Efficient Multivariate Time Series Anomaly Detection Through Transfer Learning for Large-Scale Web Services

Yongqian Sun, **Minghan Liang**, Zeyu Che, Dongwen Li, Tinghua Zheng, Shenglin Zhang* , Pengtian Zhu, Yuzhi Zhang, Dan Pei

Outline

Outline

The Reliability of Web Services is Important

Poor user experience

A drop in revenue

MTS Anomaly Detection

- The collected multiple metrics of each entity forms a multivariate time series (MTS)
- Determine whether the entity has anomaly behavior that deviates from the normal pattern
- Anomaly detection is critical to the quality of service (QoS) management

Motivations (1/3)

- Huge number of entities in large-scale Web services.
- Training an MTS anomaly detection model for **each entity** is resourceconsuming.

Model	Time(1M Entities)	-
nniAnomaly(KDD '19)	1.57years	
nterFusion(KDD '21)	1.41years	
DAGMM(ICLR '18)	6.09months	Reduce training
USAD(KDD '20)	5.72weeks	overhead by clustering
GDN(AAAI '21)	2.19weeks	
TranAD(VLDB '22)	4.89weeks	

Motivations (2/3)

- Frequent changes in web services lead to changes in the pattern of MTS.
- MTS anomaly detection model based on deep learning needs a lot of training data to achieve satisfactory detection performance.

Model initialization time refers to the length of time that a model can train the required training data well

Motivations (3/3)

• Different MTS anomaly detection models are suitable for different

task scenarios.

Model	Focus	
)mniAnomaly(KDD '19)	Temporal dependence and stochasticity	
InterFusion(KDD '21)	Inter-metric and temporal embeddings	Design a generic MTS anomaly detection
DAGMM(ICLR '18)	Decoupling problem	framework
USAD(KDD '20)	Stable and faster	
GDN(AAAI '21)	Correlations among metrics	
TranAD(VLDB '22)	Multi-modal feature extraction	

Intuition

Motivation and Intuition

Transfer Learning

Challenges (1/2)

High diversity of MTS

- MTS can be generated by various entities with diverse patterns.
- MTS contains irregular noises, anomalies, and extreme values.
- MTS may have similar shapes but with phase shifts.
- Solution: cluster MTS by baseline extraction and phase alignment

Challenges (2/2)

Selection of transfer strategy

- Various strategies for transferring parameters from the base model to the target model.
- Various distances between the base and target MTS making the optimal transfer strategy of each target MTS different.
- The optimal transfer strategies for different models are diverse.
- Solution: adaptive transfer strategy

Outline

OmniTransfer Overview

Improved Hierarchical Agglomerative Clustering

I-HAC in OmniTransfer

I-HAC(1/3)

- Remove the top 5% data that deviates from the mean value
- Use linear interpolation to fill the vacancies
- Apply the moving average

I-HAC(2/3)

- Get the pivot PVT of the entire offline segments PVT=arg min $\sum_{A \in D} Euc(A,B)$
- Wrap around the MTS^{$M \times n$} by possible phase shifts S \in [-n+1,n-1]
- Normalized Cross-Correlation (NCC) reach the maximum value when s is close to the real phase shift
 .

• NCC(A,B,s)=
$$\sum_{j=1}^{M} \frac{\sum_{i=1}^{n} A(s)_{i}^{j} B(s)_{i}^{j}}{\left\|A(s)^{j}\right\|_{2} \left\|B(s)^{j}\right\|_{2}}$$

• S*=arg max NCC(PVT, MTS, s)
s \in [-n+1, n-1]

I-HAC(3/3)

- HAC with average linkage
 - Robust to extreme value
 - Each data has the same effect on the distance measure

Base Model Training

- VAE-based algorithms
 - $L_1 = E_{q_{\Phi}(z|x)} \left[\log p_{\theta(x|z)} \right] D_{KL} [q_{\Phi}(z|x)| |p_{\theta}(z)]$
- AE-based and prediction-based algorithms
 - L₂=MSE(target, output)

Base model training in OmniTransfer

Transfer Learning (1/3)

- Transfer preparations
 - Target MTS H undergoes baseline extraction and phase alignment and get H'
 - Calculate the distance between H' and each cluster centroid
 - Select the closest one and corresponding base model
 - Use H to fine-tune the base model

Transfer preparations in OmniTransfer

Transfer Learning (2/3)

- Adaptive transfer strategy
 - Use Euclidean distance to determine the degree of similarity between H' and cluster centroid
 - Operators choose a threshold α empirically
 - $Euc(H', centroid) \le a$, use full

parameter transfer strategy

• Euc(H', centroid) > a, use partial

parameter transfer strategy

Adaptive transfer in OmniTransfer

Transfer Learning (3/3)

- Transfer layer selection
 - Models consists of specialized layers
 - Specialized layers (RNN, CNN, GNN and attention): generic features
 - Other layers: specific tasks
 - Models consists of some fully connected layers
 - Outer layers: extensive tasks and generic features
 - Inner layers: task-specific features

Architecture of MTS anomaly detection models

Online Detection

- VAE-based algorithms
 - $AS_1 = E_{q_{\varphi}(z|x)} \left[\log p_{\theta(x|z)} \right]$
- AE-based and prediction-based algorithms
 - AS2=MSE(target, output)

Online detection in OmniTransfer

Outline

Dataset & Evaluation Metric

• Dataset:

>Entities 400

> Dimension of each entity 19KPIs x 2016 time points (frequency 5min, 7days)

> Training 5th day, Testing last 2 days

• Evaluation Metric:

> Micro-average F1

> Model training time

> Model Initialization time

Research Questions

• RQ1. How does the effectiveness and effificiency of *OmniTransfer* compare to baseline methods?

• RQ2. How much initialization time can *OmniTransfer* reduce compared to non-transfer learning methods?

• RQ3. How much do the key techniques contribute to its overall performance?

Research Questions

• RQ1. How does the effectiveness and effificiency of *OmniTransfer* compare to baseline methods?

• RQ2. How much initialization time can *OmniTransfer* reduce compared to non-transfer learning methods?

• RQ3. How much do the key techniques contribute to its overall performance?

RQ1. OmniTransfer vs. baseline models

Model	OmniTransfer		OmniCluster		One model/entity		Model	F1	Time(s)
							JumpStarter	0 4211	4786 67
	F1	Time(s)	F1	Time(s)	F1	Time(s)	(USENIX '21)	0.1611	1700.07
OmniAnomaly	0.8865	1212.99	0.5169	540.67	0.7000	9888.25	CTF	0.8661	4965.61
InterFusion	0.8666	1585.63	0.5830	566.56	0.4769	8884.94			
DAGMM	0.8375	244.48	0.7104	137.37	0.8245	2947.47			
USAD	0.8222	80.16	0.7468	109.04	0.7875	691.77			
GDN	0.8026	54.55	0.6806	42.81	0.7405	265.27			
TranAD	0.8995	114.53	0.7797	102.10	0.8538	591.67			

- OmniCluster: a model-agnostic clustering framework
- One model/entity: trains a model for each entity
- JumpStarter: uses the Compressed Sensing to reduce the model initialization time
- CTF: a framework for RNN+VAE models

Research Questions

• RQ1. How does the effectiveness and effificiency of *OmniTransfer* compare to baseline methods?

• RQ2. How much initialization time can *OmniTransfer* reduce compared to non-transfer learning methods?

• RQ3. How much do the key techniques contribute to its overall performance?

RQ2. Effect on reducing model initialization time

Research Questions

• RQ1. How does the effectiveness and effificiency of *OmniTransfer* compare to baseline methods?

• RQ2. How much initialization time can *OmniTransfer* reduce compared to non-transfer learning methods?

• RQ3. How much do the key techniques contribute to its overall performance?

RQ3. Ablation experiment

- Key technologies: clustering, phase alignment, transfer learning
- C1: Only one base model is used for transfer learning, and the data used to train the base model are randomly selected.
- C2: Do not align the phase shift.
- C3: The base model is directly used for anomaly detection of all MTS in the cluster.

Model	OmniTransfer	C 1	C2	C 3
OmniAnomaly	0.8865	0.6925	0.7979	0.7242
InterFusion	0.8666	0.6560	0.7668	0.7319
DAGMM	0.8375	0.7966	0.8071	0.7804
USAD	0.8222	0.7754	0.7928	0.8008
GDN	0.8026	0.7702	0.7647	0.7643
TranAD	0.8995	0.8805	0.8884	0.8436

Outline

Conclusion

- The first general MTS anomaly detection framework using clustering and transfer learning techniques.
- Propose an adaptive transfer strategy. It can automatically select either full parameter transfer or partial parameter transfer strategy.
- Reduce the initialization time by 59.72% and the training overhead by 85.01% on average while maintaining high accuracy in detecting anomalies.

Thank you!

Q & A

minghanliang@nankai.edu.cn

ICWS 2023

Improvements

- Reduce the initialization time by 59.72% and the training overhead by 85.01% on average while maintaining high accuracy in detecting anomalies.
- Increase the universality of the anomaly detection framework.
- Use an adaptive transfer strategy to select optimal transfer strategy.

Phase shifts reason

- This can happen when large-scale Web services use different servers to serve users across a wide geographical area, resulting in similar MTS patterns with a time delay.
- The diversity can affect the distance calculation of MTS and lead to poor clustering performance.

Adaptive transfer strategy threshold

- The threshold of the adaptive Transfer strategy is based on the experience of the operator
- In view of the length of the paper, we did not consider the impact of this threshold on the adaptive Transfer strategy in detail. This is a good research issue in the future

Dataset size

- Please note that we only choose 400 entities from millions for evaluation since the labeling work is time-consuming
- We believe our framework can be applied to datasets with millions of entities