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Abstract—Timely anomaly detection of multivariate time series
(MTS) is of vital importance for managing large-scale Web
services. However, many deep learning-based MTS anomaly
detection models require long-term MTS training data to achieve
good performance, which conflicts with frequent pattern changes
in Web services entities. Moreover, the training overhead of vast
MTS in large-scale Web services is unacceptable. To address these
issues, we design OmniTransfer, a model-agnostic framework that
combines improved hierarchical agglomerative clustering with an
adaptive transfer learning strategy, making many state-of-the-art
(SOTA) MTS anomaly detection models efficient and effective.
Extensive experiments using real-world data from a large Web
content service provider show that OmniTransfer significantly
reduces the model initialization time by 59.72% and the training
cost by 85.01%, while maintaining high accuracy in detecting
anomalies.

Index Terms—Transfer Learning, Multivariate Time Series,
Multivariate Time Series Clustering, Anomaly Detection, Phase
Shift

I. INTRODUCTION

With the rapid development of the Internet, the scale of Web
services has grown exponentially. Anomaly detection is critical
to the quality of service (QoS) management since it helps oper-
ators identify anomalous behaviors, improve system stability,
and reduce economic losses [1]–[4]. Operators configure mul-
tiple monitoring metrics for each entity to monitor the running
status, usually collected continuously at predefined intervals.
As shown in Fig. 1, the monitored metrics of an entity form
a multivariate time series (MTS), including system metrics
(e.g., CPU load, memory usage, network throughput and disk
I/O) and user-perceived metrics (e.g., average response latency,
page visits and access error rates).

Recently, a series of deep learning-based MTS anomaly
detection models have been proposed [5]–[10], but they suffer
from some limitations. First, they need a long initialization
time 1 to perform well. For instance, OmniAnomaly [5]

∗ Shenglin Zhang is the corresponding author (zhangsl@nankai.edu.cn).
1MTS’s model initialization time [11] is defined as the data time interval

between the model startup and the model training.
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Fig. 1: The MTS of entities in large-scale Web services.

and InterFusion [7] require several weeks of training data.
However, operators want to reduce the initialization time when
there is a pattern change, such as configuration upgrades or
adding new entities. Second, training a model for each entity is
impractical as large-scale Web services have massive entities.
For example, it takes 99.87 days to 15.40 years to train models
for one million entities [12]. Third, models are generally
designed for specific purposes, making it difficult to select
an optimal algorithm for different scenarios. For example,
GDN [10] focuses on the correlation between indicators, while
InterFusion [7] additionally considers temporal dependencies.
Therefore, a framework that can effectively reduce initializa-
tion time and training overhead for all models is needed.

Intuitively, combining clustering with transfer learning is a
promising approach to solve this problem [13]. The training
overhead is reduced by reducing the number of models that
require training through clustering. Then, by quickly fine-
tuning the pre-trained model to a new pattern to reduce the
initialization time. Only a small amount of data is needed
to determine the category and parameter transfer. Note that,
we denote the MTS and models in the source domain as
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Fig. 2: An example of MTS phase shifts.

the base MTS and base models, respectively, and the MTS
and models in the target domain as the target MTS and
target models. However, there are still some challenges when
applying clustering and transfer learning.

(1) High diversity of MTS. The diversity of MTS includes
patterns, irregular noise and anomalies. MTS can be generated
by various entities with diverse patterns (i.e., different ampli-
tude, trend, etc.). As Fig. 1 shows, MTS contains irregular
noises, anomalies, and extreme values (outliers that deviate
several times from normal). Fig. 2 illustrates some MTS may
have similar shapes but with phase shifts. This can happen
when large-scale Web services use different servers to serve
users across a wide geographical area, resulting in similar
MTS patterns with a time delay. The diversity can affect
the distance calculation of MTS and lead to poor clustering
performance.

(2) Selection of transfer strategy. There are various strate-
gies for transferring parameters from the base model to the
target model. Full parameter transfer and partial parameter
transfer strategy are two typical strategies. In most cases, we
have the following observations: (a) The distances between the
base and target MTS are various, making the optimal transfer
strategy of each target MTS can be different. (b) The optimal
transfer strategies for different models are diverse. Therefore,
we need to use adaptive transfer strategies to achieve better
detection performance.

To solve the aforementioned issues, we propose OmniTrans-
fer, an efficient, unsupervised, and model-agnostic framework
for MTS anomaly detection. In the offline training stage,
OmniTransfer uses an improved hierarchical agglomerative
clustering (I-HAC) method to cluster the data. Then, Omni-
Transfer trains a base model for each cluster. When applying
the model to a new pattern MTS, OmniTransfer assigns the
new pattern MTS to the nearest cluster and fine-tunes the base
model by an adaptive transfer strategy.

The main contributions of our work are as follows:
(1) To reduce the initialization time and the training over-

head for large-scale Web services, OmniTransfer uses cluster-
ing and transfer learning techniques to transfer the knowledge
from well-trained base models to target models.

(2) We propose an adaptive transfer strategy. It can automat-
ically select either full parameter transfer or partial parameter
transfer strategy according to the distance between the target

MTS and the base MTS cluster centroid.
(3) We combine OmniTransfer with six state-of-the-art

(SOTA) MTS anomaly detection models and conduct experi-
ments with real-world dataset from a top-tier enterprise. The
results show that OmniTransfer reduces the initialization time
by 59.72% and the training cost by 85.01% on average while
maintaining high accuracy in detecting anomalies. Further-
more, we make our source code and the labeled datasets pub-
licly available [14] to make it easier for readers to understand
our work.

II. BACKGROUND

A. MTS anomaly detection and services changes

In large-scale Web services, each entity is monitored on
multiple metrics and these metrics are collected continuously
at equal-space timestamps. The collected data of each entity
forms an MTS with M metrics and N time points as a matrix
X ∈ RM×N . For each time t, it is necessary to determine
whether Xt ∈ RM is an anomaly. To comprehensively lever-
age the contextual information of MTS, we use its historical
data Xh = (Xt−W , Xt−W+1, ..., Xt−1) of length W to assist
in identifying whether Xt is an anomaly.

Due to the rapid expansion of the Internet, the release,
upgrade, and configuration modification of Web services are
becoming more frequent [15]–[18], resulting in changes to
the services’ running status and MTS patterns. These changes
can lead to unexpected changes in MTS patterns, such as
significant drops in page visits and machine performance
metrics caused by page access failures and software errors.
While other changes, such as less traffic and lower CPU
usage due to configuration modifications, are expected. It is
important to use an updated model for the changed entity
because using an outdated model can result in many false
alarms. To keep up with these frequent changes, it is necessary
to reduce the model initialization time and ensure the accuracy
of anomaly detection.

B. Transfer learning

Transfer learning is a promising machine learning methodol-
ogy that transfers knowledge across domains [19]. It can assist
in training a target model with limited data by utilizing the
knowledge from a source domain with sufficient data. Many
works adopt the parameter-transfer approach [20].

However, fully transferring parameters may lead to negative
transfer due to the differences in the prior distributions of the
source and target domains [21]. To address this, AT-GP [21]
and AnoTransfer [13] propose an adaptive transfer strategy to
avoid negative transfer during the transfer learning process and
achieve better generalizability.

C. Related Work

1) MTS clustering: MTS clustering based on traditional
methods. SPCA+AED [22] proposes a hybrid method based
on the principal component analysis (PCA) similarity factor
(SPCA) and the average-based Euclidean distance (AED).
After the SPCA stage, lots of important information is lost.
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Fig. 3: The overview of OmniTransfer.

Toeplitz Inverse Covariance-Based Clustering (TICC) [23]
mainly focuses on the MTS subsequences clustering. It is
challenging for TICC to deal MTS with more than 100 time
points (about one day). Besides, these methods usually can not
handle the interference of anomalies, noises and phase shifts.

MTS clustering based on deep learning. CTF [24] clusters
the low-dimensional features extracted by the pre-trained deep-
learning model. OmniCluster [12] compresses MTS with a
one-dimensional convolutional auto-encoder (AE). However,
these low-dimensional features lose much information and
are usually relevant to subsequent tasks. Moreover, training
deep learning-based models requires significant computing
resources. To overcome these limitations, we propose a task-
agnostic clustering method, which ensures the efficiency, ef-
fectiveness, and robustness of clustering.

2) MTS anomaly detection: MTS anomaly detection mod-
els based on deep learning. USAD takes advantage of the
ability to isolate anomalies of generative adversarial networks
(GAN) and the stability of AE. DAGMM uses an AE to gen-
erate the low-dimensional features and reconstruction errors
and feeds them into the Gaussian mixture model (GMM)
to get the anomaly score. These two models are the first
type, which mainly consists of some fully connected layers.
TranAD uses a sequence encoder with self-attention to shorten
the inference time. OmniAnomaly uses the recurrent neural
network (RNN) and variational auto-encoder (VAE) structure
to model the temporal dependence and stochasticity in MTS.
InterFusion adopts the structure of RNN, convolutional neural
network (CNN) and VAE, and employs a two-view embedding
to explicitly learn the inter-metric and temporal dependencies.
GDN is a prediction-based model which uses a graph neural
network (GNN) to model the correlation between metrics. The
above four models are the second type, which consists of
specialized layers such as RNN, CNN, GNN, and attention.
The specialized layers can capture more effective features for
anomaly detection. CNN, GNN and attention help capture
inter-metric dependence, while RNN can capture the temporal
dependence of MTS. However, the above models face high
training overhead when dealing with large-scale MTS data and
long initialization time.

MTS anomaly detection framework to reduce training
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Fig. 4: The overall process of I-HAC.

overhead and model initialization time. CTF provides a
framework to reduce training overhead for RNN+VAE mod-
els [5], but it is not universal to other models. OmniCluster
is a model-agnostic framework that can reduce the training
overhead. It trains a model for each cluster and directly uses
it for anomaly detection. However, it performs poorly when
the shape of the target MTS and the cluster centroid differs.
JumpStarter [11] uses compressed sensing to reduce the model
initialization time. However, due to only using short-term data
without sufficient inference and a simple model structure, it
can not capture complex patterns and long temporal depen-
dence.

III. APPROACH

A. Overview

We propose a model-agnostic framework, named Omni-
Transfer, for MTS anomaly detection to reduce initialization
time and training overhead. Fig.3 shows the overview of Om-
niTransfer, which includes three main stages: offline training,
transfer learning, and online detection.

The offline training stage comprises two steps: improved
hierarchical agglomerative clustering (I-HAC) and base model
training. Fig. 4 illustrates the process of I-HAC, which can
reduce interference from anomalies, noises and phase shifts.
Thus, I-HAC can group MTS with similar shapes, addressing
the first challenge. In the base model training stage, Omni-
Transfer trains a base model that can be used for transfer
learning by using several MTS segments near the cluster
centroid.

The target MTS undergoes transfer learning and online
detection stages sequentially. First, we match the short-term
data of the target MTS to an appropriate cluster and then use an
adaptive transfer strategy to fine-tune the corresponding base
model. The adaptive transfer strategy selects the best transfer
strategy based on the distance between the target MTS and its
corresponding cluster centroid. Finally, in the online detection
stage, we use the fine-tuned model to detect anomalies in the
target MTS.

B. Offline training

1) Improved hierarchical agglomerative clustering: The I-
HAC (illustrated in Fig. 4) aims to reduce the diversity of MTS
and thus lower the training overhead of anomaly detection
models. The specific steps of I-HAC are as follows:

Baseline extraction. By extracting the baseline, we can
reduce the diversity of MTS patterns caused by noise and
anomalies, as mentioned in the first challenge. Noise and
anomalies can significantly impact the normal pattern of MTS.
We extract the baselines (normal patterns) of MTS by remov-
ing extreme values and applying a moving average. Extreme
values are more likely to be anomalies and their ratio is often



less than 5% [12], [13], [25]. Therefore, I-HAC removes the
top 5% data that deviates from the mean value and then uses
linear interpolation to fill the vacancies. Then, I-HAC applies
the moving average to reduce the impact of noise.

Phase alignment. After extracting the baseline, we slice
MTS into short-term segments, denoted as MTSseg ∈ RM×n,
that match the length of the target MTS. We then align the
phase shift.

First, we get the pivot PVT of the entire offline segments
D according to PVT = arg min

A∈D

∑
B∈D Euc(A,B). The

Euclidean distance between two MTSseg can be calculated
by: Euc(A,B) = (A−B)2. Next, we use normalized cross-
correlation (NCC) to estimate the best phase shift for all
MTSseg to align to PVT. s ∈ [−n + 1, n − 1] denotes the
possible phase shifts. To retain short-term information, we use
(1) to wrap round MTS.

A(s) = (A1,A2, . . . ,An)

B(s) =

{
(Bn−s+1, . . . ,Bn,B1, . . . ,Bn−s) s ≥ 0,
(B−s+1, . . . ,Bn,B1, . . . ,B−s) s < 0.

(1)

NCC reaches the maximum value when s is close to
the real phase shift, which is given by: NCC(A,B, s) =∑M

j=1

∑n
i=1 A(s)ji ·B(s)ji

||A(s)j ||2·||B(s)j ||2 . The best phase shift s∗ obtained by:
s∗ = arg max

s∈[−n+1,n−1]
NCC(PVT,MTSseg, s). Finally, we

align the phase shift s∗ of MTSseg to get MTS
′

seg .
Clustering. OmniTransfer gets the clustering result using

hierarchical agglomerative clustering (HAC) and the Euclidean
distance. HAC with average linkage is adopted for the follow-
ing reasons. (1) The HAC algorithm is robust to the extreme
value because it clusters on the rank of distances rather than
the value. (2) Each data in the cluster have the same effect on
the distance measure, making the distance measure transitive.
After clustering, several segments near the cluster centroid are
saved for base model training and matching the target MTS.

2) Base model training: The VAE-based algorithms [5],
[7] model the relationship between the latent variable z and
the observed variable x. They typically train their models
by optimizing the Evidence Lower Bound (ELBO): L1 =
Eqϕ(z|x)[log pθ(x|z)] − DKL[qϕ(z|x)||pθ(z)], which is com-
prised of a reconstruction probability and a regularization term.
pθ is a generative model that represents the real posterior
of the data, while qϕ is an inference model aiming to esti-
mate the posterior. The DKL term represents the Kullback-
Leibler divergence [26]. On the other hand, AE-based and
prediction-based models [6], [8]–[10] focus on reconstructing
or predicting the target. These models trained by minimizing
the mean square error (MSE) between the target and output:
L2 = MSE(target− output).

C. Transfer learning

1) Transfer preparations: To train the target model for each
target MTS, OmniTransfer utilizes a base model E, which
is selected based on its cluster centroid’s proximity to the
target short-term data H ∈ RM×n. First, we perform baseline
extraction and phase alignment to get H

′
. Then, we calculate

the distance between H
′

and the centroid of each cluster and
select the closest one and its corresponding base model for
transfer learning. We use H to fine-tune the base model.

2) Adaptive transfer strategy: We propose an adaptive
transfer strategy that automatically selects whether to transfer
full parameters or partial parameters for each target MTS.
When the target MTS and the nearest cluster centroid are
relatively similar, we use the full parameter transfer strategy
and fine-tune the entire base model’s parameters directly.
Otherwise, we employ the partial parameter transfer strategy.
Specifically, we initialize a target model with random param-
eters and load part of the base model’s parameters into the
target model. First, we update the remaining parameters while
keeping the transferred parameters fixed. Then we fine-tune
all of the parameters of the target model.

3) Transfer layer selection: We adopt the partial parameter
transfer strategy when there is a significant difference between
the target MTS and its corresponding cluster centroid. We
select specific layers based on their capabilities and character-
istics for transferring. As mentioned in § II-C2, these SOTA
MTS anomaly detection models fall into two categories based
on their structures. For the former type, their outer layers focus
on more extensive tasks and capture more generic features
[27]–[29], while the inner layers are designed to capture more
task-specific features [30], [31]. For the latter, the specialized
layers (e.g., RNN, CNN, attention, and GNN) capture more
generic features, while the fully connected layers focus more
on specific tasks [24], [32]–[35]. It is recommended to transfer
the parameters of the outer layers or the specialized layers
when adopting the partial parameter transfer strategy, as they
learn generic features that are often not specific to a particular
task.

D. Online detection

We use the fine-tuned model for online detection. For
the VAE-based models, their anomaly score corresponds to
the negative reconstruction probability, which is given by:
AS1 = −Eqϕ(z|x)[log pθ(x|z)]. log pθ(x|z) denotes the recon-
struction probability of each observed variable x. The smaller
the reconstruction probability, the greater the probability that
the data point is an anomaly. For the AE-based models and
prediction-based models, we calculate the anomaly scores
according to AS2 = MSE(target−output), which measures
the difference between the target and the output. A greater
difference indicates a higher probability that the data point is
an anomaly.

IV. EVALUATION

In this section, we introduce the experimental setup, includ-
ing dataset, evaluation metrics, hyperparameters and experi-
ment environment of OmniTransfer. Then, we conduct exten-
sive experiments to evaluate the performance of OmniTransfer
and answer the following research questions:
RQ1. How does the effectiveness and efficiency of Omni-

Transfer compare to baseline methods?



RQ2. How much initialization time can OmniTransfer reduce
compared to non-transfer learning methods?

RQ3. How much do the key techniques contribute to its
overall performance?

A. Experimental setup

1) Dataset and environment: In this work, we use the server
data from one of the world’s largest short video companies.
It contains 400 entities, and each entity has 19 metrics and
persists for seven days. We use the last two days as test data,
and the fifth day as training data for transfer learning. In
practice, the proportion of pattern changes such as adding or
upgrading is relatively small. To better evaluate the algorithm,
we randomly choose 50% of the entities for offline training,
and the remaining 50% simulate change data for online
detection. The online data is labeled by experienced operators.
Please note that we only choose 400 entities from millions for
evaluation since the labeling work is time-consuming. By the
way, we do not use public datasets (e.g., SWaT, WADI [36],
SMD [5], SMAP and MSL [37]), mainly because the number
of entities is too small (less than 55 entities). All experiments
are run on a server with two 16C32T Intel(R) Xeon(R) Gold
5218 CPU @ 2.30 GHz, one NVIDIA(R) Tesla(R) V100S,
and 192 GB RAM.

2) Evaluation metrics: OmniTransfer outputs an anomaly
score for each point and determines whether it is an anomaly
by a threshold. Thus MTS anomaly detection can be re-
garded as a binary classification problem. We use the F1 to
evaluate the effectiveness, which is given by Precision =

TP
TP+FP , Recall = TP

TP+FN , F1 = 2 × Precision×Recall
Precision+Recall . TP

represents True Positives, FP represents False Positives, and
FN represents False Negatives. The F1 is obtained using the
micro-average method. By enumerating all possible thresholds,
we obtain the best F1 for each model, denoted by F ∗

1 .
Additionally, we record the time required for model training
to evaluate efficiency.

3) Hyperparameters: We use the best empirical values for
most parameters based on experimental results. Specifically,
We set the sliding window length for the moving average to 12.
We use five segments closest to the centroid for each cluster to
train the base models and use a sliding window with a length
of 60.

B. OmniTransfer vs. baseline models (RQ1)

We combine OmniTransfer with six typical unsupervised
MTS anomaly detection methods: OmniAnomaly, InterFusion,
DAGMM, USAD, GDN, and TranAD. These models focus
on different challenges in MTS anomaly detection and have
different structures. To demonstrate the effectiveness and effi-
ciency of OmniTransfer, we compare it with OmniCluster [12],
one model/entity, CTF [24], and JumpStarter [11]. OmniTrans-
fer, OmniCluster, and one model/entity are model-agnostic
training frameworks or strategies that can be combined with
various models. The results of these methods are presented at
the top of Table I. However, CTF is designed specifically for
the RNN+VAE model. And JumpStarter, which doesn’t require

TABLE I: Overall performance.

Model
OmniTransfer OmniCluster one model/entity

F ∗
1 Time (s) F ∗

1 Time (s) F ∗
1 Time (s)

OmniAnomaly 0.8865 1212.99 0.5169 560.47 0.7000 9888.25
InterFusion 0.8666 1585.63 0.5830 566.56 0.4769 8884.94
DAGMM 0.8375 244.48 0.7104 137.37 0.8245 2947.47

USAD 0.8222 80.16 0.7468 109.04 0.7875 691.77
GDN 0.8026 54.55 0.6806 42.81 0.7405 265.27

TranAD 0.8995 114.53 0.7797 102.10 0.8538 591.67

JumpStarter 0.4211 4786.67 - - - -
CTF 0.8661 4965.61 - - - -

training, cannot be combined with OmniTransfer. The results
of these two baselines are shown at the bottom of Table I.
OmniTransfer outperforms all baselines in effectiveness and is
more efficient than all baseline models except for OmniCluster.
We will try to analyze the reasons for this result in detail.

1) Compare with OmniCluster: OmniTransfer outperforms
OmniCluster by 10.10% to 71.50%. OmniTransfer retains the
information of short-term data and considers the problem of
phase shifts. In contrast, OmniCluster compresses MTS in the
temporal dimension and removes some metrics, resulting in
a loss of shape and metric information. OmniTransfer uses
transfer learning to train a suitable model for each MTS,
whereas OmniCluster trains a base model for each cluster.
The training time of OmniTransfer is 64.56% higher than
OmniCluster. Because OmniCluster only trains base models
without fine-tuning.

2) Compare with one model/entity: In terms of F1, Om-
niTransfer achieves an average improvement of 21.35%, and
it reduces the training overhead by 85.01%. One model/entity
uses only short-term MTS to train model, which is insufficient
for deep learning-based models. Moreover, training the model
from scratch usually takes longer to converge. Therefore, the
performance and efficiency of one model/entity strategy are
unsatisfactory. In contrast, OmniTransfer performs better by
maximizing the use of the base MTS to train the base model.
The overall training overhead of OmniTransfer benefits from
only a small number of base models that need to be trained
and the base models help accelerate the convergence of the
target model training.

3) Compare with CTF: CTF is specifically designed
for RNN+VAE models, particularly for OmniAnomaly.
Therefore we only compare the performance of Omni-
Transfer+OmniAnomaly with CTF. The F1 of OmniTrans-
fer+OmniAnomaly is approximately 2.4% higher than CTF.
CTF produces fine-tuned models at the cluster level, which
cannot be deployed perfectly to each MTS. The training
time of CTF is more than four times that of OmniTrans-
fer+OmniAnomaly. This is because CTF fine-tunes cluster-
level models based on a dataset-level pre-trained model. As the
difference between the source domain and the target domain of
CTF is significant, it requires more MTS and training epochs
during fine-tuning.

4) Compare with JumpStarter: JumpStarter successfully
reduces model initialization time, but its F1 is significantly
lower and the training time is much longer compared to Om-
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Fig. 5: The performance of OmniTransfer and one
model/entity with different initialization time. ‘*’ denotes the
corresponding result of combining OmniTransfer and without
* denotes the result of one model/entity strategy.

niTransfer. JumpStarter uses only short-term data to sample
and reconstruct the normal value, which is usually sufficient.
And the outlier-resistant sampling method may not always
successfully remove anomaly points in highly volatile metrics,
limiting the performance of JumpStarter. Additionally, the
complicated sampling process in JumpStarter increases the
training time seriously.

C. Effect on reducing model initialization time (RQ2)

In this section, we conduct experiments on six anomaly
detection models to verify the effect of OmniTransfer in
reducing model initialization time. We increase the initial-
ization time from one day to five days. Fig. 5 demonstrates
that OmniTransfer outperforms one model/entity by 7.99%
with one day and two days of training data on average.
And OmniTransfer using two days of training data performs
almost the same as one model/entity using all training data,
highlighting its ability to reduce the model initialization time.

D. Ablation experiment (RQ3)

To demonstrate the effect of three key technologies in
OmniTransfer: (1) clustering; (2) phase alignment; (3) transfer
learning. We reconfigure OmniTransfer to create three variants.
C1: Only one base model is used for transfer learning, and the
data used to train the base model are randomly selected. C2:
Do not align the phase shift. C3: The base model is directly
used for anomaly detection of all MTS in the cluster. Table II
shows the results of each variant.

Effect of clustering. With an F1 of lower than 0.65, the
performance of C1 is far from satisfactory. The large difference
between the base MTS and the target MTS makes transfer
learning challenging. While clustering can effectively group
MTS with similar shapes for base model training, making it
easy to transfer the knowledge of base MTS to target MTS.

Effect of phase alignment. C2 needs more training over-
head and has a poor performance than OmniTransfer. Without

TABLE II: Ablation experiment.

Model OmniTransfer C1 C2 C3

OmniAnomaly 0.8865 0.6925 0.7979 0.7242
InterFusion 0.8666 0.656 0.7668 0.7319
DAGMM 0.8375 0.7966 0.8071 0.7804

USAD 0.8222 0.7754 0.7928 0.8008
GDN 0.8026 0.7702 0.7647 0.7643

TranAD 0.8995 0.8805 0.8884 0.8436

phase alignment, the diversity of MTS patterns increases,
resulting in more clusters, and the training overhead increases
dramatically. Additionally, it is difficult to match the target
data with the appropriate cluster without phase alignment.

Effect of transfer learning. C3 directly uses the base
model of each cluster for anomaly detection. Although the
target MTS should be reasonably similar to its matching
cluster centroid, there are still many tiny differences. These
differences make the F1 relatively poor.

V. DISCUSSION

We have some ideas for future work. (1) The same ideas
and key techniques of OmniTransfer can reduce model ini-
tialization time and training overhead for other tasks, such as
the prediction and classification of large-scale MTS. (2) The
threshold for adaptive transfer strategy selection is currently
selected based on experience. The threshold selection method
can be further studied. (3) The clustering method is not the
focus of this paper, and the clustering method for MTS is also
a popular research direction.

VI. CONCLUSION

This paper clearly points out the limitations of existing
methods in large-scale MTS scenarios. And we propose
OmniTransfer, a model-agnostic, unsupervised, and efficient
anomaly detection framework for several SOTA MTS anomaly
detection models. It uses transfer learning to reduce model ini-
tialization time and training overhead effectively. We propose
I-HAC to improve the effect and efficiency of transfer learning.
Our experiments use a real-world dataset from a large Web
content service provider. The results show that OmniTransfer
can reduce the initialization time by 59.72% and improve
training efficiency by 85.01% compared to baseline models.
We believe OmniTransfer is useful for large Web services,
especially when monitoring millions of services that change
frequently. OmniTransfer makes the anomaly detection models
as fast and cost-effective as possible for the large-scale and
changing MTS.
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