on contrastive learning and graph
neural network to incorporate graph-structured information in
the downstream trace analysis tasks.

Trace-based Root Cause Localization. At first, Monitor-
Rank [34] put forward a method to automatically find root
causes of failures in the service architecture based on the
generated call graph. Then Microhecl [30] localize root cause
with a dynamic call graph. Homoplastically, MicroRank [28]
propose a new strategy, in root cause localization based on
extended-spectrum techniques. AID [35] propose an approach
to predict the intensity of dependencies between cloud services
by aggregating all invocation pairs which the current service
candidates. These methods utilize the trace structural diagram
to proceed with root cause localization. Nonetheless, they do
not fully use the feature information contained in traces.

VII. CONCLUSION

This paper proposes TraceSieve, a trace anomaly detec-
tion approach through constructing a trace data graph. The
approach performs online and continuous analysis of trace
data produced by a running microservice system, and re-
turns anomalous traces and services. TraceSieve leverages
data graphing to discover potential anomalous invocations in
evolving trace data and uses graph similarity analysis to local-
ize anomalous services based on the trace graph. Moreover,
TraceSieve can effectively incorporate online feedback from
operators based on trace data in a natural production environ-
ment to improve the accuracy of detecting anomalous traces.
Our evaluation confirms that TraceSieve can effectively detect
anomalies and localize anomalous services in a microservice
system. Furthermore, TraceSieve is efficient and can be further
improved by denoising trace data.

In future work, we plan to explore more advanced learning-
based trace representation methods to improve the effective-
ness of trace anomaly detection and uncommon service local-
ization. We also plan to evaluate TraceSieve’s effectiveness
and efficiency on more extensive and complex real-world
microservice systems.

VIII. ACKNOWLEDGE

The work was supported in part by the Advanced Re-
search Project of China (No.31511010501), National Nat-
ural Science Foundation of China (Grant No.62272249,
62072264), and Natural Science Foundation of Tianjin (Grant
No.21JCQNJC00180).

10

REFERENCES

[1] F. Li, “Cloud native database systems at alibaba: Opportunities and
challenges,” Proc. VLDB Endow., vol. 12, no. 12, pp. 2263–2272, 2019.

[2] J. Lewis and M. Fowler, “Microservices: a definition of this new
architectural term,” 2014, last checked 12 August 2022. [Online].
Available: https://www.martinfowler.com/articles/microservices.html

[3] T. Alsop, “Average cost per hour of enterprise server down-
time worldwide in 2019,” https://www.statista.com/statistics/753938/
worldwide-enterprise-server-hourly-downtime-cost/.

[4] P. Las-Casas, J. Mace, D. Guedes, and R. Fonseca, “Weighted sampling
of execution traces: Capturing more needles and less hay,” in Proceed-
ings of the ACM Symposium on Cloud Computing, 2018, pp. 326–332.

[5] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, D. Liu, Q. Xiang, and C. He, “La-
tent error prediction and fault localization for microservice applications
by learning from system trace logs,” in Proceedings of the ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019,
Tallinn, Estonia, August 26-30, 2019, 2019, pp. 683–694.

[6] X. Guo, X. Peng, H. Wang, W. Li, H. Jiang, D. Ding, T. Xie, and L. Su,
“Graph-based trace analysis for microservice architecture understanding
and problem diagnosis,” in ESEC/FSE ’20: 28th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, Virtual Event, USA, November 8-13, 2020, 2020,
pp. 1387–1397.

[7] P. Liu, H. Xu, Q. Ouyang, R. Jiao, Z. Chen, S. Zhang, J. Yang, L. Mo,
J. Zeng, W. Xue, and D. Pei, “Unsupervised detection of microservice
trace anomalies through service-level deep bayesian networks,” in 31st
IEEE International Symposium on Software Reliability Engineering,
ISSRE 2020, Coimbra, Portugal, October 12-15, 2020, 2020, pp. 48–58.

[8] Z. Huang, P. Chen, G. Yu, H. Chen, and Z. Zheng, “Sieve: Attention-
based sampling of end-to-end trace data in distributed microservice
systems,” in 2021 IEEE International Conference on Web Services,
ICWS 2021, Chicago, IL, USA, September 5-10, 2021, 2021, pp. 436–
446.

[9] S. Nedelkoski, J. Cardoso, and O. Kao, “Anomaly detection from system
tracing data using multimodal deep learning,” in 12th IEEE International
Conference on Cloud Computing, CLOUD 2019, Milan, Italy, July 8-13,
2019, 2019, pp. 179–186.

[10] Sasho Nedelkoski and Jorge Cardoso and Odej Kao, “Anomaly detec-
tion and classification using distributed tracing and deep learning,” in
19th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, CCGRID 2019, Larnaca, Cyprus, May 14-17, 2019, 2019,
pp. 241–250.

[11] C. Zhang, X. Peng, T. Zhou, C. Sha, Z. Yan, Y. Chen, and H. Yang,
“Tracecrl: contrastive representation learning for microservice trace
analysis,” in Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2022, pp. 1221–1232.

[12] Y. Gan, Y. Zhang, K. Hu, D. Cheng, Y. He, M. Pancholi, and
C. Delimitrou, “Seer: Leveraging big data to navigate the complexity
of performance debugging in cloud microservices,” in Proceedings of
the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 2019,
Providence, RI, USA, April 13-17, 2019, 2019, pp. 19–33.

[13] D. Josephsen, “ivoyeur: Opentracing,” login Usenix Mag., vol. 43, no. 1,
2018.

[14] Jaegertracing.io, “Jaeger,” 2022, last accessed 1 August 2022. [Online].
Available: https://www.jaegertracing.io/

[15] Twitter, “Zipkin,” 2022, last accessed 1 August 2022. [Online].
Available: https://zipkin.io/

[16] A. SkyWalking, “Skywalking,” 2022, last accessed 30 July 2022.
[Online]. Available: https://skywalking.apache.org/

[17] Opentracing.io, “Opentracing,” 2022, last accessed 31 July 2022.
[Online]. Available: https://opentracing.io/

[18] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in
2nd International Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings,
2014.

[19] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” CoRR,
vol. abs/1611.07308, 2016.

[20] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. C. Courville, and Y. Bengio, “Generative adversarial nets,”
in Advances in Neural Information Processing Systems 27: Annual

Conference on Neural Information Processing Systems 2014, December
8-13 2014, Montreal, Quebec, Canada, 2014, pp. 2672–2680.

[21] H. Xu, W. Chen, J. Lai, Z. Li, Y. Zhao, and D. Pei, “Shallow vaes with
realnvp prior can perform as well as deep hierarchical vaes,” in Neural
Information Processing - 27th International Conference, ICONIP 2020,
Bangkok, Thailand, November 18-22, 2020, Proceedings, Part V, ser.
Communications in Computer and Information Science, vol. 1333, 2020,
pp. 650–659.

[22] J. Kirkpatrick, R. Pascanu, N. C. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska,
D. Hassabis, C. Clopath, D. Kumaran, and R. Hadsell, “Overcoming
catastrophic forgetting in neural networks,” CoRR, vol. abs/1612.00796,
2016.

[23] R. K. Srivastava, J. Masci, S. Kazerounian, F. J. Gomez, and J. Schmid-
huber, “Compete to compute,” in Advances in Neural Information
Processing Systems 26: 27th Annual Conference on Neural Information
Processing Systems 2013. Proceedings of a meeting held December 5-8,
2013, Lake Tahoe, Nevada, United States, 2013, pp. 2310–2318.

[24] Scratchapixel, “Monte carlo integration,” last checked
12 October 2022. [Online]. Available: https://www.
scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/
monte-carlo-methods-in-practice/monte-carlo-integration

[25] E. T. Nalisnick, A. Matsukawa, Y. W. Teh, D. Görür, and B. Lakshmi-
narayanan, “Do deep generative models know what they don’t know?” in
7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019, 2019.

[26] A. Nandi, A. Mandal, S. Atreja, G. B. Dasgupta, and S. Bhattacharya,
“Anomaly detection using program control flow graph mining from
execution logs,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco,
CA, USA, August 13-17, 2016, 2016, pp. 215–224.

[27] L. Bao, Q. Li, P. Lu, J. Lu, T. Ruan, and K. Zhang, “Execution anomaly
detection in large-scale systems through console log analysis,” J. Syst.
Softw., vol. 143, pp. 172–186, 2018.

[28] G. Yu, P. Chen, H. Chen, Z. Guan, Z. Huang, L. Jing, T. Weng, X. Sun,
and X. Li, “Microrank: End-to-end latency issue localization with
extended spectrum analysis in microservice environments,” in WWW
’21: The Web Conference 2021, Virtual Event / Ljubljana, Slovenia,
April 19-23, 2021, 2021, pp. 3087–3098.

[29] Z. Li, J. Chen, R. Jiao, N. Zhao, Z. Wang, S. Zhang, Y. Wu, L. Jiang,
L. Yan, Z. Wang, Z. Chen, W. Zhang, X. Nie, K. Sui, and D. Pei,
“Practical root cause localization for microservice systems via trace
analysis,” in 29th IEEE/ACM International Symposium on Quality of
Service, IWQOS 2021, Tokyo, Japan, June 25-28, 2021, 2021, pp. 1–10.

[30] D. Liu, C. He, X. Peng, F. Lin, C. Zhang, S. Gong, Z. Li, J. Ou, and
Z. Wu, “Microhecl: High-efficient root cause localization in large-scale
microservice systems,” in 43rd IEEE/ACM International Conference on
Software Engineering: Software Engineering in Practice, ICSE (SEIP)
2021, Madrid, Spain, May 25-28, 2021, 2021, pp. 338–347.

[31] Y. Gan, M. Liang, S. Dev, D. Lo, and C. Delimitrou, “Sage: practical
and scalable ml-driven performance debugging in microservices,” in
ASPLOS ’21: 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Virtual
Event, USA, April 19-23, 2021, 2021, pp. 135–151.

[32] B. Li, X. Peng, Q. Xiang, H. Wang, T. Xie, J. Sun, and X. Liu, “Enjoy
your observability: an industrial survey of microservice tracing and
analysis,” Empir. Softw. Eng., vol. 27, no. 1, p. 25, 2022.

[33] S. Luo, H. Xu, C. Lu, K. Ye, G. Xu, L. Zhang, Y. Ding, J. He, and C. Xu,
“Characterizing microservice dependency and performance: Alibaba
trace analysis,” in SoCC ’21: ACM Symposium on Cloud Computing,
Seattle, WA, USA, November 1 - 4, 2021, 2021, pp. 412–426.

[34] M. Kim, R. Sumbaly, and S. Shah, “Root cause detection in a service-
oriented architecture,” in ACM SIGMETRICS / International Conference
on Measurement and Modeling of Computer Systems, SIGMETRICS ’13,
Pittsburgh, PA, USA, June 17-21, 2013, 2013, pp. 93–104.

[35] T. Yang, J. Shen, Y. Su, X. Ling, Y. Yang, and M. R. Lyu, “AID: efficient
prediction of aggregated intensity of dependency in large-scale cloud
systems,” in 36th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2021, Melbourne, Australia, November 15-
19, 2021, 2021, pp. 653–665.

11

https://www.martinfowler.com/articles/microservices.html
https://www.statista.com/statistics/753938/ worldwide-enterprise-server-hourly-downtime-cost/
https://www.statista.com/statistics/753938/ worldwide-enterprise-server-hourly-downtime-cost/
https://www.jaegertracing.io/
https://zipkin.io/
https://skywalking.apache.org/
https://opentracing.io/
https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/monte-carlo-methods-in-practice/monte-carlo-integration
https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/monte-carlo-methods-in-practice/monte-carlo-integration
https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/monte-carlo-methods-in-practice/monte-carlo-integration

	Introduction
	Background
	Microservices and Traces
	Trace Anomaly

	TraceSieve Approach
	Design Overview
	Data Preprocessing
	Feature Extracting
	Noise Filtering

	VGAE-EWC
	Anomaly Score
	Online Detection
	Localizing Root Cause

	Evaluation
	Experiment Setup
	Datasets
	Environment and Parameters
	Baselines
	Performance Metrics

	TraceSieve vs. Baseline Algorithms (RQ1)
	Root Cause Localization of TraceSieve (RQ2)
	Contributions of TraceSieve (RQ3)
	TraceSieve Hyperparameters Sensitivity(RQ4)

	Deployment And Detection
	Related work
	Conclusion
	Acknowledge
	References

