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a b s t r a c t

Localizing root causes for multi-dimensional data is critical to ensure online service systems’ reli-
ability. When a fault occurs, only the measure values within specific attribute combinations (e.g.,
Province = Beijing) are abnormal. Such attribute combinations are substantial clues to the underlying
root causes and thus are called root causes of multi-dimensional data. This paper proposes a generic
and robust root cause localization approach for multi-dimensional data, PSqueeze. We propose a
generic property of root cause for multi-dimensional data, generalized ripple effect (GRE). Based on it,
we propose a novel probabilistic cluster method and a robust heuristic search method. Moreover, we
identify the importance of determining external root causes and propose an effective method for the
first time in literature. Our experiments on two real-world datasets with 5400 faults show that the
F1-score of PSqueeze outperforms baselines by 32.89%, while the localization time is around 10 s across
all cases. The F1-score in determining external root causes of PSqueeze achieves 0.90. Furthermore,
case studies in several production systems demonstrate that PSqueeze is helpful to fault diagnosis in
the real world.

© 2023 Elsevier Inc. All rights reserved.
1. Introduction

Large online service systems (e.g., online shopping platforms)
erve millions of users and require high reliability to ensure user
xperience. Faults in large online service systems could cause
normous economic loss and damage user satisfaction (Chen
t al., 2019a). For example, the loss of one-hour downtime for
mazon.com on Prime Day in 2018 (its biggest sale event of the

year) is up to $100 million (Amazon, 2018). Therefore, it is in
urgent demand to diagnose faults rapidly.

To ensure quality of software service, operators usually closely
onitor some measures (e.g., total dollar amount), which reflect
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the system status (Lin et al., 2020; Sun et al., 2018). When a
fault occurs, the monitoring system can detect the abnormal
measure values and raise alerts to operators. A measure record
is associated with many attributes, and when a fault occurs,
only the measure values of specific attribute combinations are
abnormal (Lin et al., 2020; Sun et al., 2018; Gu et al., 2020).
For example, when the network service provided by CMobile
in Beijing province fails, only the dollar amount of (Province
= Beijing, ISP = CMobile) would decrease dramatically. Such
attribute combinations can effectively indicate the fault location
and serve as substantial clues to the underlying root causes (Lin
et al., 2020; Gu et al., 2020). Thus, we call the set of such attribute
combinations as the root cause of the multi-dimensional data (Sun
et al., 2018; Li et al., 2019; Lin et al., 2020; Ahmed et al., 2017).
Therefore, following existing work (Lin et al., 2016a, 2020; Gu
et al., 2020; Rong et al., 2020; Sun et al., 2018; Li et al., 2019;
Ahmed et al., 2017), in this paper, we focus on localizing root
causes of multi-dimensional data to help operators diagnose faults
rapidly.

However, it is challenging due to the huge search space. On the
one hand, there are many attributes (e.g., dozens) and attribute
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alues (e.g., thousands) in large online service systems, leading
o a combinatorial explosion. On the other hand, faults must be
itigated rapidly to reduce the impact on user experience, and

hus it requires high efficiency for the localization.
Existing works (Bhagwan et al., 2014; Persson and Rudenius,

018; Lin et al., 2016a; Sun et al., 2018; Ahmed et al., 2017; Gu
t al., 2020; Lin et al., 2020; Rong et al., 2020) apply various tech-
iques to overcome the huge search space challenge, but they are
ot generic or robust enough due to some limitations or not effi-
ient enough (see later in Table 11). For example, MID (Gu et al.,
020), iDice (Lin et al., 2016a), and ImpAPTr (Rong et al., 2020)
re only applicable to specific types of measures. Apriori (Ahmed
t al., 2017; Lin et al., 2020) and R-Adtributor (Persson and
udenius, 2018) highly relies on parameter fine-tuning. Notably,
ll the previous approaches do not check external root causes, i.e.,
oot causes containing some unrecorded or unused attributes. The
ocalization results are always incorrect when there are external
oot causes, which can mislead the direction of fault diagnosis
nd waste time (Kim et al., 2013).
This paper proposes PSqueeze, a generic and robust root cause

ocalization approach for multi-dimensional data. Rather than
mpractical root cause assumptions or properties of specific kinds
f measures, the search strategies of PSqueeze are based on a
ore generic property of root causes of multi-dimensional data,
eneralized ripple effect (GRE). GRE holds for different measures
see Section 3) and holds in real-world faults (see Section 6),
nabling our search strategies’ genericness. Based on GRE, we
ropose a ‘‘bottom-up&top-down’’ method to achieve high effi-
iency without much loss of genericness and robustness. Specifi-
ally speaking, in the bottom-up stage, we firstly group attribute
ombinations into different clusters, each of which contains those
ttribute combinations affected by the same root cause only, with
robust probabilistic clustering method based on GRE. In this
ay, PSqueeze firstly breaks down the problem into simpler sub-
roblems (i.e., single root causes) and reduces search space. Then
n the top-down stage, we propose a score function, generalized
otential score (GPS), to evaluate how likely a set of attribute
ombinations is the root cause, and search from each cluster the
ttribute combinations maximizing it with a efficient heuristic
earch strategy. Finally, after the search, PSqueeze determines
xternal root causes based on GPS.
To evaluate PSqueeze, we conduct extensive experimental

studies based on two real-world datasets from two companies.
Since the real-world faults are not enough for evaluation, we
propose a fault simulation method and obtain 5400 simulated
faults. The results show that PSqueeze outperforms all baselines
by 32.89% in different situations while keeping high efficiency
(costs about 10 s consistently for each fault). We also inject
73 faults on an open-source benchmark system to prove the
effectiveness of PSqueeze in real-world scenarios. For determining
external root causes, the F1-score of PSqueeze achieves 0.90 on
average. We also present several real-world success stories to
demonstrate the efficacy of PSqueeze in real-world systems.

The major contributions are summarized as follows:

• We propose a novel property about root causes of mul-
tidimensional data, which is proved to hold in different
situations and hold in real-world faults.
• We identify the importance of determining external root

causes propose the first effective method for it.
• We propose a novel ‘‘bottom-up&top-down’’ localization

method, PSqueeze, achieving high efficiency without much
loss of genericness and robustness.
• We evaluate the effectiveness and efficiency PSqueeze in

different situations based on 5400 simulated faults and xxx
injected faults. We make our dataset and implementation
public to help further studies in the field.1

1 https://github.com/NetManAIOps/PSqueeze.
2

Table 1
Example structured logs for an online shopping platform.
Order ID Timestamp Dollar amount Province ISP

A001 2020.07.15 10:00:01 $16 Beijing China Mobile
A002 2020.07.15 10:00:05 $21 Beijing China Unicom

Table 2
An example multi-dimensional data at a specific time point.
Province ISP real value forecast value

Beijing China Mobile 5 10
Beijing China Unicom 10 20
Shanghai China Unicom 30 31
Guangdong China Mobile 10 9.8
Zhejiang China Unicom 2 2
Guangdong China Unicom 200 210
Shanxi China Unicom 20 22
Jiangsu China Unicom 200 203
Tianjin China Mobile 41 43

Total 518 550.8

This paper extends our previous conference paper, Squeeze (Li
et al., 2019), in four aspects.

• New methods. First, this paper proposes the first external-
root-cause-determining method in the field (Section 4.4).
Second, to reduce the influence of noises, we propose a
novel probabilistic clustering method (Section 4.2). Hence
we name our new method as PSqueeze (probabilistic
Squeeze).
• New experiment settings. First, we propose a more reason-

able fault simulation strategy for evaluation (Section 5.1.1).
Second, we implement and compare two more recent re-
lated works, MID (Gu et al., 2020) and ImpAPTr (Rong et al.,
2020). Third, we introduce two new datasets based on fault
injection on an open-source benchmark system.
• New experiment results based on the new experiment set-

tings (Section 5) and new real-world success stories
(Section 6). The results show PSqueeze is effective and ef-
ficient and outperform the previous approaches including
Squeeze.
• Enhancement to presentation. First, we clarify the definition

of basic concepts formally (Section 2). Second, we present
more details about our methodology, such as the proof
of GRE for productions (Section 3), and the reasons for
our methodology’s design choices (Section 4). Notably, for
a better understanding of GRE, we present a much more
straightforward proof in Section 3.2.

2. Background

In this section, we first describe our problem intuitively. Then
we introduce some necessary concepts, notations, and definitions.
Finally, we define our problem formally.

2.1. Root cause localization for multi-dimensional data

As introduced in Section 1, multi-dimensional data are essen-
tially a group of structured logs generated by an online service
system. Specifically speaking, by grouping the logs (e.g., Table 1)
by some attributes (i.e., Timestamp, Province and ISP) and ag-
gregating the measure values (i.e., Dollar Amount), we transform
the original logs into multi-dimensional data (e.g., Table 2) (Lin
et al., 2020).

To ensure service quality, operators closely monitor the over-
all measure values (e.g., total dollar amount). When a measure
value becomes abnormal (e.g., in Table 2, the total dollar amount

https://github.com/NetManAIOps/PSqueeze
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Table 3
External root cause example.
ISP real value forecast value

China Mobile 56 62.8
China Unicom 462 488
Total 518 550.8

decreases from 550.8 to 518), a fault occurs in the online service
system. A fault usually causes only the measure values under spe-
cific attribute combinations abnormal in practice (Gu et al., 2020).
For example, in Table 2, when a fault happens in the servers
in Beijing, only the measure values of (Province = Beijing) (i.e.,
he first two rows) are abnormal. Such attribute combinations
ndicate the scope of the fault, and thus, are substantial clues
o the underlying root causes. We call such attribute combina-
ions root-cause attribute combinations and the set of root-cause
ttribute combinations as the root causes for the multi-dimensional
ata (Sun et al., 2018; Lin et al., 2020; Li et al., 2019). For
onvenience, without other conflicts, ‘‘root causes’’ in this paper
efer to root causes for multi-dimensional data. Localizing root
auses of multi-dimensional data enables rapid fault diagnosis by
irecting the investigation.
The exact root causes (e.g., {(Province = Beijing)} in Table 3)

may contain uncollected attributes (e.g., Province in Table 3).
We call such root causes external root causes, which are not rare
in practice (Kim et al., 2013). On the one hand, many attributes
are seldom used in fault diagnosis because they contain many
null values, are hard to understand, or are not informative. On the
other hand, since the search space grows exponentially with the
number of attributes, operators have to choose the most useful
ones for root cause localization. When external root causes exist,
the localization results would be wrong and misleading. However,
all existing approaches do not check external root causes to our
best knowledge.

2.2. Necessary concepts and notations

We denote the set of all attributes of the studied multi-
dimensional data D as A = {a1, a2, . . . , an}, where ai is the ith
ttribute, and n is the total number of attributes. Each attribute
as a finite number of discrete feasible values, which are called
ttribute values. We denote the set of attribute values of ai as
i = {v

(1)
i ,v

(2)
i ,...,v

(mi)
i }, where v

(j)
i is the jth attribute value of

i, and mi is the number of attribute values of ai. An attribute ai
and one of its attribute values v

(j)
i construct a tuple, t = (ai, v

(j)
i ).

For each attribute ai, we denote the set of its tuples as Ti =
{ai} × Vi, where ‘‘×’’ refers to Cartesian product. We denote the
set of all tuples as T = ∪n

i=1Ti. Then an attribute combination
is a subset of T that contains at most one tuple from each Ti.
Therefore the set of all attribute combinations can be denoted as
E = {e∈P(T ) | ∀Ti, |e ∩ Ti|≤1}, where P(T ) refers to the power
set of T , and | · | refers to the cardinality of a set. In practice,
a root cause of a fault can contain multiple root-cause attribute
combinations, and a fault can have multiple root causes either.
Hence the set of all root cause candidates is P(E) rather than E.

A leaf attribute combination e (a.k.a. leaf for simplicity) is an
attribute combination that contains tuples of every attribute, i.e.,
∀Ti, |e∩Ti| = 1. An attribute combination e1 is descended from e2
when e2⊊e1. For example, (Province = Shanghai ∧ ISP = China
Unicom) is descended from (Province = Shanghai). The insight is
that if e1 is descended from e2, then the slice of data represented
by e1 is a subset of that of e2. We denote the set of all leaf
attribute combinations descended from e as LE(e) = {e′∈E|e ⊊
e′ ∧ ∀T , |e′ ∩ T | = 1}.
i i

3

Fig. 1. A graph of cuboids (rounded boxes) with 3 attributes.

A cuboid is a set of attribute combinations enumerating all
attribute values for the involved attributes, as shown in Fig. 1.
Given a set of attributes A′ ⊂ A, the corresponding cuboid is
CuboidA′ = {e∈E | ∀ai ∈ A′, |e ∩ Ti| = 1 ∧ |e| = |A′|}. We call
|A′| the layer of CuboidA′ (see Fig. 1).

Fundamental measures are those measures directly aggregated
from raw logs and are additive (Bhagwan et al., 2014). For exam-
ple, in Table 2, the total dollar amount of (Province = Beijing) is
the sum of those of (Province= Beijing∧ ISP= China Mobile) and
(Province = Beijing ∧ ISP = China Unicom). Derived measures are
derived from fundamental measures (Bhagwan et al., 2014) and
are typically non-additive (Bhagwan et al., 2014). For example,
the overall average dollar amount is not the sum over those of
all ISPs. The overall average dollar amount can be either greater
than or less than that of (Province = Beijing). Some previous
approaches (Lin et al., 2016a; Sun et al., 2018; Gu et al., 2020) are
not applicable on derived measures due to these characteristics.

The real value (denoted as v(e)) of an attribute combination e
is the measure value that is actually observed based on the raw
transaction logs, and the forecast value (f (e)) is its expected nor-
mal value. We calculate the forecast value by a time-series fore-
casting algorithm (see Section 4.1). Without loss of genericness,
we assume both v and f are non-negative since most common
measures are non-negative. Note that for a derived measure M =
h(M1,M2, . . . ,Ml), vM (e) = h(vM1 (e), vM2 (e), . . . , vMl (e)). Further-
more, for convenience, we extend the notations, v and f , to sets of
attribute combinations: supposing that S is a set of attribute com-
binations, for fundamental measures, v(S) =

∑
e′∈

⋃
e∈S LE(e) v(e

′)

and so does f . For a derived measure M = h(M1,M2, . . . ,Ml),
vM (S) = h(vM1 (S), vM2 (S), . . . , vMl (S)) and so does f .

2.3. Problem definition

The input of our problem is a snapshot of multi-dimensional
data D (with both real and forecasting values) at the fault time.
The forecasting values are obtained by an appropriate time-series
forecasting algorithm, which is out of the scope of this paper.
To better evaluate the robustness of PSqueeze, in this paper, we
use MA (moving average, one of the simplest algorithms) for all
scenarios (see later in Section 5.1). Our goal is to localize the root
cause of multi-dimensional data, which refers to a set of attribute
combinations that is:

• Expressive. An expressive root cause candidate S indicates
the scope of faults in the multi-dimensional data accurately.
In other words, the part of D specified by S is abnormal, and
the other part is normal.
• Interpretable. An interpretable root cause candidate S is as

concise as possible to make operators focus on the faulty
attributes and attribute values.

Sometimes there are multiple root causes at the same time, which
indicate different underlying failures and have different influence.
In such cases, each root cause is a set of attribute combinations
that is expressive and interpretable excluding the influence of
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he other root causes, and we aim to find the union of these
oot causes. Following existing works (Bhagwan et al., 2014; Lin
t al., 2016a; Sun et al., 2018; Ahmed et al., 2017; Persson and
udenius, 2018; Gu et al., 2020; Lin et al., 2020; Rong et al., 2020),
ausal inference is also out of scope.

. Generalized Ripple effect

.1. Background of Ripple effect

Ripple effect, first empirically observed by Sun et al. (2018) for
undamental measures only, captures the relationship of attribute
ombinations’ abnormal magnitudes caused by the same root
ause. The intuition is that all attribute combinations affected
y the same root cause will change by the same proportion. We
enote the set of attribute combinations affected by a root cause
∈ P(E) as Aff(S) = {e ∈ E | ∃e0 ∈ S, s.t. e0 ⊆ e}. Then ripple
ffect can be expressed as

f (e)− v(e))/f (e) = (f (S)− v(S))/f (S),∀e∈Aff(S) (1)

or example, in Table 2, the root cause is S = {(Province =
eijing)} in cuboid Cprovince. Therefore, if e1 = (Province =
eijing ∧ ISP = China Unicom), then (f (S)− v(S))/f (S) =
(10+ 20)− (5+ 10))/(10+ 20) = 0.5 and (f (e1)− v(e1))/f (e1)
(20− 10)/20 = 0.5. Note that for multiple-root-cause faults, S

nly denotes a single root cause rather than the union of multiple
oot causes.

.2. Generalizing Ripple effect for derived measures

First, we generalize ripple effect to derived measures. We aim
o prove that (1) holds for a derived measure when (1) holds
or all its underlying fundamental measures. Since most common
erived measures are the quotient or product of two fundamental
easures (e.g., average dollar amount and success rate), without
uch loss of genericness, we provide the proof for such derived
easures only. Compared with our previous conference version,
e simplify the equations for clarity.

.2.1. Quotient
Consider three measures, M1,M2,M3, where M1 and M2 are

undamental measures and M3 = M1/M2. Because M1 and M2 are
undamental measures and they follow (1), for both Mi (i = 1, 2),
Mi (e)/fMi (e) = vMi (S)/fMi (S). Therefore,

fM3 (S)− vM3 (S)
fM3 (S)

= (
fM1 (S)
fM2 (S)

−
vM1 (S)
vM2 (S)

)
fM2 (S)
fM1 (S)

= 1−
vM1 (S)
fM1 (S)

fM2 (S)
vM2 (S)

= 1−
vM1 (e)
fM1 (e)

fM2 (e)
vM2 (e)

= 1−
vM3 (e)
fM3 (e)

=
fM3 (e)− vM3 (e)

fM3 (e)

(2)

3.2.2. Product
Similarly, if M1 and M2 are fundamental measures and M3 =

M1 ·M2, then for both Mi (i = 1, 2), vMi (e)/fMi (e) = vMi (S)/fMi (S).
Therefore,
fM3 (S)− vM3 (S)

fM3 (S)
=

fM1 (S)fM2 (S)− vM1 (S)vM2 (S)
fM1 (S)fM2 (S)

= 1−
vM1 (S)
fM1 (S)

vM2 (S)
fM2 (S)

= 1−
vM1 (e)
fM1 (e)

vM2 (e)
fM2 (e)

= 1−
vM3 (e)
fM3 (e)

=
fM3 (e)− vM3 (e)

fM3 (e)

(3)

The core idea of our proof is finite difference (Jordan and Jordán,
1965), and a similar method can be applied when dealing with
 a

4

Fig. 2. The workflow of PSqueeze.

ther types of derived measures. Though our proof technique can
ardly be applied on specific types of derived measures (e.g., tail

latency), our results can already cover most common measures
(e.g., the four golden signals from Google SRE Murphy et al., 2016),
including both fundamental measures and derived measures.

3.3. Generalizing Ripple effect for zero forecast values

Eq. (1) does not work for zero forecast values (i.e., f (S) = 0)
nd thus is not robust enough. To tackle it, we replace f with

f+v

2 . The intuition is to use f+v

2 to estimate f . Therefore, the
formulation of GRE is
f (e)− v(e)
f (e)+ v(e)

=
f (S)− v(S)
f (S)+ v(S)

,∀e ∈ Aff(S) (4)

Eq. (4) is consistent with (1):

If f (e) = v(e) = 0 or f (S) = v(S) = 0, the relationship between
e and S is meaningless since there is actually no data for e or
S. In other situations, (4) is always meaningful.
If f (e) ̸= 0 and f (S) ̸= 0, it is obvious that (1) is equivalent
to (4).
If f (e) = 0 ̸= v(e) or f (S) = 0 ̸= v(S), then (1) does not hold.
We extend the idea of ripple effect to more generic cases by
modifying the calculation of anomaly magnitudes.

.4. Deviation score and expected abnormal value

In this paper, we utilize GRE by deviation scores and expected
bnormal values. According to (4), for any attribute combination
that is affected by the same root cause S, the value of f (e)−v(e)

f (e)+v(e)

eeps invariant. We define it as deviation score of e (denoted as
(e)). According to GRE,

e ∈ Aff(S), d(e) =
(
f (S)− v(S)

)
/
(
f (S)+ v(S)

)
(5)

Therefore, given a root cause candidate S and any attribute
combination e ∈ Aff(S), if S is the correct root cause, then d(e) =
f (S)−v(S)
f (S)+v(S) . As a result, the expected abnormal value of e should be

(e) = f (e)
(
1− d(e)

)
/
(
1+ d(e)

)
(6)

f a(e) differs from v(e) a lot, then the candidate S breaks GRE and
s not the correct root cause.

. Methodology

.1. Overview

The workflow of PSqueeze is illustrated in Fig. 2, where the
ashed box highlights the scope of PSqueeze. When a fault hap-
ens (often indicated by alerts from the monitoring system),
Squeeze is triggered. PSqueeze takes the corresponding multi-
imensional data at the fault time (v) and its forecast values (f ) as
nputs. Then, PSqueeze reports the root causes to operators, and
otifies operators whether there can be external root causes to
void misleading.
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Fig. 3. An illustration example of our forecast residual-based filtering.

PSqueeze contains three stages: (1) bottom-up clustering (Sec-
ion 4.2), (2) top-down localization for each cluster (Section 4.3),
nd (3) external root cause determining (Section 4.4). Different
rom all previous work (Bhagwan et al., 2014; Persson and Rude-
ius, 2018; Lin et al., 2016a; Sun et al., 2018; Ahmed et al.,
017; Gu et al., 2020; Lin et al., 2020), PSqueeze employs a novel
‘bottom-up then top-down’’ searching strategy. In the bottom-up
tage, PSqueeze groups leaf attribute combinations into different
lusters, each of which contains the leaf attribute combinations
ffected by the same root cause. The bottom-up clustering en-
bles the further design of our efficient in-cluster localization
ethod by simplifying the problem from multiple-root-cause

ocalization to single-root-cause localization. In the top-down
tep, PSqueeze uses a heuristic method based on our proposed
eneralized potential score (GPS) to efficiently search for the
oot cause in each cluster output by the bottom-up step. At the
inal stage, PSqueeze determines whether there are external root
auses.
Notably, this paper extends our previous conference version

ith respect to methodology in two aspects. First, we employ
robabilistic clustering for robustness (Section 4.2). Second, we
ntroduce external root causes checking to avoid misleading (Sec-
ion 4.4). Besides, we fix the issue in (9) and enhance the presen-
ation of the methodology for clarity.

.2. Bottom-up searching through clustering

In this stage, we determine the cluster boundaries with a prob-
bilistic cluster method based on the leaf attribute combinations
ith large abnormal changes.

.2.1. Forecast residual-based filtering
In order to make the following clustering step focus on abnor-

al leaf attribute combinations (i.e., affected by root causes), we
eed to detect abnormal leaf attribute combinations. Following
xisting work (Xu et al., 2018; Liu et al., 2015; Li et al., 2018;
un et al., 2018), we use forecast residuals (i.e., the difference
etween real and forecast values) to indicate the extent of the
hanges of attribute combinations and apply a threshold to decide
hether the change is abnormal or not. We apply knee-point
ethod on the cumulative distribution function (CDF) of the

orecast residuals of leaf attribute combinations for automated
hreshold selection. It is because given a large number of leaf
ttribute combinations, the number of abnormal leaf attribute
ombinations is usually much less than the normal ones. A knee
oint refers to a point where the increase of filtered-out leaf
ttribute combinations is no longer worth the increase of the
hreshold. In Fig. 3, we present an example CDF of an online ser-
ice system fault and its knee point (the vertical dashed line). We
efine a knee point as the point with maximum curvature rather
han other ad-hoc definitions for genericness and robustness fol-
owing existing work (Satopaa et al., 2011). The advantage of the
nee-point method is that it is simple, efficient, and completely
utomated.
5

Fig. 4. Illustration of PSqueeze’s probabilistic clustering.

4.2.2. Calculating the distribution of deviation scores
As introduced in Section 3.4, leaf attribute combinations af-

fected by the same root causes have the same deviation scores,
based on which we design our clustering method. First, we esti-
mate the distribution of all leaf attribute combinations’ deviation
scores. Squeeze (our previous conference version Li et al., 2019)
presumes the observed deviation score is correct. However, devi-
ation scores can be significantly affected by noises from natural
variation or inaccurate forecasting, especially when the real and
forecast values are small. For example, given an attribute com-
bination where v ∼ Pois(5) and f = 5, its deviation score is
supposed to be 0 since the expectation of its real value is equal to
its forecast value. However, its deviation score could be ±0.222
or ±0.182 (v = 4, 6 due to noise or natural variation, or f =
4, 6 due to inaccurate forecast), and thus it can be mistakenly
grouped into incorrect clusters. Thus it is required to estimate the
distribution of deviation scores in a more robust manner. Since
the variation and forecasting errors can hardly be eliminated,
we try to explicitly model the noises. Unlike Squeeze, PSqueeze
considers what if the deviation scores of an attribute combination
are biased and determines the probability that the leaf attribute
combination should be grouped into each cluster. As a result,
when the deviation score of an attribute combination is largely
biased due to noises and thus is grouped into an incorrect cluster
by Squeeze, PSqueeze groups it into the correct cluster with a
certain probability. In this way, we make PSqueeze more robust
to such noises than Squeeze.

Specifically speaking, we firstly calculate the probability den-
sity function (PDF/PMF) for each abnormal attribute combina-
tion’s deviation score and then average them to obtain the overall
distribution. The choice of PDF and PMF depends on our measure:
we calculate PDF for continuous measures (e.g., average response
time) and PMF for discrete measures (e.g., the number of orders).
To calculate the PDF/PMF, we need to assume the distribution
family according to domain knowledge about the nature of the
measure. For example, considering the measure of the number of
total orders, we can assume that the number of total orders v fol-
lows Poisson distribution, i.e., v ∼ Pois(λ = v′), because the speed
of order arrivals keeps stable in a short duration. Then the real
deviation score is supposed to be ds = 2 f−v′

f+v′
. Therefore, the prob-

ability mass function of ds is P(ds = 2 f−v−k
f+v+k ) = Pois(v; λ = v+ k)

where v denotes the observed real value. Compared with that

Squeeze considers that ds follows P(ds = 2 f−v−k
f+v+k ) =

{
1, k = 0
0 k ̸= 0

,

it models the probability that the observed deviation score is
biased due to noises. In this way, we calculate all the PDF/PMFs of
leaf attribute combinations’ deviation scores (e.g., the light curves
in Fig. 4). Then, by averaging all these probability density/mass
functions together, we get the overall distribution of deviation
scores of all attribute combinations (e.g., the bold solid curve in
Fig. 4).

In this paper, we use Poisson distribution for all fundamen-
tal measures, including #orders and #page views. It is because
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oisson distribution is suitable for describing the number of event
ccurrences with a constant mean rate. For derived measures, we
o not use probabilistic clustering, given the difficulty in finding
ppropriate distribution families for derived measures.

.2.3. Determining the cluster boundaries

Algorithm 1 Deviation Score Based Probabilistic Clustering

1: procedure DensityCluster(PDF )
2: centers← argrelmax(PDF )
3: boundaries← argrelmin(PDF )
4: clusters← []
5: for center in centers do
6: l← maximum in boundaries s.t. l < center
7: r ← minimum in boundaries s.t. r > center
8: clusters.append({e ∈ LE(∅)|d(e) ∈ [l, r]})

return clusters

Based on the distribution of deviation scores, we determine
he number of clusters and the cluster boundaries. Since the
eviation scores of the leaf attribute combinations affected by
he same root cause should crowd around a small area, the
ow-density areas separate the clusters. It is a 1-dimensional
lustering problem, which is special because there is no saddle
oint in 1-dimensional spaces, and thus relative maximums of
he PDF/PMF represent all high-density areas. Hence applying a
igh-dimensional clustering method (e.g., DBSCAN Schubert et al.,
017) would be unnecessarily costive. Instead, we design a simple
lustering method intuitively, as shown in Algorithm 1. First, we
elect the points where deviation scores crowd, i.e., relative max-
mums of the PDF/PMF (e.g., the three solid red vertical lines in
ig. 4), as the centroids of clusters. Hence the number of clusters
s equal to the number of relative maximums of the PDF/PMF.
hen, since low-density areas separate the clusters, we select the
earest low-density points, i.e., relative minimums of the PDF (e.g.,
he dashed purple vertical lines in Fig. 4), as the boundaries of the
lusters. Then, the probability of an attribute combination in a
luster is equal to the probability that its deviation score locates
etween the boundaries. In other words, a cluster contains the
eaf attribute combinations whose PDF/PMF intersects with the
rea between boundaries, and the intersection area denotes the
robability that the attribute combination is in the cluster.

.3. Top-down localization in each cluster

Algorithm 2 Localization in Each Cluster

1: procedure InClusterLocalization(cluster)
2: root_causes← []
3: for cuboid in all cuboids from top to bottom do
4: AC ← sorted attribute combinations in cuboid by

rdescended in descending order
5: for split in all valid splits do
6: score[split] ← GPS(AC[: split])
7: root_cause← AC[: argmaxsplitscore]
8: root_causes← root_causes+ [root_cause]
9: if root_cause’s score ≥ δ then
0: Stop search next layer
1: sort root_causes := {Si} by GPS(Si)∗C− I(Si) in descending

order
2: return root_causes[0]
6

The output of the bottom-up search is a list of clusters, each
of which is a set of leaf attribute combinations that are affected
by the same root cause. For convenience, we denote a cluster
as Cluster . At this stage, we aim to localize root causes for each
luster. The root cause of a cluster is defined as a set of attribute
ombinations that is expressive when considering Cluster and the
ormal leaf attribute combinations only and is interpretable. To
vercome the challenges of huge search space, we propose an
fficient heuristic search method for the in-cluster root cause
ocalization, which contains three key techniques. (1) a cuboid-
ise top-down search strategy to narrow down the search space,
2) a heuristic strategy to search a cuboid efficiently, and (3)
robust objective function to evaluate the expressiveness and

nterpretability of a root cause candidate. A summary of our
ethod at this stage is presented in Algorithm 2.

.3.1. Cuboid-wise search strategy
We search for each cluster’s root cause in each cuboid layer

y layer (line 3). Taking Fig. 1 as an example, we would search
uboid ISP, Province, and User Agent first, then search cuboid
SP&Province, ISP&User Agent, and Province&User Agent, and fi-
ally search cuboid ISP & Province&User Agent. On the one hand,
he cuboid-wise search strategy is motivated by the assumption
hat the root cause of a cluster is only a subset of a cuboid.
he assumption is practical due to the following intuitions: (1)
he attribute combinations in the cluster are affected by the
ame root cause; (2) in practice one root cause rarely requires
ore than one cuboid to describe it according to our analysis on
any real-world production faults. On the other hand, we search
hallow cuboids first because root cause candidates in shallower
uboids are more interpretable (see Section 2.3) than those in
eeper cuboids, and thus we call it a top-down search method.

.3.2. Heuristic method to search a cuboid
If an attribute combination e is part of the root cause, then

ccording to GRE, all of its descent leaf attribute combinations
i.e., LE(e)) should have similar deviation scores, i.e., they should
ll in the cluster Cluster . We call the ratio of descended leaf
ttribute combinations in the cluster of e as the descended ratio
f e. It is denoted as

descended(e) =

∑
e′∈LE(e)∩Cluster p(e

′
∈ Cluster)∑

e′∈LE(e) p(e′ ∈ Cluster)
, (7)

where p(e′ ∈ Cluster) denotes the probability that Cluster con-
tains e′ (see Section 4.2.3). For example, in Table 2, supposing
that the cluster contains the first two rows in the table, and
we are searching cuboid Province now, the descended ratio of
(Province = Beijing) is 1 and those of others are 0. We sort the
attribute combinations of a cuboid by their descended ratios in
descending order (line 4). In this way, the attribute combinations
at the front of the list are more likely to be part of the root cause
than those at the back.

4.3.3. Generalized potential score
Then, we aim to find the top-k items in the sorted attribute

combination list of a cuboid as the root cause candidate of the
cuboid (line 7). For this purpose, we propose generalized potential
score (GPS), to evaluate how likely a set of attribute combi-
nation (S) is the root cause in the following aspects: (1) it is
expressive, i.e., the real and forecast values of its descended
leaf attribute combinations (i.e., LE(S) =

⋃
e∈S LE(e)) should be

ifferent, and those of other leaf attribute combinations should
e close; (2) it follows GRE, i.e., the real values of LE(S) should
e close to the corresponding expected abnormal values (see
ection 3.4). We do not evaluate interpretability here because in
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he same cuboid, adding extra attribute combinations reduce ex-
ressiveness and interpretability simultaneously. Comparing real
nd expected abnormal values helps to filter the false expressive
andidates caused by inaccurate forecasting and noise and make
Squeeze more robust.
We measure the difference between the real and forecast val-

es of LE(S) by normalized Manhattan distance, i.e., d1(v(S), f (S))
1
|LE(S)|

∑
e∈LE(S) |v(e)−f (e)|, and the difference between the

eal and expected abnormal values by d1(v(S), a(S)) = 1
|LE(S)|∑

e∈LE(S) |v(e) − a(e)|. Similarly, for other leaf attribute combi-
ations (denoted as LE(S ′)), the difference between the real and
orecast values is d1(v(S ′), f (S ′)) = 1

|LE(S′)|

∑
e∈LE(S′) |v(e)−f (e)|.

onsidering that we are conducting in-cluster localization and
here can be other root causes, LE(S ′) does not contain the leaf
ttribute combinations in other clusters. Based on these, we
efine GPS as follows:

PS = 1−
d1(v(S), a(S))+ d1(v(S ′), f (S ′))
d1(v(S), f (S))+ d1(v(S ′), f (S ′))

(8)

GPS robustly indicates S’s expressiveness, even if the anomaly
magnitude of S is insignificant. Considering potential score (Sun
et al., 2018) and explanation power (Bhagwan et al., 2014; Pers-
son and Rudenius, 2018), the forecast residuals of LE(S ′) would
accumulate as the size of LE(S ′) increases, and thus they cannot
reflect the expressiveness when the anomaly magnitude of S is
insignificant. For example, in Table 2, the GPS of the first two
rows in bold is 0.743, while the potential score is 0.303 and the
explanation power is 0.457.

4.3.4. Selecting among candidates from different cuboids
Finally, we select the root cause with both high expressiveness

and interpretability from the candidates found in the cuboids. For
this purpose, we quantitatively define the interpretability of S as
(S) =

∑
e∈S |e|

2. For example, I({(Province = Beijing)}) = 1
nd I({(Province = Beijing ∧ ISP = CUnicom), (Province =
eijing ∧ ISP = CMobile)}) = 8. We use a weight C to trade off
xpressiveness (measured by GPS) and interpretability (line 11).
o calculate C automatically, we employ an empirical formula,
hich can achieve good effectiveness:

gcluster = log(num_cluster + 1)/num_cluster
gattribute = num_attr/log(num_attr + 1)

coverage = − log(coverage of abnormal leaves)
C = gcluster × gattribute × gcoverage

(9)

he intuition is that if there are fewer clusters or more attributes,
r the cluster contains fewer abnormal leaf attribute combina-
ions, then GPS is more important than interpretability. It is
efined based on that in our previous conference version (Li et al.,
019), and the original version can be negative in some cases and
auses errors.
Furthermore, for efficiency, if the candidates’ GPS scores ex-

eed a given threshold δ at a certain layer of cuboids, PSqueeze
ould stop searching deeper layers (line 9). We set δ = 0.9 by
efault and discuss its impact in Section 5.5.

.4. Determine external root cause

Algorithm 3 Determine External Root Cause

1: procedure determine_ExRC(rc_list)
2: minGPS ←+∞
3: for S in rc_list do
4: minGPS ← min(GPS(S),minGPS)

return minGPS ≥ δExRC
7

PSqueeze determines external root causes by examining
whether the localized root causes are expressive enough, i.e., have
high GPS scores. When there are external root causes, since it
is impossible for algorithms to localize the real root causes, the
GPS scores of the localized root causes would be relatively low.
Specifically speaking, we check whether the GPS scores of the
clusters is less than an automated threshold (denoted by δExRC ).
We denote the minimum GPS scores of all per-cluster root cause
as min_GPS. If min_GPS < δExRC , there is at least one cluster
where PSqueeze is not able to find a good enough root cause,
which indicates that there probably exist external root causes.
Then the operators will be informed that the results of PSqueeze
can be misleading due to external root causes. If min_GPS ≥ δExRC ,
hen PSqueeze localizes good enough root causes for all selected
clusters, then there are not external root causes, and thus the final
result is reliable.

The threshold δExRC is automatically selected by historical data.
The key idea is that for those faults without external root causes,
their min_GPS, which represents the minimum GPS of all per-
cluster root causes, should be near 1. It is because a good root
cause should be localized for each cluster, and thus they would be
grouped into a cluster by the density-based clustering method in
Section 4.2. Therefore, given those min_GPS (defined in Algorithm
3) of historical faults, we firstly cluster them with Algorithm 1,
and then use the lower boundary of the cluster with the largest
centroid as δExRC . Note that we do not need to know which faults
encounter external root causes, i.e., the automated threshold se-
lection is unsupervised. If there are not enough historical faults,
we use a default value 0.8 for δExRC .

5. Evaluation

In this section, we conduct extensive experiments to evaluate
the localization accuracy and efficiency of PSqueeze based on both
simulated and injected faults.

5.1. Experiment settings

5.1.1. Datasets
We have two real-world datasets collected from two produc-

tion systems of two companies in several weeks. One is from an
online shopping platform (denoted as I1), and the other one is
rom an Internet company (denoted by I2). Although these are
eal-world data, it is hard to obtain enough real-world anomalies
nd the corresponding root causes as the ground truth. Therefore,
e generate simulated faults according to GRE based on these
eal-world datasets to evaluate PSqueeze as follows:

1. We select a time point from the time series and add dif-
ferent Gaussian noises to the real values of all leaves. It is
used to emulate different forecast residuals.

2. We randomly choose n_element ∈ {1, 2, 3} (a.k.a. n_ele
for short) cuboids with replacement in layer cuboid_layer ,
which is randomly chosen from {1, 2, 3}.

3. We randomly choose n_element different attribute combi-
nations from every selected cuboid, which are the root-
cause attribute combinations for this simulated fault. Note
that the datasets with only different forecast residuals (i.e.,
B1,B2,B3,B4) share the same time points but have differ-
ent root-cause attribute combinations.

4. For each selected root-cause attribute combination, we
modify the real values of its descended leaf attribute com-
bination by GRE with a random magnitude. Particularly,
for D, the measure of which is success rate, we firstly
modify their success rates according to GRE. Then, we
randomly generate the total order numbers and successful
order numbers according to the success rates.
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Fig. 5. The measure value of attribute combinations that are not intended to
simulate faults on is significantly abnormal.

Table 4
Summary of datasets.

n |LE(∅)| |P(E)| Source Measure Residual EP

A 5 15324 275888 I1 F: #orders 3.92% 90.3%
B1 4 21600 231338 I2 F: #page views 3.97% 74.2%
B2 4 21600 231338 I2 F: #page views 7.96% 60.6%
B3 4 21600 231338 I2 F: #page views 11.9% 56.1%
B4 4 21600 231338 I2 F: #page views 15.9% 53.7%
D 4 13806 221534 I2 D: success rate 3.99% 59.3%
E 9 373 2373 – D: average latency 37.3% 89.5%
F 9 373 2373 – D: stall rate 45.8% 86.9%

5. We add extra Gaussian noises (N (0, 5%)) to these de-
scended leaf attribute combinations since GRE would not
perfectly hold in practical faults.

6. We drop invalid ‘‘faults’’ when

(a) there exists another attribute combination that
shares the same (or very similar) set of descended
leaf attribute combinations with a selected root-
cause attribute combinations;

(b) the Gaussian noises added in normal leaf attribute
combinations (i.e., those leaf attribute combinations
that are not descended from any selected root-cause
attribute combination) are so large that the overall
measure value of them is abnormal.

The root cause attribute combinations with different deviation
scores are simulating independent multiple root causes. Note that
the deviation score of different root-cause attribute combinations
could be the same sometimes. In such cases, the root-cause
attribute combinations with the same deviation score would be
considered as one root cause containing multiple root-cause at-
tribute combinations. In all datasets, we add anomalies with
random magnitudes, and thus, the anomalies are not guaranteed
to be significant.

This paper extends the simulation process in our previous
version (Li et al., 2019) by adding step 6. The process described
in step 1∼5 could generate inappropriate faults for evaluation.
For example, consider that we randomly choose (A = a1 ∧ B =
b1 ∧ C = c1) as the root-cause attribute combination, and b1 is
related to c1. In such cases, (A = a1 ∧ B = b1 ∧ C = c1), (A =
a1 ∧ B = b1) and (A = a1 ∧ C = c1) have almost the same set of
leaf attribute combinations. Therefore, it would be unreasonable
to take (A = a1 ∧ B = b1 ∧ C = c1) as the root cause rather than
(A = a1 ∧ C = c1) or (A = a1 ∧ B = b1). Nevertheless, as we
add Gaussian noises in all leaf attribute combinations, thus the
attribute combinations that are not intended to simulate faults on
would become abnormal as well, as shown in Fig. 5. To tackle this
problem, unlike our previous version (Li et al., 2019), we remove
invalid faults by step 6.

Simulated fault datasets. By the new simulation method,
we get 6 new simulated fault datasets with different simulation

parameters. In Table 4, we describe some basic statistics of our

8

datasets. For each combination of n_ele and cuboid_layer , we
simulated 100 faults in each dataset. Hence there are 5400 faults
in total. In Table 4, n denotes the number of attributes, |LE(∅)|
denotes the number of all leaf attribute combinations, and |P(E)|
denotes the number of all root cause candidates. These datasets
contain three different measures, including both fundamental
(denoted as F in Table 4) and derived measures (D), and all of
them are of common golden signals (Murphy et al., 2016). In
practice, we do not count the attribute combinations that never
occur in data, and thus |LE(∅)| and |P(E)| seem lower than theo-
retical results. Residual in Table 4 denotes the average forecasting
residuals in percent of all normal leaf attribute combinations. EP
(explanation power Bhagwan et al., 2014; Persson and Rudenius,
2018) denotes the fraction of total forecast residual of all ab-
normal leaf attribute combinations over that of both normal and
abnormal ones.

Injected fault datasets. Furthermore, compared with the pre-
vious conference version, this paper also two new datasets, named
E and F , based on more realistic fault injection (rather than
directly adjusting measure values). More specifically, we deploy
Train-Ticket (Zhou et al., 2018), which is one of the largest open-
source microservice benchmark systems and is widely used in
literature (Li et al., 2021; Yu et al., 2021; Zhou et al., 2018;
Chen et al., 2022; Li et al., 2022), on a Kubernetes cluster with
five servers. We utilize Istio (2022) and Chaos Mesh (2022) to
inject the following types of faults onto the system: delaying
or dropping packets or HTTP requests/responses sent to specific
pods/APIs/services or containing specific parameters. We injected
73 faults in total. Then, we collect detailed information on every
HTTP request between the microservices with Jaeger and Istio,
including client/server service name, URL, response time, status
code, etc. Based on the request details, we collect two types of
derived measures to build the two datasets, i.e., average latency
(=total latency of all requests/the number of requests) and stall
ate (=the total number of stall requests/the number of requests).
n both datasets, the attributes and number of distinct attribute
alues are as follows: client service name (17), pod (64), method
3), URL prefix (71), station name (10), train type (6), start station
9), end station (10). Compared with the simulated faults (i.e., A,
∗, and D), the diversity of root causes is limited with respect to
_elements and cuboid_layer , but the injected faults do not rely on
ny assumption and are much more representative of real-world
ystem failures.

.1.2. Evaluation metrics
F1-score is used in this paper to evaluate root cause local-

zation for multi-dimensional data. We denote the root cause
eported by the algorithm as S and the ground truth as Ŝ. Then
p = |S ∩ Ŝ| denotes the number of true positive root-cause
ttribute combinations, fp = |S − Ŝ| denotes the number of false
ositives, and fn = |Ŝ− S| denotes the number of false negatives.
hen F1-score is defined as:

1-Score = (2× tp)/(2× tp+ fp+ fn) (10)

o extensively study the performance of PSqueeze under various
ituations, following existing work (Sun et al., 2018), we evaluate
1-scores separately for different root cause settings, i.e., different
_elements and cuboid_layer .
To evaluate PSqueeze on determining external root causes, we

lso use the widely-used F1-score. We denote the set of faults
ith external root causes as F̂ and the set of faults that are
eported by our algorithm to have external root causes as F .
hen ExRC_F1-score (external root cause F1-score) is calculated
s follows:

xRC_F1-Score = 2×
precision× recall

precision+ recall
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Table 5
Time usage comparison of forecast methods.
Algorithm MA Period (Lee

et al., 2012)
ARIMA (Bhagwan
et al., 2014)

Time usage (µs) 6.21(±2.13) 28.7(±3.95) 38 672(±32 312)

where precision = |F ∩ F̂ |/|F | denotes the probability that a
determined external root cause is true and recall = |F ∩ F̂ |/|F̂ |
denotes the fraction of external root cause cases that have been
determined.

Finally, we also evaluate the time efficiency of PSqueeze. In the
ollowing experiments, we present the average running time of all
ases in the corresponding setting.

.1.3. Baseline approaches
We compare PSqueeze with the following baseline approaches,

which are summarized in Table 11:

• Squeeze (Li et al., 2019) (SQ), our previous conference ver-
sion.
• Adtributor (Bhagwan et al., 2014) (ADT) assumes root causes

involve only single attributes and mines all attribute com-
binations with high explanation power and then sorts them
by surprise.
• R-Adtributor (Persson and Rudenius, 2018) (RAD) recur-

sively calls Adtributor to localize multi-attribute root causes.
• Apriori (APR) is a popular frequent pattern mining algo-

rithm (Han et al., 2011). Ahmed et al. (2017) and Lin et al.
(2020) take association rules of abnormal leaf attribute com-
binations as root causes, and they use Apriori and confidence
to mine association rules.
• HotSpot+GRE (Sun et al., 2018) (HS) uses Monte Carlo tree

search (MCTS) to search the set of attribute combinations
with the highest potential scores. We adapt the original
HotSpot for derived measures according to GRE.
• MID (Gu et al., 2020) searches for the attribute combinations

that maximize their objective function, which is similar to
that in iDice (Lin et al., 2016a), and uses a heuristic based
on entropy to speed up the search. As we found that their
objective function is limited to their scenario (# issue re-
ports) and performs poorly with general multi-dimensional
data, we replace their objective function with our GPS.
• ImpAPTr (Wang et al., 2020; Rong et al., 2020) (IAP) search

for attribute combinations that maximize impact factor and
diversity factor with BFS (breath-first search). Since ImpAPTr
only ranks attribute combinations rather than decide which
are the root-cause attribute combinations, we take the top-
n_ele ranked attribute combinations as root-cause attribute
combinations. Besides, the original impact factor works for
decreasing measure values, and thus, we modify it by decid-
ing the sign of impact factor adaptively for each fault.

We do not compare with iDice (Lin et al., 2016a) due to its inferior
performance in our scope according to our previous version (Li
et al., 2019) and MID (Gu et al., 2020). We set δ = 0.9 for all
cases. The parameters of other algorithms are set following the
original papers. Note that all approaches except ImpAPTr have no
idea about n_ele or cuboid_layer of the faults.

In our evaluation, we always apply MA (moving average) for
forecasting. Specifically speaking, we calculate the forecast value
of a leaf attribute combination e at a specific time point t0 by
averaging the real values of e at t−10, t−9, . . . , t−1. We choose
MA because MA is one of the simplest forecast algorithms and
costs little time. We present the time usage for a single leaf
attribute combination of several algorithms used by existing work

in Table 5. a

9

Fig. 6. The F1-scores on simulated datasets.

Fig. 7. The F1-scores with different numbers of root causes.

Fig. 8. The F1-scores of faults with different anomaly magnitudes.

.2. RQ1: Effectiveness in root cause localization

As shown in Fig. 6, on average of different n_element and
uboid_layer settings, PSqueeze achieves the highest performance
n all datasets and outperforms the baselines significantly. By
urther calculation, the F1-score of PSqueeze outperforms the
aselines (excluding Squeeze) by 32.89% at least on average of
ll settings. The improvement is significant according to Table 6.
oreover, PSqueeze is more robust and performs well consistently

n different situations. As shown in Tables 7 and 8, despite of
ifferent n_elements, cuboid_layer , and dataset settings PSqueeze
chieves good performance, and PSqueeze outperforms all the
ther baselines in most (31 out of 54) settings.
In Fig. 7, we present the F1-scores with different numbers of

oot causes on the simulated fault datasets. The results show that
Squeeze can achieve consistently good performance even if there
s more than one root cause.

Notably, PSqueeze performs well consistently regarding differ-
nt anomaly magnitudes. Formally speaking, the anomaly mag-
itude of a fault is

|
∑

e∈LE(∅)(v(e)−f (e))|∑
e∈LE(∅) f (e)|

, and it denotes the relative

magnitude of the abnormal fluctuation on the overall measure
value. As shown in Fig. 8, PSqueeze and Squeeze achieve high
performance in spite of anomaly magnitudes. However, the per-
formance of Adtributor, HotSpot, and ImpAPTr varies largely with
different anomaly magnitudes. Though the performance of Apri-
ori, R-Adtributor, and MID is relatively stable, their F1-scores are
not high enough.

PSqueeze, as well as many most other baselines, relies on
orecast values. As shown in Table 8, PSqueeze performs worse

s the forecast residual goes large (from B1 to B4, as shown in
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Table 6
The p-value (by t-test) and effect size (by Cohen’s d (Cohen, 1988)) of every baseline across all datasets.

SQ ADT RAD APR HS MID IAP

p-value 7.9e−03 1.1e−41 6.2e−65 3.8e−04 1.9e−12 1.7e−18 3.3e−18
Effect size 0.52 4.28 7.55 0.71 1.53 2.05 2.03
p
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Table 7
Overall performance comparison on A and D.
F1-Score n_element,cuboid_layer

Algo. Total 1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

A

PSQ 0.68 0.97 0.93 0.70 0.73 0.67 0.67 0.57 0.60 0.28
SQ 0.60 0.94 0.75 0.52 0.68 0.65 0.57 0.37 0.60 0.29
ADT 0.12 0.37 0.00 0.00 0.36 0.00 0.00 0.32 0.00 0.00
RAD 0.01 0.06 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.05
APR 0.06 0.31 0.03 0.00 0.05 0.02 0.07 0.06 0.03 0.00
HS 0.40 0.71 0.35 0.24 0.88 0.27 0.01 0.58 0.32 0.25
MID 0.16 0.69 0.32 0.03 0.00 0.23 0.01 0.00 0.19 0.01
IAP 0.12 0.87 0.00 0.00 0.02 0.00 0.00 0.22 0.00 0.00

D

PSQ 0.94 0.95 0.96 0.97 0.97 0.97 0.95 0.84 0.94 0.95
SQ 0.88 0.95 0.95 0.94 0.95 0.93 0.90 0.48 0.93 0.90
ADT 0.10 0.16 0.00 0.00 0.32 0.00 0.00 0.46 0.00 0.00
RAD 0.09 0.14 0.12 0.00 0.06 0.18 0.00 0.09 0.20 0.01
APR 0.92 0.96 0.93 0.90 0.95 0.96 0.86 0.96 0.91 0.89
HS 0.51 0.99 0.91 0.01 0.75 0.70 0.00 0.64 0.58 0.02
MID 0.51 0.95 0.68 0.25 0.67 0.57 0.27 0.51 0.44 0.28
IAP 0.30 0.41 0.43 0.04 0.50 0.34 0.04 0.64 0.26 0.01

Table 8
Overall performance comparison on B1 , B2 , B3 and B4 .
F1-Score n_element,cuboid_layer

Algo. Total 1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

B1

PSQ 0.93 1.00 1.00 0.98 0.99 0.90 0.89 0.96 0.80 0.85
SQ 0.91 0.94 1.00 0.96 0.97 0.88 0.91 0.89 0.79 0.87
ADT 0.13 0.29 0.00 0.00 0.43 0.00 0.00 0.45 0.00 0.00
RAD 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.01
APR 0.67 1.00 0.78 0.09 0.98 0.87 0.18 0.96 0.93 0.23
HS 0.50 0.97 0.72 0.14 0.77 0.50 0.10 0.78 0.47 0.05
MID 0.38 0.94 0.82 0.27 0.01 0.56 0.23 0.00 0.43 0.19
IAP 0.29 1.00 0.00 0.00 0.86 0.00 0.00 0.71 0.00 0.00

B2

PSQ 0.90 1.00 0.99 0.93 1.00 0.91 0.80 0.93 0.80 0.74
SQ 0.81 0.91 0.97 0.93 0.99 0.78 0.75 0.78 0.53 0.66
ADT 0.13 0.28 0.00 0.00 0.44 0.00 0.00 0.49 0.00 0.00
RAD 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01
APR 0.79 0.97 0.91 0.36 1.00 0.93 0.49 0.96 0.96 0.58
HS 0.43 0.97 0.60 0.18 0.73 0.43 0.03 0.68 0.27 0.00
MID 0.32 0.96 0.86 0.26 0.01 0.42 0.11 0.01 0.18 0.05
IAP 0.29 1.00 0.00 0.00 0.86 0.00 0.00 0.76 0.00 0.00

B3

PSQ 0.83 0.88 0.93 0.86 0.95 0.85 0.74 0.93 0.74 0.59
SQ 0.70 0.61 0.93 0.84 0.83 0.75 0.69 0.66 0.49 0.53
ADT 0.13 0.28 0.00 0.00 0.41 0.00 0.00 0.50 0.00 0.00
RAD 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00
APR 0.75 1.00 0.88 0.24 0.99 0.93 0.38 0.97 0.96 0.44
HS 0.43 0.98 0.62 0.08 0.76 0.39 0.02 0.71 0.27 0.00
MID 0.29 0.93 0.83 0.22 0.01 0.39 0.09 0.00 0.14 0.03
IAP 0.29 0.99 0.00 0.00 0.84 0.00 0.00 0.74 0.00 0.00

B4

PSQ 0.77 0.69 0.89 0.76 0.91 0.80 0.72 0.92 0.68 0.58
SQ 0.62 0.32 0.86 0.75 0.69 0.70 0.65 0.58 0.46 0.54
ADT 0.13 0.27 0.00 0.00 0.37 0.00 0.00 0.51 0.00 0.00
RAD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.01
APR 0.61 1.00 0.72 0.05 1.00 0.78 0.09 0.96 0.81 0.12
HS 0.42 1.00 0.71 0.10 0.71 0.30 0.02 0.70 0.26 0.00
MID 0.31 0.97 0.84 0.25 0.00 0.41 0.09 0.00 0.15 0.05
IAP 0.30 1.00 0.00 0.00 0.93 0.00 0.00 0.74 0.00 0.00

Table 4), but PSqueeze consistently outperforms others even in
the worst case. The performance of Apriori is not monotonic to
the forecasting residuals because its parameter setting is sensitive
to the forecasting residual. Some approaches like HotSpot seem
affected less by forecasting residuals, but they perform poorly. It
worth noting that PSqueeze is much more insensitive to forecast-
ing residuals than our previous version, Squeeze, which further
10
demonstrates the effectiveness of our extension (the probabilistic
clustering method in Section 4.2).

In those settings where PSqueeze does not achieve the best
erformance, either Squeeze (3 out of 54), Apriori (14 out of
4), HotSpot (3 out of 54), or ImpAPTr (2 out of 54) achieve
he best performance. However, the baseline approaches are not
eneral and robust enough to perform well in different situations.
dtributor only localizes root causes of the first-layer cuboids,
nd thus, it cannot work at all settings where cuboid_layer ̸=
. Its explanation power is sensitive to the impact of attribute
ombinations (i.e., how much data is specified by attribute com-
inations), and thus it performs badly when anomaly magnitudes
re small. Note that faults with root causes in deeper cuboids
ften have smaller anomaly magnitudes. Hence the performance
f Adtributor decreases as cuboid_layer increases. Although R-
dtributor localizes root causes in any cuboids, it is hard for
-Adtributor to decide when the recursion should terminate, and
hus it works poorly in most settings. Although Apriori achieves
he best performance in several settings, it also works extremely
adly in some settings (e.g., all settings on A, cuboid_layer = 3 on

B1) due to its sensitivity to parameters. The hierarchical pruning
strategy could wrongly prune the right search path, and thus it
performs poorly when n_ele or cuboid_layer is large. Though both
MID and ImpAPTr are designed for and limited to particular mea-
sures (the number of issue reports and success rate respectively),
we have adapted them in our experiments. However, they still
suffer from other limitations. The searching strategies of MID and
ImpAPTr do no consider multiple root causes, and thus, they per-
form poorly when n_ele > 1. Moreover, MID’s heuristic strategy
is limited to their scenario, and thus, when root-cause attribute
combinations are in deeper cuboids, it is harder for MID to search
it. The contributor power in ImpAPTr is sensitive to the impact
of attribute combinations like explanation power, and thus it is
inappropriate for faults with small anomaly magnitudes. While
the baseline approaches suffer from these limitations, PSqueeze
is able to consistently achieve good performance in different
situations.

Finding 1 PSqueeze is more general and robust to perform
consistently well in different situations.

PSqueeze underperforms other baselines, especially Apriori, in
some settings when the forecasting residuals are large (i.e., in
datasets B3 and B4), or n_elements and cuboid_layers are large.
It is mainly because, in such cases, the bottom-up clustering
step is affected by the noises. For example, some normal leaf
attribute combinations could be grouped into a cluster due to the
large forecasting residuals. To reduce the influence of noises, we
apply probabilistic clustering in PSqueeze. As a result, as shown in
Table 8, the larger the forecasting residuals are, the more PSqueeze
outperforms Squeeze. In general, PSqueeze outperforms Squeeze
in most settings (50 out of 54) and the F1-score of PSqueeze
outperforms Squeeze by over 30% in 11 out of 54 settings, and the
improvement can be up to 113.7%. As the forecasting residuals in-
crease from B1 to B4, the improvement of PSqueeze over Squeeze
increases from 1.96% to 25.22%, and the effect sizes (Cohen’s
d Cohen, 1988) are 0.27, 0.67, 0.95 and 1.10 respectively. More-
over, according to Table 6, the improvement is significant. By
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Fig. 9. The F1-scores on datasets E and F .

Table 9
Effectiveness on determining external root cause.
ExRC_F1-Score n_element,cuboid_layer

dex Total 1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

A
1 0.78 0.65 0.73 0.95 0.91 0.82 0.92 0.61 0.84 0.62
2 0.82 0.67 0.97 0.95 0.78 0.84 0.93 0.72 0.89 0.60
3 0.92 0.97 0.96 0.96 0.88 0.88 0.96 0.75 0.95 0.94

B1

1 0.91 1.00 0.97 0.96 0.92 0.72 0.97 0.86 0.82 0.93
2 0.99 1.00 1.00 0.99 1.00 0.99 1.00 0.99 0.94 0.98
3 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00

B2

1 0.89 1.00 0.99 0.94 0.87 0.85 0.89 0.80 0.73 0.90
2 0.99 1.00 0.99 1.00 1.00 0.99 0.98 0.97 0.98 1.00
3 0.98 1.00 0.99 1.00 0.97 0.99 0.97 0.95 0.98 1.00

B3

1 0.85 0.81 0.97 0.89 0.87 0.84 0.95 0.78 0.68 0.86
2 0.93 0.81 1.00 0.94 0.88 0.96 0.95 0.88 1.00 0.97
3 0.95 0.91 1.00 0.95 0.91 0.99 0.95 0.91 0.99 0.98

B4

1 0.77 0.74 0.91 0.93 0.76 0.67 0.77 0.68 0.70 0.75
2 0.89 0.71 0.94 0.93 0.79 0.96 0.93 0.78 0.98 0.95
3 0.89 0.71 0.96 0.93 0.75 1.00 0.96 0.81 0.97 0.95

The number of eliminated attributes is denoted as dex .

urther calculation, the F1-score of PSqueeze outperforms Squeeze
y 11.73% on average.

Finding 2 PSqueeze significantly outperforms our previous
version by reducing the influence of noises.

In Fig. 9, we present the F1-scores on E and F . The results
how that PSqueeze outperforms the baselines, including Squeeze,
nd achieves the best performance. Compared with the simulated
aults (i.e., A, B and D), the performance of PSqueeze slightly
egrades on the inject faults. It is probably because the data
eneration of E and F do not assume GRE holds at all.

Finding 3 PSqueeze can achieve good performance and
outperforms the baselines in realistic faults.

5.3. RQ2: Effectiveness in determining external root causes

Our method of determining external root causes works well
n different datasets. We randomly select and eliminate some at-
ributes in the original datasets to emulate external root causes. If
root cause contains any attribute that is eliminated, it becomes
n external root cause. As shown in Table 9, PSqueeze successfully
etermines external root causes with high F1-scores in almost
ll settings. In 110 out of 135 settings, the ExRC_F1−Score of

PSqueeze achieves over 0.80. By further calculation, the
ExRC_F1−Score of PSqueeze achieves 0.90 on average. To the best
of our knowledge, there is not any existing approach determining
external root causes, and thus we do not compare with existing
approaches. In some cases, the F1-scores are relatively low (e.g.,
0.60). The main reason is that there could be high-GPS attribute
combinations even if the exact root causes are external due to the
correlation among attributes.
11
Fig. 10. Running time comparison (for individual faults) of A,B1,B4,D.

Fig. 11. F1-Scores over different δ with cuboid_layer = 3, n_ele = 3.

Finding 4 PSqueeze can effectively determine external root
causes.

5.4. RQ3: Efficiency

We evaluate the efficiency of PSqueeze by comparing its av-
erage time cost of each fault case with that of others. We run
every experiment on a server with 24 × Intel(R) Xeon(R) CPU E5-
2620 v3 @ 2.40 GHz (2 sockets) and 64G RAM. All algorithms are
implemented with Python utilizing matured libraries like Pandas
and NumPy. Experiments of all algorithms are conducted under
the same condition. In Fig. 10 we present the running times of
A,B1,B4,D. We do not present results of all datasets because
all of {Bi, i = 1, 2, 3, 4} have similar results. PSqueeze costs
only about ten seconds even in the worst cases. It is efficient
enough since measures are usually collected every minute or
every five minutes. HotSpot is sometimes as efficient as PSqueeze,
but sometimes it would cost more time. Apriori costs hundreds
of seconds, which is so slow that impractical. Others can be fast,
but they do not effectively localize root causes.

Finding 5 PSqueeze is efficient enough in practice to localize
root causes for multi-dimensional data.

5.5. RQ4: Performance under different configurations

All the parameters in Section 4 are automatically configured
except δ, the GPS threshold. We present the F1-scores of PSqueeze
under different δ in Fig. 11 with cuboid_layer = 3, n_ele = 3 in
i, i = 1, 2, 3, 4. We only choose this setting because it is the

hardest setting. PSqueeze’s performance does not change a lot as
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=

Fig. 12. Measure values (in log-scale) along time of Case 1. AC1 is (user agent
uc ∧ idc = ih ∧ province = other), and AC2 is (user agent = uc ∧ idc = is

∧ province = other).

δ changes. Results in Tables 7, 8 and Section 5.4 also show that
δ = 0.9 leads to good enough effectiveness and efficiency. Since
δ is the GPS threshold for early stopping and the distributions of
GPS are not supposed to be related to datasets, it is reasonable to
set δ near 0.9 regardless of the specific dataset.

Finding 6 PSqueeze is robust to different configurations.

6. Success stories

We have successfully applied PSqueeze in several large com-
mercial banks and a top Internet company. The results show that
PSqueeze can do great help for operators by rapidly and accurately
localizing root causes. In this section, we present some repre-
sentative success stories. For confidential reasons, some details
are omitted or anonymized. Compared with our previous version,
we apply PSqueeze in more production systems from different
companies and collect more cases (e.g., case 4 and 5).

6.1. Case 1: Insignificant anomaly magnitude

One day night, a fault occurred at a top Internet company.
The HTTP error counts suddenly burst, as shown in Fig. 12. The
attributes and the number of distinct values are listed as follows:
data center (11), province (7), ISP (6), user agent(22). A potential
root cause is manually found by the operators, consisting of only
one attribute combination (AC1 in Fig. 12), which took them one
hour.

We retrospectively ran PSqueeze over this system’s logs, and
in several seconds, we found more root causes: AC1 and AC2,
as shown in Fig. 12. It is obvious that AC2 also has severe error
bursts. AC2 is mistakenly ignored by the operators because it
occupied only a small fraction of the total error counts. Manual
analysis apparently has difficulties in localizing root causes of
anomalies with insignificant magnitudes. PSqueeze would help
the operators to notice such root causes efficiently.

6.2. Case 2: Intra-system localization

One day from 9:00 to 11:00, the operators of a bank received
many tickets and alerts and noticed that the API call success rate
of a system suffered a severe drop. The search space is large,
and the attributes and the number of distinct values are listed as
follows: province (38), agency (815), server group (16), channel
(4), server (339), code (4), status (2), service type (3). After two
hours of fruitless manual root cause localization, the operators
decided to just roll back the entire system to the last version,
which happened to actually fix the issue. After the roll-back,
it took another 2 h for an inexperienced operator on duty to
eventually find the root cause (there was a bug in the newly
12
Fig. 13. The histogram of deviation scores in Case 2.

Table 10
Qualitative comparison on industrial cases: whether the algorithm can find the
true root cause. Some cases are missing due to deployment issues.
true RC? PSqueeze SQ HS APR ADT RAD MID IAP

Case 1 Yes Yes No No No No No No
Case 3 Yes Yes Yes Yes No No No Yes
Case 4 Yes No No Yesa Yes No No No
Case 5 Yes No No Yesa Yes No No No

a Reporting too many false positives to be really helpful.

deployed version of the software for Service Type 0200020) based
on the 2-h logs during the fault.

Upon the request of the operators, we retrospectively ran
PSqueeze over this system’s logs during the fault. PSqueeze took
a few seconds to report the root cause (Service Type = 020020),
which indicates exactly the software with a buggy version update.
Had PSqueeze been used immediately after the fault happened,
operators could have localized the root cause much faster.

Fig. 13 shows this case’s results of deviation-score-based clus-
tering. We can see that the deviation scores of all descended leaf
attribute combinations of the root cause (Service Type = 020020)
are very close to each other. This to some extent confirms the
generalized ripple effect.

6.3. Case 3: Inter-system localization

One day, there was a burst of failures in a bank’s transaction
system. There are many subsystems that communicate with each
other by API (application programming interface) calls. The search
space is also large, and the attributes and the number of distinct
values are listed as follows: source (13), source IP (66), destina-
tion (7), destination IP (10), interface (135). The operators located
the root cause (destination = ic in Fig. 14) in ten minutes by
manually analyzing many faulty traces (a series of API calls on
different services to realizing on transaction is a trace Zhou et al.,
2019; Liu et al., 2020; Guo et al., 2020).

Again, upon the request of the operators, we retrospectively
ran PSqueeze over this system’s API call logs during the fault.
PSqueeze localized the root causes, as shown in Fig. 14, in just sev-
eral seconds. It also confirms the generalized ripple effect because
deviation scores of leaf attribute combinations that are descended
from the same root-cause attribute combination are close to
each other. Note that PSqueeze reports more root-cause attribute
combinations than what the operators find. The operators con-
firm that these additional root-cause attribute combinations are
indeed valid: they are abnormal but are just affected by the ic
service due to the dependency among services. Had PSqueeze
been actually used immediately after the issue, operators could
have localized the root cause much faster (seconds vs. minutes)
and more accurately. We also run some other algorithms on Case
3 (see Table 10).

6.4. Case 4 and 5: External root causes

One day at about 00:30, a fault occurred, and thus, a lot of
transactions suffered long response latency at a system of a large
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Fig. 14. The root-cause attribute combinations and the histogram of deviation
scores of their descent leaves in Case 3.

Fig. 15. Case 4. If the return code is 0014, then the average latency increases
a lot; otherwise the average latency keeps steady.

Fig. 16. Case 5. If the return type is 1006, then the transaction count increases
a lot; otherwise the average latency keeps steady.

commercial bank. There are many attributes and attribute values:
transaction status (4), host IP (75), return code (275), transaction
code (636), and MQ name (5). Therefore, manually localizing root
cause attribute combinations is very challenging.

We retrospectively ran PSqueeze on this system’s logs and
successfully localize (return code = 0014) as the root cause
see Fig. 15). Then the operator manually confirms this attribute
ombination directly indicates the exact underlying root cause.
e also compare PSqueeze with other baselines in these cases

nd present the comparison in Table 10. Note that although
priori successfully localizes the root cause, it also localizes 55
on-root-cause attribute combinations.
Initially, we did not take the two attributes, return code and

ransaction code, into consideration since there are too many
ttribute values of them. Then PSqueeze reported there might
e an external root cause as min_GPS (refer to Algorithm 3)
as only 0.81. Moreover, all these approaches give invalid root
auses: PSqueeze, HotSpot, Adtributor, MID and ImpAPTr localize
lmost all MQ names, R-Adtributor also localizes most MQ names
ombined with transaction status = S, and Apriori gives dozens of
oot causes. Operators are not able to infer the underlying root
ause from such results, and actually they can be misled. Thus,
e took all available attributes into consideration and then found
he exact root cause.

At another system of the same bank, another fault caused
he transaction count to increase slightly and deviated from its
ormal state. We also retrospectively ran PSqueeze and other
aselines, and the comparison is presented in Table 10. PSqueeze
ccurately localizes the root cause attribute combination, ‘‘RET-
YPE = 1006’’ (see Fig. 16). Note that Apriori localizes too many
17) non-root-cause attribute combinations again. For both case
and 5, Squeeze did not localize the exact root-cause attribute
ombinations due to the large forecasting residuals. Similar to
13
case 4, we did not found the exact root cause until we were
notified that there might be external root causes by PSqueeze and
considered more attributes.

7. Discussion

7.1. Threats to validity

The major threat to validity lies in the lack of real-world
datasets. However, given the difficulty in accessing real-world
datasets, all the closely related works use simulated faults as
well as our previous conference version, except iDice (Lin et al.,
2016a) and MID (Gu et al., 2020), which are both from Mi-
crosoft. We think there are two reasons for the infeasibility of
real-world datasets. First, on the one hand, there are a lim-
ited number of faults in real-world production systems. Among
them, the faults whose root causes can be indicated by root-
cause attribute combinations is even less. On the other hand, in
many cases, due to the lack of automated root-cause attribute
combinations localization tools, the faults are diagnosed with
the help of other monitoring data, such as logs and traces, and
thus, the root-cause attribute combinations are missed in the
failure tickets. Therefore, valid real-world cases that have ground-
truth root-cause attribute combinations are somewhat rare. It
could take years for engineers to collect hundreds of valid cases.
Second, multi-dimensional data are usually highly confidential.
Unlike infrastructural metrics, such as CPU utilization and net-
work throughput, the fields in the request logs that we use to
build multi-dimensional data are usually sensitive, such as the
dollar amount and the user’s location. The high risk also hin-
ders companies from sharing real-world multi-dimensional data
publicly.

To mitigate this threat to validity, first, we provide several
real-world fault cases. Second, compared with the previous con-
ference version, we added two new datasets (i.e., E and F), which
ere generated by realistic fault injection.

.2. Limitations

Root causes of multi-dimensional data are not exact root causes
f faults but only clues to them. Nevertheless, localizing root
auses for multi-dimensional data is important and helpful since
t can direct further investigation right after faults occur.

PSqueeze, as well as the previous approaches, relies on time-
eries forecasting. To reduce the influence brought by inaccurate
orecasting, especially when the real value is small, we intro-
uce probabilistic clustering. The experiment result shows that
Squeeze is robust to forecasting residuals.
PSqueeze focuses on only categorical attributes and cannot

everage numerical attributes directly, as well as most previous
pproaches (Ahmed et al., 2017; Sun et al., 2018; Rong et al.,
020; Persson and Rudenius, 2018; Lin et al., 2016a; Gu et al.,
020; Bhagwan et al., 2014; Lin et al., 2020). We observe that
umerical attributes are much less prevalent in practice (e.g.,
n the five companies studied in this paper). According to our
nterviews with some engineers, they choose not to record them
ecause they are not sure how to use them for diagnosis. We will
ork on supporting numerical attributes in the future.
PSqueeze focuses on only numerical measures, as well as most

revious approaches (Bhagwan et al., 2014; Persson and Rude-
ius, 2018; Lin et al., 2016a; Sun et al., 2018; Gu et al., 2020;
ong et al., 2020) except Apriori (Ahmed et al., 2017; Lin et al.,
020). However, operators usually aggregate only numerical mea-
ures as time-series for monitoring and fault discovery in cur-
ent industrial practice since categorical measures are not suit-
ble for this. Thus operators are concerned about only numerical
easures.
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Table 11
Comparison of root cause localization approaches for multi-dimensional data Section 5.
Approach Genericness Robustness Efficiency Search strategy

General
scenario

Measure Any anomaly
magnitude

Determine
external
root cause

Relying on
parameter
fine-tuning

Adtributor (Bhagwan
et al., 2014)

No Fundamental&derived No No No Good top-down

iDice (Lin et al., 2016a) No #issue reports No No No Depends top-down
Apriori (Ahmed et al.,
2017; Lin et al., 2020)

Yes Fundamental&derived Yes No Yes Depends bottom-up

R-Adtributor (Persson
and Rudenius, 2018)

Yes Fundamental&derived Yes No Yes Good top-down

HotSpot (Sun et al.,
2018)

Yes Fundamental No No No Depends top-down

Squeeze (Li et al., 2019) Yes Fundamental&derived Yes No No Good bottom-
up&top-down

ImpAPTr (Rong et al.,
2020)

No Success rate No No No Good top-down

MID (Gu et al., 2020) No #issue reports Yes No No Depends top-down
PSqueeze Yes Fundamental&derived Yes Yes No Good bottom-

up&top-down
c
t
w
v
i
R
P
a

D

c

8. Related work

Recently, many approaches focus on fault diagnosis in various
ontexts. Most are different from ours (Wu et al., 2018; Lin et al.,
016b; Zou et al., 2019; Chen et al., 2019a,b; Zhou et al., 2019; Liu
t al., 2016; Liu, 2020; Guo et al., 2020; He et al., 2018; Li et al.,
021). On the one hand, we focus on root cause localization on
ulti-dimensional data. On the other hand, some of these works
se intuitive domain-knowledge-based empirical methods, while
e propose a generic algorithm.
There are also several approaches focusing on localizing root

auses for multi-dimensional data (Bhagwan et al., 2014; Persson
nd Rudenius, 2018; Lin et al., 2016a; Sun et al., 2018; Ahmed
t al., 2017; Gu et al., 2020; Lin et al., 2020; Rong et al., 2020).
e compare them in Table 11 in three aspects, i.e., genericness,

obustness, and efficiency. Some approaches are focusing on a
pecific scenario rather than generic multi-dimensional data. For
xample, Adtributor (Bhagwan et al., 2014) only cares about
ingle-attribute root causes. iDice (Lin et al., 2016a), MID (Gu
t al., 2020) and ImpAPTr (Rong et al., 2020) utilize the special
roperties of specific types of measures (i.e., #issue reports and

success rate) and thus are not generic. Many approaches (Sun
et al., 2018; Lin et al., 2016a; Rong et al., 2020) filter attribute
combinations by their impact (e.g., the percent of issue reports
or transactions under them) and thus cannot handle insignificant
anomalies. Due to the design of termination conditions or pruning
strategies, some approaches rely on parameter fine-tuning (Pers-
son and Rudenius, 2018; Ahmed et al., 2017; Lin et al., 2020), and
the running time of some approaches (Sun et al., 2018; Lin et al.,
2016a; Gu et al., 2020; Ahmed et al., 2017; Lin et al., 2020) varies
in different faults.

Time series forecasting has been extensively studied, and there
are many approaches. Statistical approaches (Chen et al., 2013;
Zhang et al., 2018; Lee et al., 2012; Ma et al., 2018) make some
statistical assumptions on the time series. Supervised ensem-
ble approaches (Liu et al., 2015) try to ensemble statistical ap-
proaches in a supervised manner. Recently, unsupervised deep-
learning-based approaches (Xu et al., 2018; Li et al., 2018) are
making great progress. The selection of appropriate forecasting
algorithms is usually based on the nature of data (Liu et al., 2015).

There are many other studies on the analysis of
multi-dimensional data. A series of studies (Tang et al., 2017; Lin
et al., 2018; Ding et al., 2019) focus on identifying interesting
patterns (a.k.a. insights) in multi-dimensional data. Lumos (Pool
et al., 2020) diagnoses metric regressions by ranking attributes by

their importance after regression. Castelluccio et al. (2017) focus t

14
on mining contrasting sets by statistical tests, which are attribute
combinations with distinctive supports in different groups, to
find attribute combinations related to a specific group of crashes.
Liu et al. (2016) debug high response time by mining distinctive
conditions for high response time with the help of the decision
tree algorithm.

9. Conclusion

Given the importance of root cause localization for multi-
dimensional data, many approaches are proposed recently. How-
ever, they are not generic or robust enough due to some lim-
itations. In this paper, we propose a more generic and robust
approach, PSqueeze. PSqueeze employs a novel ‘‘bottom-up&top-
down’’ searching strategy based on our proposed generalized
ripple effect to achieves high efficiency without much loss of
genericness and robustness. Notably, this paper further extends
our previous studies by a probabilistic clustering method and a
method for determining external root causes. We conduct ex-
tensive experiments on both simulated and injected faults. The
results show that the F1-score of PSqueeze outperforms previous
approaches by 32.89% on average and consistently costs only
about 10 s. Besides, the F1-score in determining external root
causes reaches 0.90 on average. Furthermore, case studies in
several large commercial banks and an Internet company show
that PSqueeze can localize root causes much more rapidly and
accurately than traditional manual analysis in practice.
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