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Efficient and Robust KPI Outlier Detection for
Large-Scale Datacenters
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Man Zhu, Xiao Xiong, Qiliang Fan

Abstract—To ensure the performance of large-scale datacenters,
operators need to monitor up to tens of millions of various-type
KPIs, e.g., CPU utilization, memory utilization. For each KPI, it
is crucial but challenging to detect outliers that deviate from its
historical patterns or the patterns of other KPIs in the same period.
In this work, we propose OutSpot, an unsupervised outlier detection
framework that integrates hierarchical agglomerative clustering
(HAC) with conditional variational autoencoder (CVAE), which
significantly improves computational efficiency and comprehen-
sively learns the above two patterns. Additionally, two simple yet
effective techniques, soft threshold and median filter, are applied to
precisely determine outlier KPIs. Using two real-world datasets col-
lected from the datacenters owned by a top-tier global short video
service provider and a top-tier domestic operator,respectively. It
demonstrates that QutSpot achieves the best F1 score of 0.95 and
0.91, AUC of 0.99 and 0.99 on the two datasets, significantly out-
performing seven baseline outlier detection methods.

Index Terms—OQutlier detection, KPI, deep generative model,
AlOps.

I. INTRODUCTION

to millions of servers, hundreds of thousands of switches
and routers, and millions of cables and fibers [1], and the
performance of these devices is vitally important to the services
provided by datacenters. The unexpected behaviors of these
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Fig. 1. Outlier type in time series (KPIs). (two-day-long data).

devices, which may be caused by hardware failures (e.g., uncor-
rectable hardware errors, machine aging, power down), software
bugs (e.g., thread crash, memory leaking), or cyber-attacks,
will degrade the quality of service (QoS) and may even lead
to a drop in revenue [2], [3]. Therefore, operators carefully
monitor the status of these devices through various types of key
performance indicators (KPIs), e.g., CPU utilization, memory
utilization, TCP retransmission percentage, disk I/O rate [4],
[51, [6], [71, [8], [9], [10]. Usually, the monitoring data of a KPI,
which is collected with a fixed time interval (e.g., 5 minutes),
forms a univariate time series (from now on, we use “KPI”” and
“KPI time series” interchangeably). Considering the significant
number of devices in a large-scale datacenter, operators have to
continuously monitor tens of millions of KPIs.

An outlier of a KPI usually denotes an unexpected behavior of
a device, and it can be classified into three types: a point outlier,
a subsequence outlier, or an outlier time series [11], as shown
in Fig. 1. A point outlier is a data point that behaves abnormally
compared to the historical data points in the KPI or its adjacent
points. A subsequence outlier denotes consecutive data points
(i.e., a time segment) in a KPI whose collective behavior is
abnormal compared to this KPI’s historical normal pattern.
However, each data point of it individually is not necessarily
a point outlier. Moreover, an outlier time series denotes that the
entire time series is an outlier compared to other KPIs in the same
period. Due to the auto-recovery and load balancing mechanisms
of datacenters, usually, a point outlier does not imply a device
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failure, and operators often ignore it. However, a subsequence
outlier or an outlier time series denotes that a device suffers from
abnormal behaviors or becomes poorly managed for an extended
period. Operators should take measures to mitigate it.

Over the years, a large number of point outlier/anomaly
detection methods have been proposed in the literature [8], [9],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23],
[24], [25]. These methods cannot be easily improved to detect
subsequence outlier or outlier time series because: 1) they focus
on the abnormal behavior of each data point instead of a time
segment, and 2) they do not compare a KPI with other KPIs
in the same period. Although a few works have been proposed
for subsequence outlier detection through learning the historical
pattern for each KPI[26],[27], or outlier time series detection by
learning the pattern of all KPIs in the same period [28], none of
these methods can detect the above two outliers simultaneously.
Considering the massive number of KPIs, these subsequence
outlier detection methods are computationally intensive because
they have to train a separate model for each KPI. Additionally,
outlier time series detection methods can miss subsequence
outliers, which behave normally compared to other KPIs in the
same period but abnormally compared with the KPI’s historical
pattern. Therefore, we aim to design a framework to efficiently
and accurately detect both subsequence outlier and outlier time
series of KPIs.

Due to the large number of KPIs in large-scale datacenters,
we cannot deploy supervised methods requiring a considerable
amount of labeling effort to detect KPI outliers (hereinafter, a
KPI outlier refers to a subsequence outlier or an outlier time
series). Consequently, we apply unsupervised methods, which
automatically learn KPI’s normal patterns and need no labels,
for KPI outlier detection. Recently, deep generative models have
shown its superior performance for KPI outlier detection in an
unsupervised manner [4], [5], [12], [14], [15], [19], [20], [21],
[23]. We thus also apply deep generative models to comprehen-
sively learn KPI’s normal patterns and accurately detect KPI
outliers. However, applying deep generative models for KPI
outlier detection faces the following four challenges.

1) A Considerable Number of KPIs With Various Types. In
large-scale datacenters, operators should detect outliers for tens
of millions of KPIs. However, a deep generative model usually
consumes high computational resources in the training stage [6],
[7]. Therefore, training a separate outlier detection model for
each KPI is almost infeasible. However, the various types of
KPIs can have very different patterns, and one outlier detection
model ignoring these differences is not expressive enough by
nature. Therefore, training one model for all KPIs would bound
the accuracy.

2) Detect Both Subsequence Outliers and Outlier Time Series.
To detect both subsequence outlier and outlier time series, a deep
generative model has to learn both the historical pattern of each
KPI and the pattern of all KPIs in the same period. It introduces
a significant challenge to the deep generative model because it
usually learns one type of pattern at a time [29].

3) Determine Outliers. Existing point outlier/anomaly detec-
tion works usually apply the reconstruction probability (density
estimate) of deep generative models to determine whether a
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data point is an outlier/anomaly [4], [5], [12], [14], [15], [19],
[20], [21], [23]. The lower the reconstruction probability of a
data point, the more likely it is to be an outlier. However, the
reconstruction probability-based methods can frequently assign
a higher reconstruction probability to outliers and thus suffer
from low accuracy in outlier determination for high-dimensional
data[15]. Therefore, they are inappropriate for subsequence out-
liers and outlier time series, both of which are high-dimensional
data containing multiple data points.

4) Lack of Labels. Although there is no need to obtain labels
to train a model for unsupervised methods, we still have to
label a collection of KPIs to verify or improve outlier detection
methods’ performance. To determine an outlier KPI, operators
have to check the historical pattern of each KPI and the pattern
of all KPIs in the same period. It is labor-intensive and time-
consuming if no labeling tool is applied.

To tackle the above challenges, we propose an efficient and
robust unsupervised outlier detection framework, OutSpot. It
can detect both subsequence outlier and outlier time series for
large-scale datacenters. Specifically, it applies the hierarchical
agglomerative clustering (HAC) method to cluster KPIs based
on their patterns. For learning both the historical pattern of each
KPI and the pattern of all KPIs in the same period, it then encodes
the clustering information into the generative model using the
conditional variational autoencoder (CVAE) method. Finally, it
compares the reconstructed and original KPI shapes to determine
whether a KPI is an outlier.

The main contributions can be summarized as follows:

1) To address the first and second challenges, we propose
integrating HAC with CVAE. Specifically, we first apply HAC
to cluster KPIs according to their patterns and then embed the
cluster information of each KPI into the CVAE method. Since
the number of clusters is much smaller than that of KPIs (three in
our scenario), and the KPIs of each cluster resemble in pattern,
OutSpot can detect outliers for the large-scale KPIs with diverse
patterns. Additionally, the cluster-information-encoded CVAE
method has learned both the historical pattern of each KPI
and the pattern of all KPIs in the same period, facilitating the
detection of both subsequence outliers and outlier time series.

2) To tackle the third challenge, we determine whether a
KPI is an outlier by comparing the original and reconstructed
KPI shapes instead of calculating the reconstruction probability.
Additionally, we propose to combine soft threshold (ST) and
median filter (MF) for improving OutSpot’s accuracy.

3) To demonstrate OutSpot’s performance, we conduct ex-
tensive experiments on the dataset .A from a top global short
video service provider and B from one of the three major
domestic communication operators of China. OutSpot achieves
the best F1 score of 0.95 and 0.91, AUC of 0.99 and 0.99 on the
two datasets, significantly outperforming seven baseline outlier
detection methods.

4) For addressing the fourth challenge, we release a labeling
tool for KPI outlier detection.! Additionally, to get readers better
understand our work, we also make our labeled dataset A2

Uhttps://github.com/OutlierDetection-OutSpot/Label-tool
Zhttps://github.com/OutlierDetection-OutSpot/Dataset
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TABLE I
DETAILED INFORMATION ABOUT THE 18 KPIS

KPI categories
(count of KPIs)

KPIs

cpu_idle, cpu_sintr, cpu_system,

CPU related (7) cpu_wio, cpu_user, cpu_ctxt,cpu_nice

Memory related
)
VM related (2)

memory_utilization

vm_pgfault, vm_pgmajfault

tep_retrans_percentage, tcp_insegs,
tcp_outsegs, tcpext_listendrops

TCP related (4)

Network related rx_bytes_eth0, rx_pkts_ethO,
4) tx_bytes_ethOQ, tx_pkts_eth0
/{;A
i =

Day 7

(5 minute interval) x (288 time points) = 24h

Fig. 2. Examples of KPIs in our scenario. The red area refers to the KPIs to
be detected and the green area refers to the historical KPIs. “...” indicates that
the similar information is hidden due to space limit.

and code® publicly available. Dataset B is not public due to
commercial issues.

II. PRELIMINARIES
A. Problem Statement

Servers are the most prevalent devices in datacenters, and
the KPIs of other types of devices, including routers, switches,
firewalls, etc., resemble those of servers. The outlier detection
methods proposed for server KPI can be easily generalized to
other types of devices. Therefore, in this paper, we mainly focus
on the KPIs of servers in large-scale datacenters, e.g., CPU
idle, memory utilization, as listed in Table I. The KPI values
are usually collected with a fixed time interval, like one or
five minutes. For example, as shown in Fig. 2, in the studied
datacenters, operators monitor 18 KPIs for each server, and the
monitoring data of these KPIs are collected every five minutes.
Thus a one-day-long KPI has 288 data points.

In this paper, we determine that a one-day-long KPI is an
outlier KPI because it contains one or more outliers (e.g., subse-
quence outliers or outlier time series). To find out the outlier KPIs
more frequently, we use a sliding window technique to divide the
KPI data with window size = one day and step size = 1.5 hours.

3https://github.com/OutlierDetection-OutSpot/Code
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First of all, setting the window size = one day because the KPI of
a machine is usually periodical, and its period is one day. This is
because it changes as the user workload of the machine changes,
which conforms to the pattern of user behavior typically having
a one-day-long period. As shown in Figs. 1 and 7, we can see
that the real-world KPI data is periodical with a one-day-long
period. In addition, the KPIs of different machines can have
different periodic characteristics (i.e., patterns described in the
paper). For example, the KPIs of machine 1 and machine 2 are all
periodic but have different periodic characteristics (patterns), so
OutSpot will group them into different clusters and process them
separately. Second, setting the step size = 1.5 hours because:

1) Both subsequence outliers and outlier time series are out-
liers that last a long time, and we need a relatively long time to
determine a subsequence outlier or an outlier time series. In our
scenario, for example, the operators think that an outlier KPI
should have continuous abnormal values of 1.5 hours (18 points
for the interval of 5 minutes) at least.

2) Outlier detection differs from anomaly detection [6], [9],
[12], [13]in that it does not need to detect outlier KPIs as quickly
as possible. In our work, KPI outlier detection aims to find the
devices/services suffering from abnormal behaviors or becom-
ing poorly managed for an extended period. Note that collecting
KPI data more frequently does not help shorten the latency of
detecting outliers. For example, the KPI data collection intervals
of the two datasets are 5 minutes and 15 minutes, respectively.
However, both datasets have window size = one day and step
size = 1.5 hours. This is mainly because we need a relatively
long time (1.5 hours) to determine a subsequence outlier or an
outlier time series.

B. Basics of HAC and CVAE

HAC first treats each sample as a singleton cluster. It then
successively agglomerates closer pair of clusters and returns the
clustering result according to the number of clusters to be found
or the linkage distance threshold above which clusters will not
be merged. Compared with other clustering algorithms (e.g.,
DBSCAN), HAC is not sensitive to the choice of the distance
metric because it combines two nodes based on the rank of
distances instead of their absolute distance values. Therefore,
we adopt HAC for clustering in OutSpot.

Deep generative models, especially variational autoencoder
(VAE) based models, have shown their superior performance
in point outlier/anomaly detection [4], [5], [12], [14], [15],
[19], [20], [21], [23]. A generative model usually learns the
low-dimensional representations of complex data through an
encoder and generates new samples following it by a decoder.
Compared to VAE, CVAE generates new samples of specified
categories by condition variable [30], [31]. As shown in Fig. 3,
CVAE also consists of an encoder and a decoder.

1) Encoder. Map the input x with category information y
to the latent variable distribution z (i.e., z ~ py(z|x,y)).
po(z) is the prior distribution of z.

2) Decoder. Generate an x with known category information,

ie., x ~ po(x|z,y).

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 16,2023 at 05:23:06 UTC from IEEE Xplore. Restrictions apply.
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Fig. 3. The architecture of CVAE. The dash lines denote encoding. The solid
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Fig. 4. The overall framework of OutSpot. The dash lines denote the training
procedure, the solid lines denote the detection procedure, and the dot-and-dash
line denotes the modules shared by the two procedures.

Note that the true posterior py(z|x,y) is intractable [30]. We
alternatively get its approximate distribution ¢,4(z|x, y) through
variational inference. Now we can trace the integral of the
marginal log-likelihood

log po (x|y) = /%(Xlz,y) log pe(z|y)dz

z

B <lz. v 1o po(x,2ly)qy(z|x, )Z
= [autlay) g o2, y)po (%, y)
= X\|Z O ( |y>Z
—/Zq¢( 1, y)log £ PRETS y)d

+ KLgp (2%, ) [l po(zlx,y)]. (1)

The first term in (1) is the evidence lower bound (i.e., ELBO),
and K L refers to Kullback-Leibler divergence which measures
the distance between two probability distributions. Because
KL loss is always greater than zero, CVAE is trained through
maximizing ELBO

L(z,y) — K L[gy(z[x,y) || po(z|x,y)]

po(x|z,y)po(zly)
q¢(z|x,y) .

= log po(x|y)

=E, 2

o (zlx,y) 108

III. DESIGN
A. Overall Framework

We propose OutSpot, integrating HAC with CVAE, to ac-
curately and efficiently detect both subsequence outlier and
outlier time series simultaneously for large-scale datacenters.
The framework of OutSpot is shown in Fig. 4. It consists of two
procedures: model training (the dash lines) and detection (the
solid lines). The two modules, i.e., Data Preparation, Clustering
and Encoding, are shared by the above two procedures (linked
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by the dot-and-dash line). Data Preparation standardizes all the
KPIs at the same magnitude through z-score normalization [5].
In the Clustering and Encoding module, the KPIs are clustered
based on their patterns through HAC, and then the cluster
information is encoded as the condition variable y of CVAE.
Model Training captures the normal patterns of each cluster
using CVAE, and Outlier Detectin determines whether a KPI
is an outlier.

The core idea of OutSpot is combining HAC with CVAE,
and then using the CVAE model to detect two types of outliers:
subsequence outlier and outlier time series. For some KPI’s
one-day-long monitoring data x, we first cluster KPIs into fewer
clusters according to the patterns of x and other KPIs in current
period (i.e., the red area of Fig. 2), and then obtain x’s cluster
information. After that, we encode this information into CVAE
as conditional variables and train the model using all KPIs’
historical data (i.e., the green area of Fig. 2) of this cluster. Next
we explain how can we use one model to detect the two types
of outliers. Since the outlier KPIs usually account for a small
proportion, keeping the number of clusters 7. relatively small can
ensure that normal data dominate each cluster, and the outlier
KPIs can be clustered into a “normal cluster” instead of separate
clusters. Intuitively, to judge whether a KPI x is a subsequence
outlier, we should compare the x’s current pattern with its histor-
ical pattern and calculate the difference, and compare x’s current
pattern with other KPIs’ to verify whether it is an outlier time
series. For cluster C, OutSpot trains a model using the historical
KPIs to learn the historical pattern. Note that this model contains
not only the historical patterns of this cluster but also the current
patterns of other KPIs (most KPIs are normal, so their historical
patterns are similar to current’s.). Detecting outlier KPIs through
historical patterns is straightforward. However, if the current
pattern is consistent with the historical pattern of a KPI that have
outliers for multiple days, it is not enough to rely on the historical
pattern alone. Actually, when the model also captures the normal
patterns of other KPIs in the same period, these outlier KPIs can
be easily detected because they are significantly different from
the normal patterns of other KPIs in the same period. Therefore,
when we obtain the reconstructed x’ by inputting x into this
model, x’ represents the historical pattern of x and the current
patterns of other KPIs. Thus, OutSpot determines whether x is a
subsequence outlier or an outlier time series just by comparing
the difference of x and x'.

B. Clustering and Encoding

Clustering. As mentioned in Section II-B, we adopt HAC for
clustering in this work. Since HAC is insensitive to distance
metrics, we choose one of the most popular metrics, euclidean
Distance [32]. With a cluster number threshold, 7., KPIs are
divided into at least 7. clusters according to Ward linkage [33]
(7. = 3 in our scenario, and more details can be seen in Sec-
tion IV-E). A cluster represents the pattern of a type of normal
KPI, and it may contain outlier KPIs (more details can be seen
in Section V-B).

Encoding. We encode the cluster information as a set of
one-hot vectors [21]. One-hot encoding converts the positive
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x is the input data, X’ is reconstructed output; k is the number of layers of 1D-
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variables, respectively; hy is the output of k 1D-convolutions; h, is the output
of k 1D-deconvolutions; hy is the one-hot vectors of condition variables. We
concatenate hy and hy, h, and hy as new tensors in the network, respectively.

integer which represents the cluster information to a binary
vector with 7. dimensions. For example, if 7. = 3, we will get 3
one-hot vectors: (1, 0, 0), (0, 1, 0), (0, 0, 1). Each of the one-hot
vectors corresponds to a cluster. The one-hot vectors of cluster
information are treated as the condition variable y in CVAE,
i.e., the condition variable y represents the category of the input
KPI. Please note that the Encoding here is a preprocessing step
for the encoder of CVAE.

C. Network Architecture

OutSpot is a reconstruction-based model that consists of an
encoder (i.e., ¢4(z|x,y)) and a decoder(i.e., pp(x|z,y)). As
shown in Fig. 5(a), in the encoder, OutSpot first extracts the
shape features of the input KPIs through k& 1D-convolution
(i.e., one-dimensional convolutional neural network) layers.
Then a fully-connected layer maps the shape features (e.g.,
seasonality, trend and stationarity, etc [34].) of input KPIs
x (i.e., hyx) combined with the cluster information y (i.e.,
hy) to the low-dimensional latent space as a stochastic latent
variable z.

For the decoder as shown in Fig. 5(b), OutSpot uses 1D-
deconvolution layers followed by fully-connected layers. The
decoder takes the latent variable z (i.e., h,) as input and outputs
the reconstructed data, x’, with the cluster information y (i.e.,
hy ). Detailedly, the latent variable z represents the variational
distribution in latent space and x’ represents the KPIs distribu-
tion. The probabilities of z and x are assumed to be Gaussian
distributions. Therefore, z and x’ are generated by their mean p
and standard deviation o instead (i.e., iz, 05 and jix, 0x). Since
o is always greater than zero, we apply Softplus as the activation
function: Softplus(x) = log(1 + exp(x)).

IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 10, OCTOBER 2023

D. Model Training

The model of CVAE in OutSpot is trained by maximizing the
ELBO (i.e., the loss function) on the marginal log-likelihood
po(x,2[y)
q(2/%,Y)
po(zly)pe(x|z, y)

q0(z/x,y)

po(z)

q0(2[x,y)

‘C(Xa Y) = Ieqb(z\x}y) lo

=Eq, (zx,y) l0g

= Eq, (zlx.y) l0g

+ Ey, (zlx.,y) l0g po(x[2,y). 3)

The encoder of CVAE defines the approximate posterior dis-
tribution as a multivariate Gaussian distribution: ¢4(z|x,y) ~
N (pg,021), while the decoder defines the conditional distri-
bution of the KPIs to be detected: py(x|z,y) ~ N (pux, 021).
Besides, as [35] suggests, we can make the latent variable z
independent of condition variable y, i.e., pg(z|y) = po(z).

With further analysis to (3), the first term is the regularization
(i.e., Kullback-Leibler loss) on z, which minimizes the differ-
ence between the approximate posterior distribution g4(z|x, y)
and the prior distribution py(z) (i.e., regularize the true posterior
distribution py(z|x,y) by the prior distribution pg(z)). The
second term is the reconstruction probability which maximizes
the likelihood of x.

We then optimize the single sample Monte Carlo estimate of
ELBO (3)

0)
L(x,y) = log Doz ))+10gpe(X|z(”,y), “4)

15(2V]x, y
where z() is sampled from g4(z" [x,y).

For each cluster, OutSpot can learn the major patterns, which
are essentially normal patterns, because most KPIs of each clus-
ter are normal (in our scenario, 82.4% of KPIs are normal). Here,
OutSpot learns the approximate pattern of historical workload so
that the detection results will not be affected when there are small
differences between historical and current workload patterns. In
addition, we observe that the periodicity of KPIs on a machine
does not frequently change since the workload pattern of the
machine is pretty stable. Moreover, even if the workload pattern
changes, we can retrain the model to adapt to the new pattern.

E. Outlier Detection

As mentioned above, OutSpot learns the normal patterns due
to the normal KPIs are the majority. Therefore, a normal KPI can
be easily reconstructed with little difference to the original one,
because the KPI entered during reconstruction is normal and
the model represents the normal patterns. However, an outlier
KPI, containing lots of abnormal values which have been get
rid of during reconstruction, is supposed to be significantly dif-
ferent from its reconstructed data. Consequently, we determine
whether KPI x is an outlier by measuring the difference between
x and its reconstructed data x’. The greater the distance, the more
likely x is an outlier.
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Fig. 6. An example of outliers. The red point s in (a) and (b) is the point
outlier. The red area in (a) and (b) is the subsequence outlier. Zero baseline zg
is a line with a value of zero which means the original and reconstructed time
series (x and x’) are identical.

Unfortunately, the reconstructed data does not always work
well as expected, especially for an outlier KPI experiencing long-
period abnormal behaviors. For example, as shown in Fig. 6(a),
the original KPI suffers from a long time decline (i.e., the
area ('), while the reconstructed data has a slightly decreasing
trend (i.e., the area B) in front of the decline area which is
unexpected. This will affect the measurement of their difference.
The main reason is that the generative model reconstructs the
entire one-day-long KPI data rather than part of the KPI data.
The reconstruction process can be impacted by every part of
the one-day-long KPI data, including the decline in area C.
Therefore, the decline of area C' may also cause the decline of its
adjacent area B. In addition, it is normal for the reconstruction
data to decline slightly in area C, because this input KPI is
the outlier in area C' (i.e., decline), which will partially affect
the reconstruction KPI, resulting in some deviations from the
normal patterns. However, it does not affect outlier detection
because the reconstructed KPI x’ is still very different from the
original KPI x. Moreover, we do not intend to detect the point
outlier, so how to ignore the spike (or dip) points (i.e., the spike
point s) when measuring the difference is a vital problem. In
addition, noises are not unusual even in the normal part of an
outlier KPI (i.e., the area A in Fig. 6(b)), which can affect the
distance measuring.

To measure the distance, OutSpot first gets the residual se-
quence by calculating the absolute values of the original KPI
and the reconstructed one, i.e., r = |x — x'|, and then OurSpot
employs Manhattan distance [32] of the residual sequence r
and the zero baseline zo: d(r,zo) = Y .-, |ri — 20i|, where r is
(’/‘177"27 . .,’I"n) and Z\ is (201, 2025 -+ -y 2’0”).

Now the problems of unexpected decreasing, the spike point
and the noises are reflected in the residual sequence r. To solve
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Fig. 7. The interface of the labeling tool.

these problems, we first apply a soft threshold technique to r
to reduce the impact of unexpected decreasing and noises, and
then apply median filtering to r to remove the spikes (or dips).

The soft threshold technique makes smooth transitions be-
tween the original and deleted values. It sets values below the
threshold 7, to zero and subtracts the 7, from original values
above 7, (or adds 7, to original values below —7;)

0 for |v| < 74
v = v—T, forv>71s %)
v+71s forv < —7,

where v and v, represents the value of a sequence before and
after applying soft threshold (r in OutSpot), respectively.

Median filtering can effectively remove impulse noise in-
cluding point outliers. Its process is accomplished by sliding
a window over the KPI, and replacing the original value at the
center of the window with the median value in the window [36].

Now we get a new residual sequence r’. Then we compute the
Manhattan distance d(r’, z ) between the new residual sequence
r’ and zero baseline zq. Finally, with a distance threshold 7y,
we determine the KPI x is an outlier if d(r',zo) > 74. 74 i an
empirical value, which can vary according to different scenarios.
In our scenario, for example, the operators think that an outlier
KPI should have continuous abnormal values of 1.5 hours (18
points for the interval of 5 minutes) at least, and the abnormal
range should be greater than 20%. Then we calculate this thresh-
old in this way: 74 = (20% — 75) x 18. We set the value of the
threshold for all the machines of a datacenter instead of for each
machine. It is because the value represents the normal patterns
of all the machines in the datacenter.

F. Labeling Tool

Although OutSpot is an unsupervised method, we still need
labeled data to verify or improve its performance. Therefore, we
develop a labeling tool with a friendly graphical user interface
(GUI), with which operators can label KPI outliers visually. This
labeling tool is implemented in Python with Vue.js and FLASK,
with about 1000 lines of code. The interface of this labeling tool
is shown in Fig. 7, and its workflow is as follows:

1) Users (i.e., operators) upload the original data to be la-

beled.
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TABLE II
STATISTICS FOR THE DATASET (AN OUTLIER KPI 1S A ONE-DAY-LONG KPI CONTAINING ONE OR MORE OUTLIERS)

Dataset Total Total Subsequence Outlier Monitering Monitering Dat it
atasel  gpls  outlier KPIs  outlier KPIs  time series KPIs interval duration ata pomnts
A 3600 633 300 333 5 min eight days 8.3 million
B 1988 98 55 43 15 min eight days  1.53 million

2) Users use the labeling tool to visualize the data to be
labeled and its historical data. They can now visualize,
drag, zoom in, or zoom out any segment.

3) Users select the beginning and end of a segment for outlier
labeling, and the labeled segment will be highlighted in
the labeling tool. At the same time, the labeling results
will also be recorded.

4) Users can download the labeled result after the data label-
ing process.

For the example shown in Fig. 7, the data of Day 4 and Day

5 of the two KPIs (kpiO and kpi3) are visualized, respectively.
Comparing it with its historical data shows that kpi3 experiences
an outlier (a subsequence outlier) around 21:30 on Day 5, so
operators label this segment an outlier. In addition, the Day 1
to Day 4 displayed without zooming in is also an outlier, and
the outlier type is the outlier time series. On the one hand, the
labeling tool helps us observe and label data more conveniently.
In this paper, three experienced operators utilize this labeling
tool to label the datasets, ensuring accurate labeling results.
On the other hand, the labeled data is used to evaluate the
performance of OutSpot from many aspects, such as the overall
accuracy, computational efficiency, and the effects of the main
components (more details can be seen in Section IV).

IV. EVALUATION

To evaluate the effectiveness and efficiency of OutSpot, we
perform extensive experiments to answer the following four
research questions.

® RQI (Overall accuracy): How accurate is QutSpot in out-

lier detection compared to baseline methods?

® RQ2 (Computational efficiency): Is OutSpot computation-

ally efficient enough for large-scale datacenters?

® RQ3 (Effect of main components): In this work, we propose

to combine HAC with CVAE, and present soft threshold
and median filter for outlier determination. How promi-
nently do they impact the effectiveness of OutSpot?

® RQ4 (Effect of hyper-parameters): How do the hyper-

parameters of OutSpot impact its effectiveness?

A. Experimental Setup

1) Datasets: To verify the effectiveness of OutSpot, we col-
lect data from two different datacenters. The statistics of the two
datasets are shown in Table II, which are A and B, respectively.

Dataset A comes from a top global short video service
provider that provides services for hundreds of millions of DAU.
It consists of the eight-day-long monitoring data of 18 KPIs
collected from 200 different servers. Dataset /5 is collected from
one of the three major domestic communication operators of

China that provide network services to billions of users. It is
composed of the eight-day-long monitoring data from 54 work
orders (from the wireless base station), each work order includes
37 KPIs.

For the above two datasets, we take the same processing, i.e.,
divide them into two parts: the data from the first 7 days consti-
tute the training set, and the data from the last day constitute the
test set, which has been labeled by experienced operators using
the labeling tools developed by us (see Section III-F). Operators
use this tool to compare the KPI on the day of detection with
its historical data and other KPI data in the same period. Then,
outliers are labeled by three experienced operators: Two opera-
tors label the outliers independently; When their labels diverge,
the third operator is involved and makes the final decision. For
the two datasets in this paper, it takes the three operators about
four weeks to complete the labeling work. At last, we count the
number of outlier KPIs.

2) Evaluation Metrics: We use two metrics, the Dbest
F'1Score (Flpest) and Area Under receiver operating charac-
teristic curve (AUC), to evaluate how accurate each method is
for outlier detection. To obtain more reliable results, we repeat
all the experiments ten times to calculate the average F'1,.,; and
AUC.

Specifically, KPI outlier detection is essentially a two-class
classification problem, i.e., classifying KPIs into outlier KPIs
and normal KPIs. F'1 Score, taking both precision and recall
into account, is usually applied to evaluate the effectiveness
of a two-class classification method. Therefore, we choose
F1 Score as our evaluation metric. It is calculated as follows:

__ 2xPrecisionxRecall L _ TP
F'1 score = PrecwwnJrRem” , Wwhere Precision = TPLFP"
Recall = 757w P 5 F ~ - After enumerating all possible thresholds,

we can get the best F'1 Score, i.e., Flp.s:, for each method.
F'1,.5¢ represents the best performance of a method on a dataset.

An ROC curve is plotted based on the true positive rate
(TPR = TP+FN) and false positive rate (F PR = TN+FP)
by enumerating all the thresholds. AUC is the area under the
ROC curve, and it denotes a method’s overall performance on a
dataset.

3) Compared Methods: We compare OutSpot with some rep-
resentative outlier detection methods to demonstrate its perfor-
mance. Since OutSpot is designed to detect both subsequence
outlier and outlier time series, we compare it with EDBT-
15 [26], a representative subsequence outlier detection method,
and ICDMW-15 [28], a typical outlier time series detection
method. At the same time, we also compare it with DOMI [5], a
method for detecting outlier machine instances. Additionally, we
also compare it with four state-of-the-art point outlier/anomaly
detection methods, including CTF [6], Donut [12], AE-
RNN [13], and SR [9].
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TABLE III
THE F'1pes¢ AND ITS CORRESPONDING PRECISION, RECALL, AND THE AUC OF EACH METHOD

Dataset A B

Method Precision  Recall Flyes: AUC Precision  Recall Flyes: AUC
OutSpot 0.9512 0.9473 0.9492 0.9868 0.8846 0.9388 0.9109 0.9933
Donut [12] 0.2087 0.9384 0.3415 0.6095 0.2051 0.7487 0.3221 0.8623
DOMI [5] 0.9019 0.6825 0.7770 0.9384 0.0663 0.9400  0.1238 0.5265
CTF [6] 0.3919 0.8357  0.5335 0.8388 0.2280 0.4400  0.3003 0.8482
AE-RNN [13] 0.2009 0.9526 0.3319 0.5816 0.0858 0.9110 0.1569 0.3957
SR [9] 0.2691 0.4455  0.3355 0.5987 0.1976 0.3300 0.2472 0.7444
EDBT-15 [26] 0.2161 0.6998  0.3302 0.5938 0.0700 0.9900  0.1308 0.6288
ICDMW-15 [28] 0.2075 0.6477 0.3143 0.5344 0.1263 0.4800 0.2000 0.6141
—— OutSpot Donut  ----- DOMI - CTF AE-RNN  ——- SR EDBT-15 ICDMW-15

TPR
Precision

A an s

TPR
Precision

0.25

0.50
FPR
ROC curves of A

0.75 1.00 0.25 0.50

Recall
PR curves of A

0.75 1.00

Fig. 8. The ROC curves and PR curves of each method.

4) Hyper-Parameters: For A, we set the hyper-parameters
of OutSpot as follows. The cluster number threshold 7. = 3.
In CVAE, both the convolutional and deconvolutional archi-
tectures have two layers, the kernel sizes and strides of which
are {6 x 1,3 x 1} and {2 x 1,1 x 1}, respectively. Moreover,
we apply L? regularization with a coefficient of 10~* for all
layers, and the dimension size of z-space is four. We use Adam
optimizer [37], which is reduced by a factor of 0.5 every five
epochs, with an initial learning rate of 10~2. Additionally, we
run ten epochs for training with early stopping, and the batch
size is 18. We set the soft threshold 74, = 0.05 and the window
length of median filter w = 11. Besides, for B, we set 7. = 5,
batch size = 37 and w = 5. Other parameters are the same as
A. The choices of hyper-parameters are detailedly discussed in
Section IV-E.

For the setting of some important parameters in the baseline
methods, we also made some attempts during the experiment and
finally set them to the best for F'1;.; and AUC. For Dount, we
set the size of the window to 120, the latent dimension to 8, batch
size = 256 and epochs = 250. For DOMI, we set the dimension
of z-space variables to 10 and the number of components of ¢
to 4, epoch = 10. For CTF, we set the dimension of z-space
variables to 3, the length of input data sequence to 60, batch
size = 50 and epochs = 20. For AE-RNN, we set the number
of hidden LSTM units to 8 and the number of autoencoders to
40. For SR, we set the size of the sliding window to 40 and
the estimated points number to 5. For EDBT-15, we set the
length of the sliding window to 5, PAA size to 3 and alphabet
size = 3. For ICDMVW, we set the number of extracted features
to 10.

1.00

0.75

0.25 0.50
FPR

ROC curves of B

0.75 1.00 0.25 0.50

Recall
PR curves of B

B. Overall Accuracy (RQ1)

For each method, Table III lists the F'1.4:, AUC and its
corresponding precision and recall on the test sets of A and B.
We can see that OutSpot outperforms the seven baseline methods
in terms of both F'1,.5; and AUC. More specifically, in A, its
Fly.s; and AUC are 0.95 and 0.99, which are 0.17 and 0.05
higher than the best baseline method, respectively. In B, its
F1lpes: and AUC are 0.91 and 0.99, which are 0.59 and 0.13
higher than the best baseline method, respectively. Addition-
ally, their precision-recall (PR) curves and receiver operating
characteristic (ROC) curves are shown in Fig. 8, respectively.
OutSpot achieves better performance than the seven baseline
methods in both ROC curves and PR curves, demonstrating that
it obtains high TPR, low FPR, high precision, and high recall
simultaneously.

Donut [12], CTF [6], AE-RNN [13], and SR [9] are both
point outlier/anomaly detection methods. They treat each point
deviating from normal behavior compared to its historical or
adjacent data points as outliers. However, these individual outlier
data points usually do not imply a device failure because of
auto-recovery and load balancing mechanisms. Thus we do not
label them as outliers in our scenario. Therefore, they all generate
a large number of false alarms and suffer from low precision.

DOMI [5] is designed for detecting outlier machine instances.
Because all KPIs of a machine instance at the same time can
represent the state of the machine, it is more concerned with
the overall KPI of a machine rather than each KPI. When we
apply it to determine whether each KPI is outlier, the effect is not
good, especially the F'1ye4: in Bis only 0.12. EDBT-15 [26] and
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TABLE IV
THE F'1pes¢ AND CORRESPONDING PRECISION, RECALL UNDER DIFFERENT OUTLIER TYPES. (T1 REPRESENTS SUBSEQUENCE OUTLIERS, T2 REPRESENTS
OUTLIER TIME SERIES, T1+T2 MEANS THE COMBINATION OF EDBT-15 (FOR T1) AND ICDMW-15 (FOR T2) RESULTS)

Method OutSpot EDBT-15 [26] ICDMW-15 [28] EDBT-15 + ICDMW-15
Dataset A B A B A B A B
Outlier Types T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1+T2 T1+T12
Precision 0838 0.89 098 097 010 - 004 - - 08 - 070 0.20 0.07
Recall 097 093 083 0.70 094 - 0.95 - - 0.13 - 0.03 0.99 0.97
Flpest 092 091 09 081 019 - 008 - - 022 - 006 0.33 0.13

TABLE V

ICDMW-15 [28] are designed for detecting subsequence outliers
and outlier time series, respectively. For a KPI, EDBT-15 detects
outliers only according to its historical patterns, while ICDMW-
15 conducts outlier detection merely based on the patterns of
other KPIs in the same period, and neither of them learns the
two types of patterns simultaneously. Therefore, both methods
miss many outliers, generate many false positives, and thus have
low precision.

To verify the ability of OutSpot to detect two types of outliers
(i.e., subsequence outliers and outlier time series), we have listed
the precisions, recalls, and F'1;.5; of OutSpot in detecting either
type of outliers in Table IV on the two datasets, respectively.
Additionally, for the two datasets, we have also listed in Table IV
the precisions, recalls, and F'1p.s; of EDBT-15 [26] in detecting
subsequence outliers and of [CDMW-15 [28] in detecting outlier
time series, respectively. Moreover, we combine EDBT-15 and
ICDMW-15 by adopting EDBT-15 for detecting subsequence
outliers and ICDMW-15 for detecting outlier time series and
determining outliers whenever either model detects any outliers.

As seen from Table IV, OutSpot outperforms EDBT-15,
ICDMW-15, and their combination in detecting both outlier
types. Since there are many noisy data points in our scenario, and
EDBT-15 is sensitive to them, it generates many false positives
and suffers from low precision. In addition, ICDMW-15 is
based on principal component analysis (PCA), and the features
(principal components) extracted by PCA can only sketch out
the KPI patterns. Therefore, it cannot accurately quantify the
difference between the various KPI patterns in our scenario. In
some cases, the normal KPIs cannot be distinguished from the
outlier KPIs, resulting in high false negatives (i.e., low recall).
Finally, the combination of the two methods cannot mitigate
the intrinsic shortcomings of these two methods and still suffers
from a low F'lpqs;.

Furthermore, it can be seen from Tables III and IV that all
methods (including OutSpot) perform worse in 3 than A. The
more important reason is that the 3 has a large monitoring
interval (15 min), resulting in a small amount of data. At the
same time, the B comes from the wireless base station, so
compared with the A from the Web service, its KPI data is more
complicated.

C. Computational Efficiency (RQ2)

As aforementioned, to detect outliers for the massive number
of KPIs in large-scale datacenters, we propose to combine
HAC with CVAE in OutSpot. Because OutSpot trains only one
model for all KPIs, the computational efficiency is significantly

THE TRAINING TIME OF OUTSPOT, DONUT, AND DAGMM ON THE TRAINING
SET AND ON ONE MILLION KPIS IN DATASET A AND B

Training set One million KPIs
Method A B A B
OutSpot 63.3s  23.4s 4.8%9h 3.24h
Donut [12] 11.7h  3.57h 453 month  2.48 month
DOMI [13] 88.8s  45.1s 6.85h 6.27h
CTF [13] 2486s  447s 192h 62.15h
AE-RNN [13] 18.1h 7.69h 6.91 month  5.35 month

improved. However, the previously-proposed deep generative
model-based methods, including Donut and AE-RNN, have to
train a separate model for each KPI, and thus consume much
more computational resources and suffer from low computa-
tional efficiency.

More specifically, we implement OutSpot, Donut, DOMI,
CTF and AE-RNN with Python, and run them on a server
with 2*16-Core Intel(R) Xeon(R) Gold 5218 CPU @2.30 GHz
and 192 G RAM. As shown in Table V, for the training set
containing 3600 (A) and 1998 () KPIs, it takes OutSpot 63.3 s
and 23.36 s to train the model, which is the least among the
above methods. To more intuitively compare the five methods’
efficiency, we calculate the training time of the five methods
when we apply them to conduct outlier detection for one million
KPIs. OutSpot costs 4.89 h and 3.24 h to finish training for two
training sets, which is quite acceptable in practice. However,
both Donut, DOMI, CTF and AE-RNN take a long time for
training, making them inappropriate in our scenario, especially
Donut and AE-RNN. In addition, we can see that the efficiency
of DOMI is close to that of OuzSpot, which is mainly due to the
fact that it is mainly aimed at machine instances, not every KPI.
Please note that none of SR, EDBT-15, or ICDMW-15 needs
model training. However, as we can see from Table III, all the
three methods suffer from low precision and low recall, and none
of them can be used for outlier detection in practice.

D. Effect of Main Components (RQ3)

As aforementioned, the main technical contributions of this
work are: 1) we propose to integrate HAC with CVAE to detect
both subsequence outlier and outlier time series for a consid-
erable number of KPIs with various types, and 2) we design
two simple yet effective techniques, ST and MF, to accurately
determine outlier KPIs. Therefore, we evaluate the effect of
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TABLE VI
THE F'1pes¢ AND AUC OF DIFFERENT METHODS

Dataset A B
Method Precision  Recall Flpest AUC Precision  Recall Flpest AUC
OutSpot 0.9512 0.9473 0.9492 0.9868 0.8846 0.9388 0.9109 0.9933
“OutSpot w/o C” 0.9027 0.8357 0.8679  0.9821 0.8375 0.6837 0.7528  0.9685
“OutSpot w/o ST” 0.6925 0.9463 0.7997  0.9654 0.7590 0.6429 0.6961  0.9628
“OutSpot w/o ME” 0.8205 0.8736 0.8462  0.9786 0.6764 0.7041 0.6900 0.9581
“OutSpot w RP” 0.7331 0.6161 0.6695 09116 0.3465 0.7143 0.4667 0.9327
—— OutSpot -~ OutSpot w/o C ——=- OutSpot w/o ST == OutSpot w/o MF - = - OutSpot w RP
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Fig. 9. The ROC curves and PR curves of different methods.

these main components on OutSpot’s overall performance by
removing one or two of them from OutSpot as follows.

e “QOutSpotw/o C’: We replace the combination of HAC and

CVAE with VAE in OutSpot.

e “OutSpotw/o ST”: We remove ST from OutSpot.

e “OutSpotw/o MF”: We remove MF from OutSpot.
“OutSpotw RP”: We replace the combination of ST and
MF with “reconstruction probability” (RP).

Table VI lists, for each above method, the AUC as well as
F1y.5 and its corresponding precision and recall. Moreover,
Fig. 9 shows the ROC curves and PR curves of different methods,
respectively. OutSpot outperforms all the other methods in terms
of F'1p.s: and AUC.

Without the clustering information embedded in the deep
generative model, VAE merely learns the historical pattern of
all types of KPIs, and cannot comprehensively capture the
patterns of historical KPIs and those of KPIs in the same period,
likely leading to more false alarms and miss more true outliers.
Therefore, “OutSpot w/o C” achieves lower precision and lower
recall than OutSpot.

Since ST and MF respectively alleviate the impact of rea-
sonable variance and point outliers on the performance of
OutSpot, removing them leads to that both “OutSpot w/o ST and
“OutSpot w/o MF” suffer from more false alarms and lower pre-
cision. Additionally, the reconstruction probability-based meth-
ods can frequently assign a higher reconstruction probability
to outliers and thus suffer from low accuracy in outlier deter-
mination for high-dimensional data [15]. Therefore, they are
inappropriate for subsequence outliers and outlier time series,
both of which are high-dimensional data containing multiple
data points. As shown in Table VI and Fig. 9, our experiments
have verified this point, because “OutSpot w PR” degrade both
the precision and recall of OutSpot.

E. Effect of Hyper-Parameters (RQ4)

Several essential hyper-parameters may impact the perfor-
mance of OutSpot, including 7. (cluster number threshold),
dimension size of z-space, number of epochs, w (window size
of median filter), and 7, (soft threshold). To measure these
hyper-parameters’ effect on OutSpot, we calculate OutSpot’s
F1pest and AUC as the values of them vary, as shown in Figs. 10
and 11. More specifically, a larger dimension size of z usually
leads to a stronger representation ability, but it can lead to higher
training overhead. Similarly, the number of epochs indicates the
number of complete passes through the training set. A smaller
number of epochs may result in insufficient model training,
but a larger number of epochs will degrade the computational
efficiency.

For A (Fig. 10), we can see that 7. impacts little on the
effectiveness (in terms of F'lp.s; and AUC) of OutSpot, and
OutSpot achieves relatively high F'1;.s; and AUC when 7. = 3
or 7. = 6. Therefore, we set 7. = 3 in our scenario. As the
dimension size of z-space increases, the effectiveness of OutSpot
improves and becomes stable when its value reaches four. Thus
the dimension size of z-space is four in our scenario. Similarly,
the number of epochs is eight, w = 11, and 7, = 0.05 in our
scenario.

For B (Fig. 11), relative to A, we can see that 7, the di-
mension size of z and the number of epochs have a greater
impact on the effectiveness of OutSpot, but the optimal pa-
rameters appear in a similar range to 4. As the parameter size
increases, the optimal parameters are quickly found, i.e., 7. = 5,
the dimension size of z is four and the number of epochs is
eight. In addition, we can see that the parameters w and T
have little effect on the effectiveness of OurSpot, and the best
results are achieved when taking 5 and 0.05 in our scenario,
respectively.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 16,2023 at 05:23:06 UTC from IEEE Xplore. Restrictions apply.



2868 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 10, OCTOBER 2023
Lm0 010 0 sssssssseses1.0 LOT= 1.0 1.0—————————=710
e e —— ?7/, e
=08 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
I @]
Q =]
E06 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 06<
: —*— Flpest ) : —— Flpest : . —— Flpest ) : —— Flpest : ) —— Flpest )
—— AUC —— AUC —— AUC —— AUC —— AUC
04 25 5.0 7.5 10.00'4 04 2.5 5.0 7.5 10.00'4 04 5 10 15 04 04 5 10 15 04 0'40.00 0.05 0.100'4
(a) T¢ (b) Dimension size of z (c) Number of epochs d)w () Ts
Fig. 10. The F'1p.5: and AUC of OutSpot as the values of hyper-parameters vary in dataset A.
L re————————71.0 L0710 L0 e +71.0 1.0 ————————"—10 1.0 1.0
A,,x : / o \ 7/}‘7%* o x — = — - : :
E0.8 T . 70808 /X/ \__ /7 10.8 0.8 //)\/ 0.8 0.8 0.8 0.8 O.SU
£ xo ol 2
= /
0.6 e Flpest 0.6 0.6 e Flpest 0.6 0.6 e Flpest 0.6 0.6 e Flpest 0.6 0.6 e Flpest 0.6
—— AUC : —— AUC —— AUC —e— AUC —— AUC
0.4 0.4 04 04 04 0.4 04 04 04 0.4
25 5.0 7.5 10.0 2.5 5.0 7.5 10.0 5 10 15 5 10 15 0.00 0.05 0.10
(a) T¢ (b) Dimension size of z (c) Number of epochs (d)w ) Ts
Fig. 1. The F'1p.s¢ and AUC of OutSpor as the values of hyper-parameters vary in dataset 3.
1.0 a shown in Fig. 12(b). OutSpot determined this KPI as an outlier
"
5 05 W AN because its pattern deviated significantly from other KPIs in
S 0.0/ —— Normal values the same period. After careful investigations, operators found
. -=-= Abnormal values that this server had been poorly managed for one week. The
—0.51 : : : : ‘ . .
00:00 0800 1600 2400 3200  40-00  48:00 Spark software on this server failed one week ago, and the Spark
Time ) system randomly assigned jobs to this server. Since this server
(a) Case 1: subsequence outlier . . . )
1.0 0 , T A had been experiencing outlier for a week, the outlier/anomaly de-
05 b AR e tection methods according to only a specific KPI's historical pat-
g U AT AR Y S N . .
3 e 1A terns, including Donut [12], AE-RNN [13], and SR [9], EDBT-
00 4 h— ormal time series . . . .
-~ Abnormal time serics 15 [26], etc., can hardly find this type of outliers (outlier time
-0.54 : : : : : ) i
00:00 0400 0800  12:00 1600 2000  24:00 series).
Time
(b) Case 2: outlier time series
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Fig. 12.  Two real-world KPI outlier cases detected by OutSpot.

V. DISCUSSION

A. Case Study

OutSpot is being deployed on the datacenters of a top-tier
global short video service provider that provides services for
hundreds of millions of DAU. During the process of deployment,
we find the following two interesting cases.

The monitoring data of rx_pkts_ethO, representing the number
of received packets, suffered from a 2.5-hour-long subsequence
outlier, as shown in the red dash line of Fig. 12(a). OutSpot
believed that the pattern of this outlier segment deviated from
normal patterns, according to the historical patterns of all the
KPIs that share the same cluster with this KPI. The outlier
score generated by OutSpot is 8.80, significantly higher than
the threshold (2.30 in our scenario). Operators confirmed this
KPI outlier, and found that it was caused by a top-of-rack (ToR)
switch failure. After operators mitigated the switch failure, the
KPI returned to normal status.

Additionally, OutSpot detected an outlier time series on
cpu_user, which denotes the CPU utilization at user level, as

OutSpot has two main limitations as follows:

1) After clustering KPIs through HAC, a cluster usually
represents a normal pattern. The main reasons are:

a) A subsequence outlier KPI still has many similarities with
the normal KPIs. Therefore, the subsequence outlier KPIs often
do not form a specific cluster but are assigned to different
clusters, most of which are normal KPIs.

b) The patterns of outlier time series KPIs are so different that
they tend to be clustered into a close cluster, most of which are
normal KPIs. In extreme cases, when the outlier KPIs occupy a
large portion of all KPIs, one or more clusters may contain only
outlier ones. But in this case, operators can easily find them.
For example, operators can determine whether outlier patterns
dominate a cluster by manually checking its central KPI through
alabeling tool like the one introduced in Section III-F. Operators
can determine that outlier patterns dominate the cluster if its
central KPIis an outlier KPI. Then we use the remaining clusters
to train the model. Furthermore, after investigating extensive
real-world KPIs, we find outlier KPIs rarely dominate a cluster.
For example, in our scenario, the outlier KPIs occupy 17.58%
and 4.9% of all KPIs in .4 and 13, respectively. No outlier clusters
appear when we increase 7, from 2 to 10.
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2) A subsequence outlier of € may be missed by OutSpot in
the following scenario. ¢ has different patterns with its historical
patterns, but its pattern resembles one of the historical patterns of
another KPI sharing the same cluster with ¢. In this case, OutSpot
believes that € does not suffer from an outlier, because OutSpot is
trained according to the historical patterns of the KPIs having the
same cluster-ID with €. Nevertheless, after careful investigation
on the 3,600 KPIs in the experiment, we do not find any such .
We will design a method to address the challenge imposed by
such ¢ in the future.

VI. RELATED WORK

Recently, a large number of time-series outlier detection
methods have been proposed in the literature. The majority
of these works focus on point outlier detection [4], [5], [6],
(71, [81, [91, [101, [11], [12], [13], [14], [16], [18], [19], [20],
[21], [22], [23], [24], [25], [34]. Additionally, a few works have
been conducted on subsequence outlier detection [26], [27],
[38], [39], outlier time series detection [16], [17], [28], [40] and
machine instance outlier detection [5]. However, none of these
works can detect both subsequence outlier and outlier time series
simultaneously.

Among the point outlier detection methods, Donut [12] ap-
plied VAE, a typical generative model, for KPI point out-
lier/anomaly detection for the first time. It learned the normal
patterns of historical data using VAE and determined whether
a KPI data point was anomalous through reconstruction prob-
ability. CTF [6] combined clustering and transfer learning to
improve the scalability of existing anomaly detection algo-
rithms, which makes it efficient to detect a large number of KPIs
simultaneously. AE-RNN [13] integrated multiple autoencoders
(AE) through RNN. It applied the median reconstruction error
of multiple autoencoders to determine whether a KPI was an
outlier. SR [9] applied the spectral residual model to obtain the
significant part of the time series, i.e., the outlier part. However,
none of the above methods could learn the pattern of all KPIs
in the same period and accurately detect outlier time series.
Additionally, they were designed mainly for detecting point
outliers, which are ignored in our scenario.

The subsequence outlier detection methods usually conducted
outlier detection through learning KPIs’ historical patterns [26],
[27], [38], [39]. However, they did not learn the pattern of all
KPIs in the same period. For example, EDBT-15 [26], a typical
subsequence outlier detection method, discretized a time series
into symbolic form, and performed numerical reduction and
grammatical induction to obtain variable-length strings. More-
over, the outlier time series detection methods detected outliers
based on the patterns of all the time series in the same period [16],
[17], [28], [40]. For instance, ICDMW-15 [28], a representative
outlier time series detection method, integrated principal compo-
nents analysis (PCA) with a-convex hulls. Nevertheless, none of
the above methods can detect both subsequence outlier and out-
lier time series simultaneously, and thus they are inappropriate
to our scenario. Besides, DOMI [5] is a typical machine instance
outlier detection method, which learns normal machine instance
patterns through GMVAE to find outlier machines. However, its
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main target is the entire machine instance rather than each KPI,
S0 it is inappropriate to our scenario either.

VII. CONCLUSION

In large-scale datacenters, outlier detection for a large num-
ber of various-type KPIs is vitally important. In this work,
we propose OutSpot, an efficient and robust outlier detection
framework, which can detect subsequence outlier and outlier
time series simultaneously. OutSpot combines HAC and CVAE
to learn the historical pattern of each KPI and the patterns of
all KPIs in the same period. We applied ST and MF to solve
the challenges introduced by point outliers and reasonable vari-
ance during the detection process. Moreover, we also develop
a labeling tool to help operators label KPI outliers. Extensive
experiments using two real-world datasets (including 3600 and
1988 KPIs, respectively) demonstrate that OutSpot achieves that
Flpest = 0.95 and 0.91, AUC = 0.99 and 0.99, significantly
outperforming the seven baseline methods. The core idea of
OutSpot can be applied for more scenarios beyond large-scale
datacenters, e.g., [oT devices and mobile devices. In the future,
we will verify OutSpot’s performance in more scenarios.
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