
2858 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 10, OCTOBER 2023

Efficient and Robust KPI Outlier Detection for
Large-Scale Datacenters

Yongqian Sun , Member, IEEE, Daguo Cheng, Tiankai Yang , Yuhe Ji, Shenglin Zhang , Member, IEEE,
Man Zhu, Xiao Xiong, Qiliang Fan , Minghan Liang, Dan Pei , Senior Member, IEEE, Tianchi Ma, and Yu Chen

Abstract—To ensure the performance of large-scale datacenters,
operators need to monitor up to tens of millions of various-type
KPIs, e.g., CPU utilization, memory utilization. For each KPI, it
is crucial but challenging to detect outliers that deviate from its
historical patterns or the patterns of other KPIs in the same period.
In this work, we propose OutSpot, an unsupervised outlier detection
framework that integrates hierarchical agglomerative clustering
(HAC) with conditional variational autoencoder (CVAE), which
significantly improves computational efficiency and comprehen-
sively learns the above two patterns. Additionally, two simple yet
effective techniques, soft threshold and median filter, are applied to
precisely determine outlier KPIs. Using two real-world datasets col-
lected from the datacenters owned by a top-tier global short video
service provider and a top-tier domestic operator,respectively. It
demonstrates that OutSpot achieves the best F1 score of 0.95 and
0.91, AUC of 0.99 and 0.99 on the two datasets, significantly out-
performing seven baseline outlier detection methods.

Index Terms—Outlier detection, KPI, deep generative model,
AIOps.

I. INTRODUCTION

TODAY’s large-scale datacenters house tens of thousands
to millions of servers, hundreds of thousands of switches

and routers, and millions of cables and fibers [1], and the
performance of these devices is vitally important to the services
provided by datacenters. The unexpected behaviors of these

Manuscript received 8 July 2022; revised 6 April 2023; accepted 23 April
2023. Date of publication 1 May 2023; date of current version 6 September
2023. This work was supported in part by the National Natural Science Foun-
dation of China under Grants 62072264, 62272249, and in part by the Natural
Science Foundation of Tianjin under Grant 21JCQNJC00180. Recommended
for acceptance by C. Li. (Yongqian Sun and Daguo Cheng contributed equally
to this work.) (Corresponding author: Shenglin Zhang.)

Yongqian Sun, Yuhe Ji, Man Zhu, Xiao Xiong, Qiliang Fan, and Minghan
Liang are with the College of Software, Nankai University, Tianjin 300071,
China (e-mail: sunyongqian@nankai.edu.cn; jiyuhemail@foxmail.com; zhu-
man2019@mail.nankai.edu.cn; xiongxiao@mail.nankai.edu.cn; fanqiliang@
mail.nankai.edu.cn; liangminghan@mail.nankai.edu.cn).

Shenglin Zhang is with the College of Software, Haihe Laboratory of Infor-
mation Technology Application Innovation (HL-IT), Nankai University, Tianjin
300071, China (e-mail: zhangsl@nankai.edu.cn).

Daguo Cheng is with the Institute for Network Sciences and Cy-
berspace, Tsinghua University, Beijing 100190, China (e-mail: cdg22@mails.
tsinghua.edu.cn).

Dan Pei is with the Department of Computer Science, Beijing National
Research Center for Information Science and Technology, Tsinghua University,
Beijing 100190, China (e-mail: peidan@tsinghua.edu.cn).

Tiankai Yang is with the Viterbi School of Engineering, University of Southern
California, Los Angeles, CA 90007 USA (e-mail: tiankaiy@usc.edu).

Tianchi Ma and Yu Chen are with the Kuaishou Technology, Beijing 100085,
China (e-mail: matianchi@kuaishou.com; chenyu11@kuaishou.com).

Digital Object Identifier 10.1109/TC.2023.3272288

Fig. 1. Outlier type in time series (KPIs). (two-day-long data).

devices, which may be caused by hardware failures (e.g., uncor-
rectable hardware errors, machine aging, power down), software
bugs (e.g., thread crash, memory leaking), or cyber-attacks,
will degrade the quality of service (QoS) and may even lead
to a drop in revenue [2], [3]. Therefore, operators carefully
monitor the status of these devices through various types of key
performance indicators (KPIs), e.g., CPU utilization, memory
utilization, TCP retransmission percentage, disk I/O rate [4],
[5], [6], [7], [8], [9], [10]. Usually, the monitoring data of a KPI,
which is collected with a fixed time interval (e.g., 5 minutes),
forms a univariate time series (from now on, we use “KPI” and
“KPI time series” interchangeably). Considering the significant
number of devices in a large-scale datacenter, operators have to
continuously monitor tens of millions of KPIs.

An outlier of a KPI usually denotes an unexpected behavior of
a device, and it can be classified into three types: a point outlier,
a subsequence outlier, or an outlier time series [11], as shown
in Fig. 1. A point outlier is a data point that behaves abnormally
compared to the historical data points in the KPI or its adjacent
points. A subsequence outlier denotes consecutive data points
(i.e., a time segment) in a KPI whose collective behavior is
abnormal compared to this KPI’s historical normal pattern.
However, each data point of it individually is not necessarily
a point outlier. Moreover, an outlier time series denotes that the
entire time series is an outlier compared to other KPIs in the same
period. Due to the auto-recovery and load balancing mechanisms
of datacenters, usually, a point outlier does not imply a device

0018-9340 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 16,2023 at 05:23:06 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0266-7899
https://orcid.org/0009-0000-4965-4433
https://orcid.org/0000-0003-0330-0028
https://orcid.org/0000-0002-3049-2574
https://orcid.org/0000-0002-5113-838X
mailto:sunyongqian@nankai.edu.cn
mailto:jiyuhemail@foxmail.com
mailto:zhuman2019@mail.nankai.edu.cn
mailto:zhuman2019@mail.nankai.edu.cn
mailto:xiongxiao@mail.nankai.edu.cn
mailto:fanqiliang@mail.nankai.edu.cn
mailto:fanqiliang@mail.nankai.edu.cn
mailto:liangminghan@mail.nankai.edu.cn
mailto:zhangsl@nankai.edu.cn
mailto:cdg22@mails.tsinghua.edu.cn
mailto:cdg22@mails.tsinghua.edu.cn
mailto:peidan@tsinghua.edu.cn
mailto:tiankaiy@usc.edu
mailto:matianchi@kuaishou.com
mailto:chenyu11@kuaishou.com

SUN et al.: EFFICIENT AND ROBUST KPI OUTLIER DETECTION FOR LARGE-SCALE DATACENTERS 2859

failure, and operators often ignore it. However, a subsequence
outlier or an outlier time series denotes that a device suffers from
abnormal behaviors or becomes poorly managed for an extended
period. Operators should take measures to mitigate it.

Over the years, a large number of point outlier/anomaly
detection methods have been proposed in the literature [8], [9],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23],
[24], [25]. These methods cannot be easily improved to detect
subsequence outlier or outlier time series because: 1) they focus
on the abnormal behavior of each data point instead of a time
segment, and 2) they do not compare a KPI with other KPIs
in the same period. Although a few works have been proposed
for subsequence outlier detection through learning the historical
pattern for each KPI [26], [27], or outlier time series detection by
learning the pattern of all KPIs in the same period [28], none of
these methods can detect the above two outliers simultaneously.
Considering the massive number of KPIs, these subsequence
outlier detection methods are computationally intensive because
they have to train a separate model for each KPI. Additionally,
outlier time series detection methods can miss subsequence
outliers, which behave normally compared to other KPIs in the
same period but abnormally compared with the KPI’s historical
pattern. Therefore, we aim to design a framework to efficiently
and accurately detect both subsequence outlier and outlier time
series of KPIs.

Due to the large number of KPIs in large-scale datacenters,
we cannot deploy supervised methods requiring a considerable
amount of labeling effort to detect KPI outliers (hereinafter, a
KPI outlier refers to a subsequence outlier or an outlier time
series). Consequently, we apply unsupervised methods, which
automatically learn KPI’s normal patterns and need no labels,
for KPI outlier detection. Recently, deep generative models have
shown its superior performance for KPI outlier detection in an
unsupervised manner [4], [5], [12], [14], [15], [19], [20], [21],
[23]. We thus also apply deep generative models to comprehen-
sively learn KPI’s normal patterns and accurately detect KPI
outliers. However, applying deep generative models for KPI
outlier detection faces the following four challenges.

1) A Considerable Number of KPIs With Various Types. In
large-scale datacenters, operators should detect outliers for tens
of millions of KPIs. However, a deep generative model usually
consumes high computational resources in the training stage [6],
[7]. Therefore, training a separate outlier detection model for
each KPI is almost infeasible. However, the various types of
KPIs can have very different patterns, and one outlier detection
model ignoring these differences is not expressive enough by
nature. Therefore, training one model for all KPIs would bound
the accuracy.

2) Detect Both Subsequence Outliers and Outlier Time Series.
To detect both subsequence outlier and outlier time series, a deep
generative model has to learn both the historical pattern of each
KPI and the pattern of all KPIs in the same period. It introduces
a significant challenge to the deep generative model because it
usually learns one type of pattern at a time [29].

3) Determine Outliers. Existing point outlier/anomaly detec-
tion works usually apply the reconstruction probability (density
estimate) of deep generative models to determine whether a

data point is an outlier/anomaly [4], [5], [12], [14], [15], [19],
[20], [21], [23]. The lower the reconstruction probability of a
data point, the more likely it is to be an outlier. However, the
reconstruction probability-based methods can frequently assign
a higher reconstruction probability to outliers and thus suffer
from low accuracy in outlier determination for high-dimensional
data [15]. Therefore, they are inappropriate for subsequence out-
liers and outlier time series, both of which are high-dimensional
data containing multiple data points.

4) Lack of Labels. Although there is no need to obtain labels
to train a model for unsupervised methods, we still have to
label a collection of KPIs to verify or improve outlier detection
methods’ performance. To determine an outlier KPI, operators
have to check the historical pattern of each KPI and the pattern
of all KPIs in the same period. It is labor-intensive and time-
consuming if no labeling tool is applied.

To tackle the above challenges, we propose an efficient and
robust unsupervised outlier detection framework, OutSpot. It
can detect both subsequence outlier and outlier time series for
large-scale datacenters. Specifically, it applies the hierarchical
agglomerative clustering (HAC) method to cluster KPIs based
on their patterns. For learning both the historical pattern of each
KPI and the pattern of all KPIs in the same period, it then encodes
the clustering information into the generative model using the
conditional variational autoencoder (CVAE) method. Finally, it
compares the reconstructed and original KPI shapes to determine
whether a KPI is an outlier.

The main contributions can be summarized as follows:
1) To address the first and second challenges, we propose

integrating HAC with CVAE. Specifically, we first apply HAC
to cluster KPIs according to their patterns and then embed the
cluster information of each KPI into the CVAE method. Since
the number of clusters is much smaller than that of KPIs (three in
our scenario), and the KPIs of each cluster resemble in pattern,
OutSpot can detect outliers for the large-scale KPIs with diverse
patterns. Additionally, the cluster-information-encoded CVAE
method has learned both the historical pattern of each KPI
and the pattern of all KPIs in the same period, facilitating the
detection of both subsequence outliers and outlier time series.

2) To tackle the third challenge, we determine whether a
KPI is an outlier by comparing the original and reconstructed
KPI shapes instead of calculating the reconstruction probability.
Additionally, we propose to combine soft threshold (ST) and
median filter (MF) for improving OutSpot’s accuracy.

3) To demonstrate OutSpot’s performance, we conduct ex-
tensive experiments on the dataset A from a top global short
video service provider and B from one of the three major
domestic communication operators of China. OutSpot achieves
the best F1 score of 0.95 and 0.91, AUC of 0.99 and 0.99 on the
two datasets, significantly outperforming seven baseline outlier
detection methods.

4) For addressing the fourth challenge, we release a labeling
tool for KPI outlier detection.1 Additionally, to get readers better
understand our work, we also make our labeled dataset A2

1https://github.com/OutlierDetection-OutSpot/Label-tool
2https://github.com/OutlierDetection-OutSpot/Dataset

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 16,2023 at 05:23:06 UTC from IEEE Xplore. Restrictions apply.

2860 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 10, OCTOBER 2023

TABLE I
DETAILED INFORMATION ABOUT THE 18 KPIS

Fig. 2. Examples of KPIs in our scenario. The red area refers to the KPIs to
be detected and the green area refers to the historical KPIs. “...” indicates that
the similar information is hidden due to space limit.

and code3 publicly available. Dataset B is not public due to
commercial issues.

II. PRELIMINARIES

A. Problem Statement

Servers are the most prevalent devices in datacenters, and
the KPIs of other types of devices, including routers, switches,
firewalls, etc., resemble those of servers. The outlier detection
methods proposed for server KPI can be easily generalized to
other types of devices. Therefore, in this paper, we mainly focus
on the KPIs of servers in large-scale datacenters, e.g., CPU
idle, memory utilization, as listed in Table I. The KPI values
are usually collected with a fixed time interval, like one or
five minutes. For example, as shown in Fig. 2, in the studied
datacenters, operators monitor 18 KPIs for each server, and the
monitoring data of these KPIs are collected every five minutes.
Thus a one-day-long KPI has 288 data points.

In this paper, we determine that a one-day-long KPI is an
outlier KPI because it contains one or more outliers (e.g., subse-
quence outliers or outlier time series). To find out the outlier KPIs
more frequently, we use a sliding window technique to divide the
KPI data with window size = one day and step size = 1.5 hours.

3https://github.com/OutlierDetection-OutSpot/Code

First of all, setting the window size= one day because the KPI of
a machine is usually periodical, and its period is one day. This is
because it changes as the user workload of the machine changes,
which conforms to the pattern of user behavior typically having
a one-day-long period. As shown in Figs. 1 and 7, we can see
that the real-world KPI data is periodical with a one-day-long
period. In addition, the KPIs of different machines can have
different periodic characteristics (i.e., patterns described in the
paper). For example, the KPIs of machine 1 and machine 2 are all
periodic but have different periodic characteristics (patterns), so
OutSpot will group them into different clusters and process them
separately. Second, setting the step size = 1.5 hours because:

1) Both subsequence outliers and outlier time series are out-
liers that last a long time, and we need a relatively long time to
determine a subsequence outlier or an outlier time series. In our
scenario, for example, the operators think that an outlier KPI
should have continuous abnormal values of 1.5 hours (18 points
for the interval of 5 minutes) at least.

2) Outlier detection differs from anomaly detection [6], [9],
[12], [13] in that it does not need to detect outlier KPIs as quickly
as possible. In our work, KPI outlier detection aims to find the
devices/services suffering from abnormal behaviors or becom-
ing poorly managed for an extended period. Note that collecting
KPI data more frequently does not help shorten the latency of
detecting outliers. For example, the KPI data collection intervals
of the two datasets are 5 minutes and 15 minutes, respectively.
However, both datasets have window size = one day and step
size = 1.5 hours. This is mainly because we need a relatively
long time (1.5 hours) to determine a subsequence outlier or an
outlier time series.

B. Basics of HAC and CVAE

HAC first treats each sample as a singleton cluster. It then
successively agglomerates closer pair of clusters and returns the
clustering result according to the number of clusters to be found
or the linkage distance threshold above which clusters will not
be merged. Compared with other clustering algorithms (e.g.,
DBSCAN), HAC is not sensitive to the choice of the distance
metric because it combines two nodes based on the rank of
distances instead of their absolute distance values. Therefore,
we adopt HAC for clustering in OutSpot.

Deep generative models, especially variational autoencoder
(VAE) based models, have shown their superior performance
in point outlier/anomaly detection [4], [5], [12], [14], [15],
[19], [20], [21], [23]. A generative model usually learns the
low-dimensional representations of complex data through an
encoder and generates new samples following it by a decoder.
Compared to VAE, CVAE generates new samples of specified
categories by condition variable [30], [31]. As shown in Fig. 3,
CVAE also consists of an encoder and a decoder.

1) Encoder. Map the input x with category information y
to the latent variable distribution z (i.e., z ∼ pθ(z|x,y)).
pθ(z) is the prior distribution of z.

2) Decoder. Generate anxwith known category information,
i.e., x ∼ pθ(x|z,y).

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 16,2023 at 05:23:06 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: EFFICIENT AND ROBUST KPI OUTLIER DETECTION FOR LARGE-SCALE DATACENTERS 2861

Fig. 3. The architecture of CVAE. The dash lines denote encoding. The solid
lines denote decoding.

Fig. 4. The overall framework of OutSpot. The dash lines denote the training
procedure, the solid lines denote the detection procedure, and the dot-and-dash
line denotes the modules shared by the two procedures.

Note that the true posterior pθ(z|x,y) is intractable [30]. We
alternatively get its approximate distribution qφ(z|x,y) through
variational inference. Now we can trace the integral of the
marginal log-likelihood

log pθ(x|y) =
∫
z

qφ(x|z,y) log pθ(z|y)dz

=

∫
z

qφ(x|z,y) log pθ(x, z|y)qφ(z|x,y)
qφ(z|x,y)pθ(z|x,y)dz

=

∫
z

qφ(x|z,y) log pθ(x, z|y)
qφ(z|x,y)dz

+KL[qφ(z|x,y) ‖ pθ(z|x,y)]. (1)

The first term in (1) is the evidence lower bound (i.e., ELBO),
and KL refers to Kullback-Leibler divergence which measures
the distance between two probability distributions. Because
KL loss is always greater than zero, CVAE is trained through
maximizing ELBO

L(x, y) = log pθ(x|y)−KL[qφ(z|x,y) ‖ pθ(z|x,y)]

= Eqφ(z|x,y) log
pθ(x|z,y)pθ(z|y)

qφ(z|x,y) . (2)

III. DESIGN

A. Overall Framework

We propose OutSpot, integrating HAC with CVAE, to ac-
curately and efficiently detect both subsequence outlier and
outlier time series simultaneously for large-scale datacenters.
The framework of OutSpot is shown in Fig. 4. It consists of two
procedures: model training (the dash lines) and detection (the
solid lines). The two modules, i.e., Data Preparation, Clustering
and Encoding, are shared by the above two procedures (linked

by the dot-and-dash line). Data Preparation standardizes all the
KPIs at the same magnitude through z-score normalization [5].
In the Clustering and Encoding module, the KPIs are clustered
based on their patterns through HAC, and then the cluster
information is encoded as the condition variable y of CVAE.
Model Training captures the normal patterns of each cluster
using CVAE, and Outlier Detectin determines whether a KPI
is an outlier.

The core idea of OutSpot is combining HAC with CVAE,
and then using the CVAE model to detect two types of outliers:
subsequence outlier and outlier time series. For some KPI’s
one-day-long monitoring data x, we first cluster KPIs into fewer
clusters according to the patterns of x and other KPIs in current
period (i.e., the red area of Fig. 2), and then obtain x’s cluster
information. After that, we encode this information into CVAE
as conditional variables and train the model using all KPIs’
historical data (i.e., the green area of Fig. 2) of this cluster. Next
we explain how can we use one model to detect the two types
of outliers. Since the outlier KPIs usually account for a small
proportion, keeping the number of clusters τc relatively small can
ensure that normal data dominate each cluster, and the outlier
KPIs can be clustered into a “normal cluster” instead of separate
clusters. Intuitively, to judge whether a KPI x is a subsequence
outlier, we should compare thex’s current pattern with its histor-
ical pattern and calculate the difference, and comparex’s current
pattern with other KPIs’ to verify whether it is an outlier time
series. For cluster C, OutSpot trains a model using the historical
KPIs to learn the historical pattern. Note that this model contains
not only the historical patterns of this cluster but also the current
patterns of other KPIs (most KPIs are normal, so their historical
patterns are similar to current’s.). Detecting outlier KPIs through
historical patterns is straightforward. However, if the current
pattern is consistent with the historical pattern of a KPI that have
outliers for multiple days, it is not enough to rely on the historical
pattern alone. Actually, when the model also captures the normal
patterns of other KPIs in the same period, these outlier KPIs can
be easily detected because they are significantly different from
the normal patterns of other KPIs in the same period. Therefore,
when we obtain the reconstructed x′ by inputting x into this
model, x′ represents the historical pattern of x and the current
patterns of other KPIs. Thus, OutSpot determines whether x is a
subsequence outlier or an outlier time series just by comparing
the difference of x and x′.

B. Clustering and Encoding

Clustering. As mentioned in Section II-B, we adopt HAC for
clustering in this work. Since HAC is insensitive to distance
metrics, we choose one of the most popular metrics, euclidean
Distance [32]. With a cluster number threshold, τc, KPIs are
divided into at least τc clusters according to Ward linkage [33]
(τc = 3 in our scenario, and more details can be seen in Sec-
tion IV-E). A cluster represents the pattern of a type of normal
KPI, and it may contain outlier KPIs (more details can be seen
in Section V-B).

Encoding. We encode the cluster information as a set of
one-hot vectors [21]. One-hot encoding converts the positive

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 16,2023 at 05:23:06 UTC from IEEE Xplore. Restrictions apply.

2862 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 10, OCTOBER 2023

Fig. 5. The network architecture of OutSpot consisted of Encoder and Decoder.
x is the input data, x′ is reconstructed output; k is the number of layers of 1D-
convolution and 1D-deconvolution, respectively;z andy are latent and condition
variables, respectively; hx is the output of k 1D-convolutions; hz is the output
of k 1D-deconvolutions; hy is the one-hot vectors of condition variables. We
concatenate hx and hy , hz and hy as new tensors in the network, respectively.

integer which represents the cluster information to a binary
vector with τc dimensions. For example, if τc = 3, we will get 3
one-hot vectors: (1, 0, 0), (0, 1, 0), (0, 0, 1). Each of the one-hot
vectors corresponds to a cluster. The one-hot vectors of cluster
information are treated as the condition variable y in CVAE,
i.e., the condition variable y represents the category of the input
KPI. Please note that the Encoding here is a preprocessing step
for the encoder of CVAE.

C. Network Architecture

OutSpot is a reconstruction-based model that consists of an
encoder (i.e., qφ(z|x,y)) and a decoder(i.e., pθ(x|z,y)). As
shown in Fig. 5(a), in the encoder, OutSpot first extracts the
shape features of the input KPIs through k 1D-convolution
(i.e., one-dimensional convolutional neural network) layers.
Then a fully-connected layer maps the shape features (e.g.,
seasonality, trend and stationarity, etc [34].) of input KPIs
x (i.e., hx) combined with the cluster information y (i.e.,
hy) to the low-dimensional latent space as a stochastic latent
variable z.

For the decoder as shown in Fig. 5(b), OutSpot uses 1D-
deconvolution layers followed by fully-connected layers. The
decoder takes the latent variable z (i.e., hz) as input and outputs
the reconstructed data, x′, with the cluster information y (i.e.,
hy). Detailedly, the latent variable z represents the variational
distribution in latent space and x′ represents the KPIs’ distribu-
tion. The probabilities of z and x′ are assumed to be Gaussian
distributions. Therefore, z and x′ are generated by their mean μ
and standard deviation σ instead (i.e., μz, σz and μx, σx). Since
σ is always greater than zero, we apply Softplus as the activation
function: Softplus(x) = log(1 + exp(x)).

D. Model Training

The model of CVAE in OutSpot is trained by maximizing the
ELBO (i.e., the loss function) on the marginal log-likelihood

L(x,y) = Eqφ(z|x,y) log
pθ(x, z|y)
qφ(z|x,y)

= Eqφ(z|x,y) log
pθ(z|y)pθ(x|z,y)

qφ(z|x,y)

= Eqφ(z|x,y) log
pθ(z)

qφ(z|x,y)
+ Eqφ(z|x,y) log pθ(x|z,y). (3)

The encoder of CVAE defines the approximate posterior dis-
tribution as a multivariate Gaussian distribution: qφ(z|x,y) ∼
N (μz, σ

2
zI), while the decoder defines the conditional distri-

bution of the KPIs to be detected: pθ(x|z,y) ∼ N (μx, σ
2
xI).

Besides, as [35] suggests, we can make the latent variable z
independent of condition variable y, i.e., pθ(z|y) = pθ(z).

With further analysis to (3), the first term is the regularization
(i.e., Kullback-Leibler loss) on z, which minimizes the differ-
ence between the approximate posterior distribution qφ(z|x,y)
and the prior distribution pθ(z) (i.e., regularize the true posterior
distribution pθ(z|x,y) by the prior distribution pθ(z)). The
second term is the reconstruction probability which maximizes
the likelihood of x.

We then optimize the single sample Monte Carlo estimate of
ELBO (3)

L(x,y) = log
pθ(z

(l))

qφ(z(l)|x,y) + log pθ(x|z(l),y), (4)

where z(l) is sampled from qφ(z
(l)|x,y).

For each cluster, OutSpot can learn the major patterns, which
are essentially normal patterns, because most KPIs of each clus-
ter are normal (in our scenario, 82.4% of KPIs are normal). Here,
OutSpot learns the approximate pattern of historical workload so
that the detection results will not be affected when there are small
differences between historical and current workload patterns. In
addition, we observe that the periodicity of KPIs on a machine
does not frequently change since the workload pattern of the
machine is pretty stable. Moreover, even if the workload pattern
changes, we can retrain the model to adapt to the new pattern.

E. Outlier Detection

As mentioned above, OutSpot learns the normal patterns due
to the normal KPIs are the majority. Therefore, a normal KPI can
be easily reconstructed with little difference to the original one,
because the KPI entered during reconstruction is normal and
the model represents the normal patterns. However, an outlier
KPI, containing lots of abnormal values which have been get
rid of during reconstruction, is supposed to be significantly dif-
ferent from its reconstructed data. Consequently, we determine
whether KPIx is an outlier by measuring the difference between
x and its reconstructed datax′. The greater the distance, the more
likely x is an outlier.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 16,2023 at 05:23:06 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: EFFICIENT AND ROBUST KPI OUTLIER DETECTION FOR LARGE-SCALE DATACENTERS 2863

Fig. 6. An example of outliers. The red point s in (a) and (b) is the point
outlier. The red area in (a) and (b) is the subsequence outlier. Zero baseline z0
is a line with a value of zero which means the original and reconstructed time
series (x and x′) are identical.

Unfortunately, the reconstructed data does not always work
well as expected, especially for an outlier KPI experiencing long-
period abnormal behaviors. For example, as shown in Fig. 6(a),
the original KPI suffers from a long time decline (i.e., the
area C), while the reconstructed data has a slightly decreasing
trend (i.e., the area B) in front of the decline area which is
unexpected. This will affect the measurement of their difference.
The main reason is that the generative model reconstructs the
entire one-day-long KPI data rather than part of the KPI data.
The reconstruction process can be impacted by every part of
the one-day-long KPI data, including the decline in area C.
Therefore, the decline of areaC may also cause the decline of its
adjacent area B. In addition, it is normal for the reconstruction
data to decline slightly in area C, because this input KPI is
the outlier in area C (i.e., decline), which will partially affect
the reconstruction KPI, resulting in some deviations from the
normal patterns. However, it does not affect outlier detection
because the reconstructed KPI x′ is still very different from the
original KPI x. Moreover, we do not intend to detect the point
outlier, so how to ignore the spike (or dip) points (i.e., the spike
point s) when measuring the difference is a vital problem. In
addition, noises are not unusual even in the normal part of an
outlier KPI (i.e., the area A in Fig. 6(b)), which can affect the
distance measuring.

To measure the distance, OutSpot first gets the residual se-
quence by calculating the absolute values of the original KPI
and the reconstructed one, i.e., r = |x− x′|, and then OutSpot
employs Manhattan distance [32] of the residual sequence r
and the zero baseline z0: d(r, z0) =

∑n
i=1 |ri − z0i|, where r is

(r1, r2, . . ., rn) and z0 is (z01, z02, . . ., z0n).
Now the problems of unexpected decreasing, the spike point

and the noises are reflected in the residual sequence r. To solve

Fig. 7. The interface of the labeling tool.

these problems, we first apply a soft threshold technique to r
to reduce the impact of unexpected decreasing and noises, and
then apply median filtering to r to remove the spikes (or dips).

The soft threshold technique makes smooth transitions be-
tween the original and deleted values. It sets values below the
threshold τs to zero and subtracts the τs from original values
above τs (or adds τs to original values below −τs)

vs =

⎧⎨
⎩
0 for |v| ≤ τs
v − τs for v > τs
v + τs for v < −τs

, (5)

where v and vs represents the value of a sequence before and
after applying soft threshold (r in OutSpot), respectively.

Median filtering can effectively remove impulse noise in-
cluding point outliers. Its process is accomplished by sliding
a window over the KPI, and replacing the original value at the
center of the window with the median value in the window [36].

Now we get a new residual sequence r′. Then we compute the
Manhattan distance d(r′, z0) between the new residual sequence
r′ and zero baseline z0. Finally, with a distance threshold τd,
we determine the KPI x is an outlier if d(r′, z0) > τd. τd is an
empirical value, which can vary according to different scenarios.
In our scenario, for example, the operators think that an outlier
KPI should have continuous abnormal values of 1.5 hours (18
points for the interval of 5 minutes) at least, and the abnormal
range should be greater than 20%. Then we calculate this thresh-
old in this way: τd = (20%− τs)× 18. We set the value of the
threshold for all the machines of a datacenter instead of for each
machine. It is because the value represents the normal patterns
of all the machines in the datacenter.

F. Labeling Tool

Although OutSpot is an unsupervised method, we still need
labeled data to verify or improve its performance. Therefore, we
develop a labeling tool with a friendly graphical user interface
(GUI), with which operators can label KPI outliers visually. This
labeling tool is implemented in Python with Vue.js and FLASK,
with about 1000 lines of code. The interface of this labeling tool
is shown in Fig. 7, and its workflow is as follows:

1) Users (i.e., operators) upload the original data to be la-
beled.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 16,2023 at 05:23:06 UTC from IEEE Xplore. Restrictions apply.

2864 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 10, OCTOBER 2023

TABLE II
STATISTICS FOR THE DATASET (AN OUTLIER KPI IS A ONE-DAY-LONG KPI CONTAINING ONE OR MORE OUTLIERS)

2) Users use the labeling tool to visualize the data to be
labeled and its historical data. They can now visualize,
drag, zoom in, or zoom out any segment.

3) Users select the beginning and end of a segment for outlier
labeling, and the labeled segment will be highlighted in
the labeling tool. At the same time, the labeling results
will also be recorded.

4) Users can download the labeled result after the data label-
ing process.

For the example shown in Fig. 7, the data of Day 4 and Day
5 of the two KPIs (kpi0 and kpi3) are visualized, respectively.
Comparing it with its historical data shows that kpi3 experiences
an outlier (a subsequence outlier) around 21:30 on Day 5, so
operators label this segment an outlier. In addition, the Day 1
to Day 4 displayed without zooming in is also an outlier, and
the outlier type is the outlier time series. On the one hand, the
labeling tool helps us observe and label data more conveniently.
In this paper, three experienced operators utilize this labeling
tool to label the datasets, ensuring accurate labeling results.
On the other hand, the labeled data is used to evaluate the
performance of OutSpot from many aspects, such as the overall
accuracy, computational efficiency, and the effects of the main
components (more details can be seen in Section IV).

IV. EVALUATION

To evaluate the effectiveness and efficiency of OutSpot, we
perform extensive experiments to answer the following four
research questions.
� RQ1 (Overall accuracy): How accurate is OutSpot in out-

lier detection compared to baseline methods?
� RQ2 (Computational efficiency): Is OutSpot computation-

ally efficient enough for large-scale datacenters?
� RQ3 (Effect of main components): In this work, we propose

to combine HAC with CVAE, and present soft threshold
and median filter for outlier determination. How promi-
nently do they impact the effectiveness of OutSpot?

� RQ4 (Effect of hyper-parameters): How do the hyper-
parameters of OutSpot impact its effectiveness?

A. Experimental Setup

1) Datasets: To verify the effectiveness of OutSpot, we col-
lect data from two different datacenters. The statistics of the two
datasets are shown in Table II, which are A and B, respectively.

Dataset A comes from a top global short video service
provider that provides services for hundreds of millions of DAU.
It consists of the eight-day-long monitoring data of 18 KPIs
collected from 200 different servers. Dataset B is collected from
one of the three major domestic communication operators of

China that provide network services to billions of users. It is
composed of the eight-day-long monitoring data from 54 work
orders (from the wireless base station), each work order includes
37 KPIs.

For the above two datasets, we take the same processing, i.e.,
divide them into two parts: the data from the first 7 days consti-
tute the training set, and the data from the last day constitute the
test set, which has been labeled by experienced operators using
the labeling tools developed by us (see Section III-F). Operators
use this tool to compare the KPI on the day of detection with
its historical data and other KPI data in the same period. Then,
outliers are labeled by three experienced operators: Two opera-
tors label the outliers independently; When their labels diverge,
the third operator is involved and makes the final decision. For
the two datasets in this paper, it takes the three operators about
four weeks to complete the labeling work. At last, we count the
number of outlier KPIs.

2) Evaluation Metrics: We use two metrics, the best
F1Score (F1best) and Area Under receiver operating charac-
teristic curve (AUC), to evaluate how accurate each method is
for outlier detection. To obtain more reliable results, we repeat
all the experiments ten times to calculate the average F1best and
AUC.

Specifically, KPI outlier detection is essentially a two-class
classification problem, i.e., classifying KPIs into outlier KPIs
and normal KPIs. F1Score, taking both precision and recall
into account, is usually applied to evaluate the effectiveness
of a two-class classification method. Therefore, we choose
F1Score as our evaluation metric. It is calculated as follows:
F1 score = 2×Precision×Recall

Precision+Recall , where Precision = TP
TP+FP ,

Recall = TP
TP+FN . After enumerating all possible thresholds,

we can get the best F1Score, i.e., F1best, for each method.
F1best represents the best performance of a method on a dataset.

An ROC curve is plotted based on the true positive rate
(TPR = TP

TP+FN) and false positive rate (FPR = FP
TN+FP)

by enumerating all the thresholds. AUC is the area under the
ROC curve, and it denotes a method’s overall performance on a
dataset.

3) Compared Methods: We compare OutSpot with some rep-
resentative outlier detection methods to demonstrate its perfor-
mance. Since OutSpot is designed to detect both subsequence
outlier and outlier time series, we compare it with EDBT-
15 [26], a representative subsequence outlier detection method,
and ICDMW-15 [28], a typical outlier time series detection
method. At the same time, we also compare it with DOMI [5], a
method for detecting outlier machine instances. Additionally, we
also compare it with four state-of-the-art point outlier/anomaly
detection methods, including CTF [6], Donut [12], AE-
RNN [13], and SR [9].

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 16,2023 at 05:23:06 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: EFFICIENT AND ROBUST KPI OUTLIER DETECTION FOR LARGE-SCALE DATACENTERS 2865

TABLE III
THE F1best AND ITS CORRESPONDING PRECISION, RECALL, AND THE AUC OF EACH METHOD

Fig. 8. The ROC curves and PR curves of each method.

4) Hyper-Parameters: For A, we set the hyper-parameters
of OutSpot as follows. The cluster number threshold τc = 3.
In CVAE, both the convolutional and deconvolutional archi-
tectures have two layers, the kernel sizes and strides of which
are {6× 1, 3× 1} and {2× 1, 1× 1}, respectively. Moreover,
we apply L2 regularization with a coefficient of 10−4 for all
layers, and the dimension size of z-space is four. We use Adam
optimizer [37], which is reduced by a factor of 0.5 every five
epochs, with an initial learning rate of 10−3. Additionally, we
run ten epochs for training with early stopping, and the batch
size is 18. We set the soft threshold τs = 0.05 and the window
length of median filter ω = 11. Besides, for B, we set τc = 5,
batch size = 37 and ω = 5. Other parameters are the same as
A. The choices of hyper-parameters are detailedly discussed in
Section IV-E.

For the setting of some important parameters in the baseline
methods, we also made some attempts during the experiment and
finally set them to the best for F1best and AUC. For Dount, we
set the size of the window to 120, the latent dimension to 8, batch
size = 256 and epochs = 250. For DOMI, we set the dimension
of z-space variables to 10 and the number of components of c
to 4, epoch = 10. For CTF, we set the dimension of z-space
variables to 3, the length of input data sequence to 60, batch
size = 50 and epochs = 20. For AE-RNN, we set the number
of hidden LSTM units to 8 and the number of autoencoders to
40. For SR, we set the size of the sliding window to 40 and
the estimated points number to 5. For EDBT-15, we set the
length of the sliding window to 5, PAA size to 3 and alphabet
size = 3. For ICDMW, we set the number of extracted features
to 10.

B. Overall Accuracy (RQ1)

For each method, Table III lists the F1best, AUC and its
corresponding precision and recall on the test sets of A and B.
We can see that OutSpot outperforms the seven baseline methods
in terms of both F1best and AUC. More specifically, in A, its
F1best and AUC are 0.95 and 0.99, which are 0.17 and 0.05
higher than the best baseline method, respectively. In B, its
F1best and AUC are 0.91 and 0.99, which are 0.59 and 0.13
higher than the best baseline method, respectively. Addition-
ally, their precision-recall (PR) curves and receiver operating
characteristic (ROC) curves are shown in Fig. 8, respectively.
OutSpot achieves better performance than the seven baseline
methods in both ROC curves and PR curves, demonstrating that
it obtains high TPR, low FPR, high precision, and high recall
simultaneously.

Donut [12], CTF [6], AE-RNN [13], and SR [9] are both
point outlier/anomaly detection methods. They treat each point
deviating from normal behavior compared to its historical or
adjacent data points as outliers. However, these individual outlier
data points usually do not imply a device failure because of
auto-recovery and load balancing mechanisms. Thus we do not
label them as outliers in our scenario. Therefore, they all generate
a large number of false alarms and suffer from low precision.

DOMI [5] is designed for detecting outlier machine instances.
Because all KPIs of a machine instance at the same time can
represent the state of the machine, it is more concerned with
the overall KPI of a machine rather than each KPI. When we
apply it to determine whether each KPI is outlier, the effect is not
good, especially the F1best in B is only 0.12. EDBT-15 [26] and

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 16,2023 at 05:23:06 UTC from IEEE Xplore. Restrictions apply.

2866 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 10, OCTOBER 2023

TABLE IV
THE F1best AND CORRESPONDING PRECISION, RECALL UNDER DIFFERENT OUTLIER TYPES. (T1 REPRESENTS SUBSEQUENCE OUTLIERS, T2 REPRESENTS

OUTLIER TIME SERIES, T1+T2 MEANS THE COMBINATION OF EDBT-15 (FOR T1) AND ICDMW-15 (FOR T2) RESULTS)

ICDMW-15 [28] are designed for detecting subsequence outliers
and outlier time series, respectively. For a KPI, EDBT-15 detects
outliers only according to its historical patterns, while ICDMW-
15 conducts outlier detection merely based on the patterns of
other KPIs in the same period, and neither of them learns the
two types of patterns simultaneously. Therefore, both methods
miss many outliers, generate many false positives, and thus have
low precision.

To verify the ability of OutSpot to detect two types of outliers
(i.e., subsequence outliers and outlier time series), we have listed
the precisions, recalls, and F1best of OutSpot in detecting either
type of outliers in Table IV on the two datasets, respectively.
Additionally, for the two datasets, we have also listed in Table IV
the precisions, recalls, and F1best of EDBT-15 [26] in detecting
subsequence outliers and of ICDMW-15 [28] in detecting outlier
time series, respectively. Moreover, we combine EDBT-15 and
ICDMW-15 by adopting EDBT-15 for detecting subsequence
outliers and ICDMW-15 for detecting outlier time series and
determining outliers whenever either model detects any outliers.

As seen from Table IV, OutSpot outperforms EDBT-15,
ICDMW-15, and their combination in detecting both outlier
types. Since there are many noisy data points in our scenario, and
EDBT-15 is sensitive to them, it generates many false positives
and suffers from low precision. In addition, ICDMW-15 is
based on principal component analysis (PCA), and the features
(principal components) extracted by PCA can only sketch out
the KPI patterns. Therefore, it cannot accurately quantify the
difference between the various KPI patterns in our scenario. In
some cases, the normal KPIs cannot be distinguished from the
outlier KPIs, resulting in high false negatives (i.e., low recall).
Finally, the combination of the two methods cannot mitigate
the intrinsic shortcomings of these two methods and still suffers
from a low F1best.

Furthermore, it can be seen from Tables III and IV that all
methods (including OutSpot) perform worse in B than A. The
more important reason is that the B has a large monitoring
interval (15 min), resulting in a small amount of data. At the
same time, the B comes from the wireless base station, so
compared with the A from the Web service, its KPI data is more
complicated.

C. Computational Efficiency (RQ2)

As aforementioned, to detect outliers for the massive number
of KPIs in large-scale datacenters, we propose to combine
HAC with CVAE in OutSpot. Because OutSpot trains only one
model for all KPIs, the computational efficiency is significantly

TABLE V
THE TRAINING TIME OF OUTSPOT, DONUT, AND DAGMM ON THE TRAINING

SET AND ON ONE MILLION KPIS IN DATASET A AND B

improved. However, the previously-proposed deep generative
model-based methods, including Donut and AE-RNN, have to
train a separate model for each KPI, and thus consume much
more computational resources and suffer from low computa-
tional efficiency.

More specifically, we implement OutSpot, Donut, DOMI,
CTF and AE-RNN with Python, and run them on a server
with 2*16-Core Intel(R) Xeon(R) Gold 5218 CPU @2.30 GHz
and 192 G RAM. As shown in Table V, for the training set
containing 3600 (A) and 1998 (B) KPIs, it takes OutSpot 63.3 s
and 23.36 s to train the model, which is the least among the
above methods. To more intuitively compare the five methods’
efficiency, we calculate the training time of the five methods
when we apply them to conduct outlier detection for one million
KPIs. OutSpot costs 4.89 h and 3.24 h to finish training for two
training sets, which is quite acceptable in practice. However,
both Donut, DOMI, CTF and AE-RNN take a long time for
training, making them inappropriate in our scenario, especially
Donut and AE-RNN. In addition, we can see that the efficiency
of DOMI is close to that of OutSpot, which is mainly due to the
fact that it is mainly aimed at machine instances, not every KPI.
Please note that none of SR, EDBT-15, or ICDMW-15 needs
model training. However, as we can see from Table III, all the
three methods suffer from low precision and low recall, and none
of them can be used for outlier detection in practice.

D. Effect of Main Components (RQ3)

As aforementioned, the main technical contributions of this
work are: 1) we propose to integrate HAC with CVAE to detect
both subsequence outlier and outlier time series for a consid-
erable number of KPIs with various types, and 2) we design
two simple yet effective techniques, ST and MF, to accurately
determine outlier KPIs. Therefore, we evaluate the effect of

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 16,2023 at 05:23:06 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: EFFICIENT AND ROBUST KPI OUTLIER DETECTION FOR LARGE-SCALE DATACENTERS 2867

TABLE VI
THE F1best AND AUC OF DIFFERENT METHODS

Fig. 9. The ROC curves and PR curves of different methods.

these main components on OutSpot’s overall performance by
removing one or two of them from OutSpot as follows.
� “OutSpotw/o C”: We replace the combination of HAC and

CVAE with VAE in OutSpot.
� “OutSpotw/o ST”: We remove ST from OutSpot.
� “OutSpotw/o MF”: We remove MF from OutSpot.
� “OutSpotw RP”: We replace the combination of ST and

MF with “reconstruction probability” (RP).
Table VI lists, for each above method, the AUC as well as

F1best and its corresponding precision and recall. Moreover,
Fig. 9 shows the ROC curves and PR curves of different methods,
respectively. OutSpot outperforms all the other methods in terms
of F1best and AUC.

Without the clustering information embedded in the deep
generative model, VAE merely learns the historical pattern of
all types of KPIs, and cannot comprehensively capture the
patterns of historical KPIs and those of KPIs in the same period,
likely leading to more false alarms and miss more true outliers.
Therefore, “OutSpot w/o C” achieves lower precision and lower
recall than OutSpot.

Since ST and MF respectively alleviate the impact of rea-
sonable variance and point outliers on the performance of
OutSpot, removing them leads to that both “OutSpot w/o ST” and
“OutSpot w/o MF” suffer from more false alarms and lower pre-
cision. Additionally, the reconstruction probability-based meth-
ods can frequently assign a higher reconstruction probability
to outliers and thus suffer from low accuracy in outlier deter-
mination for high-dimensional data [15]. Therefore, they are
inappropriate for subsequence outliers and outlier time series,
both of which are high-dimensional data containing multiple
data points. As shown in Table VI and Fig. 9, our experiments
have verified this point, because “OutSpot w PR” degrade both
the precision and recall of OutSpot.

E. Effect of Hyper-Parameters (RQ4)

Several essential hyper-parameters may impact the perfor-
mance of OutSpot, including τc (cluster number threshold),
dimension size of z-space, number of epochs, ω (window size
of median filter), and τs (soft threshold). To measure these
hyper-parameters’ effect on OutSpot, we calculate OutSpot’s
F1best and AUC as the values of them vary, as shown in Figs. 10
and 11. More specifically, a larger dimension size of z usually
leads to a stronger representation ability, but it can lead to higher
training overhead. Similarly, the number of epochs indicates the
number of complete passes through the training set. A smaller
number of epochs may result in insufficient model training,
but a larger number of epochs will degrade the computational
efficiency.

For A (Fig. 10), we can see that τc impacts little on the
effectiveness (in terms of F1best and AUC) of OutSpot, and
OutSpot achieves relatively high F1best and AUC when τc = 3
or τc = 6. Therefore, we set τc = 3 in our scenario. As the
dimension size of z-space increases, the effectiveness of OutSpot
improves and becomes stable when its value reaches four. Thus
the dimension size of z-space is four in our scenario. Similarly,
the number of epochs is eight, ω = 11, and τs = 0.05 in our
scenario.

For B (Fig. 11), relative to A, we can see that τc, the di-
mension size of z and the number of epochs have a greater
impact on the effectiveness of OutSpot, but the optimal pa-
rameters appear in a similar range to A. As the parameter size
increases, the optimal parameters are quickly found, i.e., τc = 5,
the dimension size of z is four and the number of epochs is
eight. In addition, we can see that the parameters ω and τs
have little effect on the effectiveness of OutSpot, and the best
results are achieved when taking 5 and 0.05 in our scenario,
respectively.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 16,2023 at 05:23:06 UTC from IEEE Xplore. Restrictions apply.

2868 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 10, OCTOBER 2023

Fig. 10. The F1best and AUC of OutSpot as the values of hyper-parameters vary in dataset A.

Fig. 11. The F1best and AUC of OutSpot as the values of hyper-parameters vary in dataset B.

Fig. 12. Two real-world KPI outlier cases detected by OutSpot.

V. DISCUSSION

A. Case Study

OutSpot is being deployed on the datacenters of a top-tier
global short video service provider that provides services for
hundreds of millions of DAU. During the process of deployment,
we find the following two interesting cases.

The monitoring data of rx_pkts_eth0, representing the number
of received packets, suffered from a 2.5-hour-long subsequence
outlier, as shown in the red dash line of Fig. 12(a). OutSpot
believed that the pattern of this outlier segment deviated from
normal patterns, according to the historical patterns of all the
KPIs that share the same cluster with this KPI. The outlier
score generated by OutSpot is 8.80, significantly higher than
the threshold (2.30 in our scenario). Operators confirmed this
KPI outlier, and found that it was caused by a top-of-rack (ToR)
switch failure. After operators mitigated the switch failure, the
KPI returned to normal status.

Additionally, OutSpot detected an outlier time series on
cpu_user, which denotes the CPU utilization at user level, as

shown in Fig. 12(b). OutSpot determined this KPI as an outlier
because its pattern deviated significantly from other KPIs in
the same period. After careful investigations, operators found
that this server had been poorly managed for one week. The
Spark software on this server failed one week ago, and the Spark
system randomly assigned jobs to this server. Since this server
had been experiencing outlier for a week, the outlier/anomaly de-
tection methods according to only a specific KPI’s historical pat-
terns, including Donut [12], AE-RNN [13], and SR [9], EDBT-
15 [26], etc., can hardly find this type of outliers (outlier time
series).

B. The Limitations of OutSpot

OutSpot has two main limitations as follows:
1) After clustering KPIs through HAC, a cluster usually

represents a normal pattern. The main reasons are:
a) A subsequence outlier KPI still has many similarities with

the normal KPIs. Therefore, the subsequence outlier KPIs often
do not form a specific cluster but are assigned to different
clusters, most of which are normal KPIs.

b) The patterns of outlier time series KPIs are so different that
they tend to be clustered into a close cluster, most of which are
normal KPIs. In extreme cases, when the outlier KPIs occupy a
large portion of all KPIs, one or more clusters may contain only
outlier ones. But in this case, operators can easily find them.
For example, operators can determine whether outlier patterns
dominate a cluster by manually checking its central KPI through
a labeling tool like the one introduced in Section III-F. Operators
can determine that outlier patterns dominate the cluster if its
central KPI is an outlier KPI. Then we use the remaining clusters
to train the model. Furthermore, after investigating extensive
real-world KPIs, we find outlier KPIs rarely dominate a cluster.
For example, in our scenario, the outlier KPIs occupy 17.58%
and 4.9% of all KPIs inA andB, respectively. No outlier clusters
appear when we increase τc from 2 to 10.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 16,2023 at 05:23:06 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: EFFICIENT AND ROBUST KPI OUTLIER DETECTION FOR LARGE-SCALE DATACENTERS 2869

2) A subsequence outlier of ε may be missed by OutSpot in
the following scenario. ε has different patterns with its historical
patterns, but its pattern resembles one of the historical patterns of
another KPI sharing the same cluster with ε. In this case, OutSpot
believes that ε does not suffer from an outlier, because OutSpot is
trained according to the historical patterns of the KPIs having the
same cluster-ID with ε. Nevertheless, after careful investigation
on the 3,600 KPIs in the experiment, we do not find any such ε.
We will design a method to address the challenge imposed by
such ε in the future.

VI. RELATED WORK

Recently, a large number of time-series outlier detection
methods have been proposed in the literature. The majority
of these works focus on point outlier detection [4], [5], [6],
[7], [8], [9], [10], [11], [12], [13], [14], [16], [18], [19], [20],
[21], [22], [23], [24], [25], [34]. Additionally, a few works have
been conducted on subsequence outlier detection [26], [27],
[38], [39], outlier time series detection [16], [17], [28], [40] and
machine instance outlier detection [5]. However, none of these
works can detect both subsequence outlier and outlier time series
simultaneously.

Among the point outlier detection methods, Donut [12] ap-
plied VAE, a typical generative model, for KPI point out-
lier/anomaly detection for the first time. It learned the normal
patterns of historical data using VAE and determined whether
a KPI data point was anomalous through reconstruction prob-
ability. CTF [6] combined clustering and transfer learning to
improve the scalability of existing anomaly detection algo-
rithms, which makes it efficient to detect a large number of KPIs
simultaneously. AE-RNN [13] integrated multiple autoencoders
(AE) through RNN. It applied the median reconstruction error
of multiple autoencoders to determine whether a KPI was an
outlier. SR [9] applied the spectral residual model to obtain the
significant part of the time series, i.e., the outlier part. However,
none of the above methods could learn the pattern of all KPIs
in the same period and accurately detect outlier time series.
Additionally, they were designed mainly for detecting point
outliers, which are ignored in our scenario.

The subsequence outlier detection methods usually conducted
outlier detection through learning KPIs’ historical patterns [26],
[27], [38], [39]. However, they did not learn the pattern of all
KPIs in the same period. For example, EDBT-15 [26], a typical
subsequence outlier detection method, discretized a time series
into symbolic form, and performed numerical reduction and
grammatical induction to obtain variable-length strings. More-
over, the outlier time series detection methods detected outliers
based on the patterns of all the time series in the same period [16],
[17], [28], [40]. For instance, ICDMW-15 [28], a representative
outlier time series detection method, integrated principal compo-
nents analysis (PCA) withα-convex hulls. Nevertheless, none of
the above methods can detect both subsequence outlier and out-
lier time series simultaneously, and thus they are inappropriate
to our scenario. Besides, DOMI [5] is a typical machine instance
outlier detection method, which learns normal machine instance
patterns through GMVAE to find outlier machines. However, its

main target is the entire machine instance rather than each KPI,
so it is inappropriate to our scenario either.

VII. CONCLUSION

In large-scale datacenters, outlier detection for a large num-
ber of various-type KPIs is vitally important. In this work,
we propose OutSpot, an efficient and robust outlier detection
framework, which can detect subsequence outlier and outlier
time series simultaneously. OutSpot combines HAC and CVAE
to learn the historical pattern of each KPI and the patterns of
all KPIs in the same period. We applied ST and MF to solve
the challenges introduced by point outliers and reasonable vari-
ance during the detection process. Moreover, we also develop
a labeling tool to help operators label KPI outliers. Extensive
experiments using two real-world datasets (including 3600 and
1988 KPIs, respectively) demonstrate that OutSpot achieves that
F1best = 0.95 and 0.91, AUC = 0.99 and 0.99, significantly
outperforming the seven baseline methods. The core idea of
OutSpot can be applied for more scenarios beyond large-scale
datacenters, e.g., IoT devices and mobile devices. In the future,
we will verify OutSpot’s performance in more scenarios.

REFERENCES

[1] C. Guo et al., “Pingmesh: A large-scale system for data center network
latency measurement and analysis,” in Proc. ACM Conf. Special Int. Group
Data Commun., 2015, pp. 139–152.

[2] S. Moss, “Visa details cause of widespread outage, blames data
center switch failure,” 2018. [Online]. Available: https://www.
datacenterdynamics.com/en/news/visa-details-cause-of-widespread-
outage-blames-data-center-switch-failure/

[3] Incident review: Core router outages, 2020. [Online]. Available: https:
//www.freistil.it/incident-review-core-router-outage/

[4] L. Dai et al., “SDFVAE: Static and dynamic factorized VAE for anomaly
detection of multivariate CDN KPIs,” in Proc. Web Conf., 2021, pp. 3076–
3086.

[5] Y. Su et al., “Detecting outlier machine instances through Gaussian mix-
ture variational autoencoder with one dimensional CNN,” IEEE Trans.
Comput., vol. 71, no. 4, pp. 892–905, Apr. 2022.

[6] M. Sun et al., “CTF: Anomaly detection in high-dimensional time series
with coarse-to-fine model transfer,” in Proc. IEEE Conf. Comput. Com-
mun., 2021, pp. 1–10.

[7] M. Ma et al., “Jump-starting multivariate time series anomaly detection
for online service systems,” in Proc. USENIX Annu. Tech. Conf., 2021,
pp. 413–426.

[8] X. Zhang et al., “Cross-dataset time series anomaly detection for cloud
systems,” in Proc. USENIX Annu. Tech. Conf., 2019, pp. 1063–1076.

[9] H. Ren et al., “Time-series anomaly detection service at Microsoft,” in
Proc. 25th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2019,
pp. 3009–3017.

[10] Z. He et al., “A spatiotemporal deep learning approach for unsupervised
anomaly detection in cloud systems,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 34, no. 4, pp. 1705–1719, Apr. 2023.

[11] A. Blázquez-García, A. Conde, U. Mori, and J. A. Lozano, “A review on
outlier/anomaly detection in time series data,” 2020, arXiv:2002.04236.

[12] H. Xu et al., “Unsupervised anomaly detection via variational auto-encoder
for seasonal KPIs in web applications,” in Proc. World Wide Web Conf.,
2018, pp. 187–196.

[13] T. Kieu, B. Yang, C. Guo, and C. S. Jensen, “Outlier detection for time
series with recurrent autoencoder ensembles,” in Proc. 28th Int. Joint Conf.
Artif. Intell., 2019, pp. 2725–2732.

[14] B. Zong et al., “Deep autoencoding gaussian mixture model for unsu-
pervised anomaly detection,” in Proc. Int. Conf. Learn. Representations,
2018.

[15] Z. Wang, B. Dai, D. Wipf, and J. Zhu, “Further analysis of outlier detection
with deep generative models,” in Proc. 34th Int. Conf. Neural Inf. Process.
Syst., 2020, Art. no. 753.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 16,2023 at 05:23:06 UTC from IEEE Xplore. Restrictions apply.

https://www.datacenterdynamics.com/en/news/visa-details-cause-of-widespread-outage-blames-data-center-switch-failure/
https://www.datacenterdynamics.com/en/news/visa-details-cause-of-widespread-outage-blames-data-center-switch-failure/
https://www.datacenterdynamics.com/en/news/visa-details-cause-of-widespread-outage-blames-data-center-switch-failure/
https://www.freistil.it/incident-review-core-router-outage/
https://www.freistil.it/incident-review-core-router-outage/

2870 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 10, OCTOBER 2023

[16] L. Beggel, B. X. Kausler, M. Schiegg, M. Pfeiffer, and B. Bischl, “Time
series anomaly detection based on shapelet learning,” Comput. Statist.,
vol. 34, no. 3, pp. 945–976, 2019.

[17] S.-E. Benkabou, K. Benabdeslem, and B. Canitia, “Unsupervised outlier
detection for time series by entropy and dynamic time warping,” Knowl.
Inf. Syst., vol. 54, no. 2, pp. 463–486, 2018.

[18] D. Liu et al., “Opprentice: Towards practical and automatic anomaly
detection through machine learning,” in Proc. ACM Internet Meas. Conf.,
2015, pp. 211–224.

[19] W. Chen et al., “Unsupervised anomaly detection for intricate KPIs via
adversarial training of VAE,” in Proc. IEEE Conf. Comput. Commun.,
2019, pp. 1891–1899.

[20] Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei, “Robust anomaly
detection for multivariate time series through stochastic recurrent neural
network,” in Proc. 25th ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining, 2019, pp. 2828–2837.

[21] Z. Li, W. Chen, and D. Pei, “Robust and unsupervised KPI anomaly
detection based on conditional variational autoencoder,” in Proc. IEEE
37th Int. Perform. Comput. Commun. Conf., 2018, pp. 1–9.

[22] N. Laptev, S. Amizadeh, and I. Flint, “Generic and scalable framework for
automated time-series anomaly detection,” in Proc. 21th ACM SIGKDD
Int. Conf. Knowl. Discov. Data Mining, 2015, pp. 1939–1947.

[23] C. Zhou and R. C. Paffenroth, “Anomaly detection with robust deep
autoencoders,” in Proc. 23rd ACM SIGKDD Int. Conf. Knowl. Discov.
Data Mining, 2017, pp. 665–674.

[24] J. Bu et al., “Rapid deployment of anomaly detection models for large
number of emerging KPI streams,” in Proc. IEEE 37th Int. Perform.
Comput. Commun. Conf., 2018, pp. 1–8.

[25] G. Pang, C. Shen, and A. van den Hengel, “Deep anomaly detection with
deviation networks,” in Proc. 25th ACM SIGKDD Int. Conf. Knowl. Discov.
Data Mining, 2019, pp. 353–362.

[26] P. Senin et al., “Time series anomaly discovery with grammar-based
compression,” in Proc. 18th Int. Conf. Extending Database Technol., 2015,
pp. 481–492.

[27] D. Carrera, B. Rossi, P. Fragneto, and G. Boracchi, “Online anomaly
detection for long-term ECG monitoring using wearable devices,” Pattern
Recognit., vol. 88, pp. 482–492, 2019.

[28] R. J. Hyndman, E. Wang, and N. Laptev, “Large-scale unusual time
series detection,” in Proc. IEEE Int. Conf. Data Mining Workshop, 2015,
pp. 1616–1619.

[29] A. Pol, V. Berger, G. Cerminara, C. Germain, and M. Pierini, “Trigger rate
anomaly detection with conditional variational autoencoders at the CMS
experiment,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2019.

[30] K. Sohn, X. Yan, and H. Lee, “Learning structured output representa-
tion using deep conditional generative models,” in Proc. 28th Int. Conf.
Neural Inf. Process. Syst., Cambridge, MA, USA, MIT Press, 2015,
pp. 3483–3491.

[31] D. P. Kingma, D. J. Rezende, S. Mohamed, and M. Welling, “Semi-
supervised learning with deep generative models,” in Proc. 27th Int.
Conf. Neural Inf. Process. Syst., Cambridge, MA, USA, MIT Press, 2014,
pp. 3581–3589.

[32] Deeksha and S. Sahu, “Finding similarity in articles using various cluster-
ing techniques,” in Proc. IEEE 6th Int. Conf. Rel. Infocom Technol. Optim.
(Trends Future Directions), 2017, pp. 344–347.

[33] A. Großwendt, H. Röglin, and M. Schmidt, “Analysis of ward’s method,”
in Proc. 30th Annu. ACM-SIAM Symp. Discrete Algorithms, SIAM, 2019,
pp. 2939–2957.

[34] Y. Su et al., “CoFlux: Robustly correlating KPIs by fluctuations for service
troubleshooting,” in Proc. IEEE/ACM 27th Int. Symp. Qual. Service, 2019,
pp. 1–10.

[35] K. Sohn, H. Lee, and X. Yan, “Learning structured output representation
using deep conditional generative models,” in Proc. 28th Int. Conf. Neural
Inf. Process. Syst., 2015, pp. 3483–3491.

[36] C. T. Leondes, Multidimensional Systems: Signal Processing and Mod-
eling Techniques: Advances in Theory and Applications. Amsterdam,
Netherlands: Elsevier, 1995.

[37] S. Li, H. Chen, M. Wang, A. A. Heidari, and S. Mirjalili, “Slime mould
algorithm: A new method for stochastic optimization,” Future Gener.
Comput. Syst., vol. 111, pp. 300–323, 2020.

[38] P. M. Chau, B. M. Duc, and D. T. Anh, “Discord discovery in streaming
time series based on an improved HOT SAX algorithm,” in Proc. 9th Int.
Symp. Inf. Commun. Technol., 2018, pp. 24–30.

[39] V. Losing, B. Hammer, and H. Wersing, “Incremental on-line learning: A
review and comparison of state of the art algorithms,” Neurocomputing,
vol. 275, pp. 1261–1274, 2018.

[40] J. A. Lara, D. Lizcano, V. Rampérez, and J. Soriano, “A method for outlier
detection based on cluster analysis and visual expert criteria,” Expert Syst.,
vol. 37, no. 5, 2020, Art. no. e12473.

Yongqian Sun (Member, IEEE) received the BS de-
gree in statistical specialty from Northwestern Poly-
technical University, Xi’an, China, in 2012, and the
PhD degree in computer science from Tsinghua Uni-
versity, Beijing, China, in 2018. He is currently an
assistant professor with the College of Software,
Nankai University, Tianjin, China. His research in-
terests include anomaly detection and root cause lo-
calization in service management.

Daguo Cheng received the BS degree in informa-
tion security from the School of Computer Science
and Cyberspace Security, Hainan University, Haikou,
China, in 2019, and the MS degree from the College of
Software, Nankai University, Tianjin, China, in 2022.
He is currently working toward the PhD degree with
the Institute for Network Sciences and Cyberspace,
Tsinghua University, Beijing, China. His research
interests include anomaly detection, root cause lo-
calization.

Tiankai Yang received the BS degree in software
engineering from the College of Software, Nankai
University, Tianjin, China, in 2021. He is currently
working toward the MS degree with Viterbi School
of Engineering, University of Southern California,
California. His research interests include anomaly
detection, machine learning and data science.

Yuhe Ji received the BS degree in software engineer-
ing from the College of Software, Nankai University,
Tianjin, China, in 2022. He is currently working
toward the MS degree with the College of Software,
Nankai University. His research interests include data
science and anomaly detection.

Shenglin Zhang (Member, IEEE) received the BS
degree in network engineering from the School of
Computer Science and Technology, Xidian Univer-
sity, Xi’an, China, in 2012, and the PhD degree in
computer science from Tsinghua University, Beijing,
China, in 2017. He is currently an associate professor
with the College of Software, Nankai University,
Tianjin, China. His current research interests include
failure detection, diagnosis and prediction for service
management.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 16,2023 at 05:23:06 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: EFFICIENT AND ROBUST KPI OUTLIER DETECTION FOR LARGE-SCALE DATACENTERS 2871

Man Zhu received the BS degree in electronic in-
formation science and technology from Qufu Normal
University, Rizhao, China, in 2019. She is currently
working toward the master’s degree with the College
of Software, Nankai University, Tianjin, China. Her
research interests include anomaly detection and root
cause localization.

Xiao Xiong received the BS degree in software
engineering from the College of Software, Nankai
University, Tianjin, China, in 2022. He is currently
working toward the MS degree with the College of
Software, Nankai University. His research interests
include machine learning and failure diagnosis.

Qiliang Fan received the BS degree in software
engineering from the College of Software, Nankai
University, Tianjin, China, in 2021. He is currently
working toward the MS degree with the College of
Software, Nankai University. His research interests
include anomaly detection and root cause localiza-
tion.

Minghan Liang received the BS degree in software
engineering from the College of Software, Nankai
University, Tianjin, China, in 2021. He is currently
working toward the MS degree with the College of
Software, Nankai University. His research interests
include anomaly detection and root cause localiza-
tion.

Dan Pei (Senior Member, IEEE) received the BE and
MS degrees in computer science from the Department
of Computer Science and Technology, Tsinghua Uni-
versity, in 1997 and 2000, respectively, and the PhD
degree in computer science from the Computer Sci-
ence Department, University of California, Los An-
geles (UCLA), in 2005. He is currently an associate
professor with the Department of Computer Science
and Technology, Tsinghua University. His research
interests include network and service management in
general. He is an ACM senior member.

Tianchi Ma received the BS degree from the Beijing
University of Posts and Telecommunications. He has
worked on Big Data area in internet companies for
more than 10 years. Now he is a technical specialist
in Kuaishou Technology, working on DataOps.

Yu Chen received the BS and MS degrees in com-
puter science from Peking University, in 1998 and
2001, respectively. Then he worked as a researcher in
Microsoft Research Asia, during which his research
interests include distributed systems and information
retrieval. He is now a SRE specialist in Kuaishou
Technology, working on algorithms on AIOps.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 16,2023 at 05:23:06 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

