
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 3, SEPTEMBER 2023 3803

LogSummary: Unstructured Log Summarization
for Software Systems

Weibin Meng , Federico Zaiter, Yuzhe Zhang, Ying Liu , Member, IEEE, Shenglin Zhang , Member, IEEE,
Shimin Tao, Yichen Zhu, Tao Han, Yongpeng Zhao, En Wang , Member, IEEE, Yuzhi Zhang ,

and Dan Pei , Senior Member, IEEE

Abstract—We propose LogSummary, an automatic,
unsupervised end-to-end log summarization framework for
software system maintenance in this work. LogSummary
obtains the summarized triples of necessary logs for a given log
sequence. It integrates a novel information extraction method
that considers semantic information and domain knowledge
with a new triple-ranking approach using the global knowledge
learned from all logs. Given the lack of a publicly-available
gold standard for log summarization, we have manually labeled
the summaries of four open-source log datasets and made them
publicly available. The evaluation of these datasets and the
case studies on real-world logs demonstrate that LogSummary
produces highly representative (average ROUGE F1 score of
0.741) summaries efficiently. We have packaged LogSummary
into an open-source toolkit and hope it can be a standard
baseline and benefit future log summarization works.

Index Terms—AIOps, log analysis, log summarization.

I. INTRODUCTION

W ITH the continuous development of Internet applica-
tions, large-scale software systems are getting increas-

ingly large and complex. A non-trivial software anomaly can
impact the user experience of millions of users and lead to
significant revenue loss [1]. Consequently, the reliability of
software systems is of vital importance.

Manuscript received 17 July 2022; revised 6 December 2022; accepted
9 January 2023. Date of publication 16 January 2023; date of current
version 9 October 2023. This work was supported by the National Key
R&D Program of China under Grant No. 2021YFB0300104, the National
Natural Science Foundation of China under Grant No. 62272249, 62072264,
and 61902200, and the China Postdoctoral Science Foundation under Grant
No. 2019M651015. The associate editor coordinating the review of this arti-
cle and approving it for publication was D. Pezaros. (Corresponding author:
Shenglin Zhang.)

Weibin Meng, Shimin Tao, Tao Han, and Yongpeng Zhao are with Huawei
Inc., Beijing 100085, China (e-mail: mengweibin3@huawei.com; taoshimin@
huawei.com; billow.han@huawei.com; zhaoyongpeng@huawei.com).

Federico Zaiter is with the Department of Artificial Intelligence and
Big Data, Universidad ORT Uruguay, Montevideo, Uruguay (e-mail:
federico.zaiter@fi365.ort.edu.uy).

Yuzhe Zhang is with the College of Software, Nankai University, Tianjin
300071, China (e-mail: zyzcs@mail.nankai.edu.cn).

Ying Liu, and Dan Pei are with the Department of Computer Science and
Technology, Tsinghua University, Beijing 100084, China (e-mail: liuying@
cernet.edu.cn; peidan@tsinghua.edu.cn).

Shenglin Zhang and Yuzhi Zhang are with the College of Software,
Nankai University, Tianjin 300071, China, and also with the Haihe Laboratory
of Information Technology Application Innovation, Tianjin 300450, China
(e-mail: zhangsl@nankai.edu.cn; zyz@nankai.edu.cn).

Yichen Zhu is with Midea Group, Foshan 528311, China
(e-mail: k.zhu@mail.utoronto.ca).

En Wang is with the Department of Computer Science and Technology,
Jilin University, Changchun 130012, China (e-mail: wangen0310@126.com).

Digital Object Identifier 10.1109/TNSM.2023.3236994

Fig. 1. The triples and top-2 summaries of an example log stream. We extract
the triples from the logs and rank them based on semantic importance, then
select the two most important triples as top-2 summaries.

Large-scale software systems usually generate logs (see the
top half of Fig. 1), which describe a vast range of events
observed by them and are often the only available data record-
ing software runtime information. Therefore, many automatic
log analysis approaches have been proposed for software
system management [2], which can be classified into log com-
pression methods (e.g., [3]), log parsing methods (e.g., [4],
[5], [6]), anomaly detection methods (e.g., [7], [8]), failure
prediction methods (e.g., [9]), and failure diagnosis methods
(e.g., [10], [11]), etc. Although these approaches help oper-
ators efficiently understand the status of software systems,
they leave the burden of summarizing logs to operators. More
specifically, after a failure is detected/predicted/diagnosed,
operators still have to read the corresponding original logs (i.e.,
a log sequence) to understand software-wide semantics [12].
It is because the existing automatic log analysis approaches,
especially those for failure prediction or diagnosis purposes,
are not accurate and general enough for every scenario. Before
taking measures to mitigate or avoid failures, operators must
ensure that a failure has occurred or will occur.

However, manual log summarization, or the rule (e.g., reg-
ular expression rule) based log summarization, has become
ineffective and inefficient for the following three reasons.
(1) A large-scale software system is usually implemented
and maintained by hundreds of developers and operators. The

1932-4537 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 16,2023 at 05:20:37 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9384-9016
https://orcid.org/0000-0002-4919-1130
https://orcid.org/0000-0003-0330-0028
https://orcid.org/0000-0001-6112-2923
https://orcid.org/0000-0002-6729-925X
https://orcid.org/0000-0002-5113-838X

3804 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 3, SEPTEMBER 2023

developers or operators who investigate logs often have incom-
plete knowledge of the original logging purpose. (2) The
volume of logs is proliferating, for instance, at a rate of about
50 gigabytes (around 120∼200 million lines) per hour [5].
The traditional way of log summarization, which largely
relies on manual inspection or rule update, has become a
labor-intensive and error-prone task. (3) With agile software
development becoming increasingly popular, operators deploy
software updates more frequently, leading to a large num-
ber of new types of logs being generated continuously. It
is challenging for operators to timely comprehend these new
types of logs. Although several works have been proposed for
log compression [3], [13] or system interpretability through
logs [14], [15], to the best of our knowledge, there is no
previous work aiming to help operators efficiently and effec-
tively summarize a given log sequence in an interpretable and
readable manner.

When operators investigate logs, they usually care about
three key pieces of information, i.e., “entities”, “events” and
the “relation” between them. These three elements form a
relation tuple (“entities”, “events”, “relation”), which we will
call triple [16] in the following. Sometimes only two ele-
ments are needed for representation, and the first or third
position of the triple may be blank. In most cases, a log
contains one or more triples. These triples are easy to under-
stand for operators because they keep both the semantics and
syntax of the original log [17]. Suppose we can automati-
cally select some important summarized triples in a given
log sequence as log summarization and provide them to
operators. In that case, they can gain a clear view of this
log sequence. Triples that do not contain important semantic
information should not appear in the log summarization. Other
wise, they will increase the workload of operators. As shown
in Fig. 1, we select a part of the log sequence for display
and list their corresponding summarized triples. For example,
(“Interface”, “changed to”, “down”) is the expected rela-
tional triple extracted from the first log, and both (“Member
port”, “became”, “inactive”) and (“aggregation configuration”,
“is”, “improper”) are the expected relational triples extracted
from the last log. Considering the semantics importance and
frequency, we choose the two most important triples as the
top-2 summaries, and the detailed ranking policy will be
introduced in Section V.

The original goal of logs, i.e., “logs are designed for
operators to read”, motivates us to apply natural language
processing (NLP) methods to summarize logs. Compared with
the NLP log summarization methods, most non-NLP methods
process logs with the help of statistical information, such as
word frequency in logs, and do not fully explore the semantic
information. A typical non-NLP method is log template extrac-
tion, which can filter out parameter information and extract the
fixed part of logs. However, this method cannot help operators
quickly understand the log semantics in many cases. As shown
in Fig. 2, the raw log has 56 words, and its corresponding tem-
plate has 26 words. However, the semantic triples extracted by
an NLP method has only 5 words, which greatly saves opera-
tors’ time for understanding this log. When the log is long, a
log template extraction method neither significantly shortens

Fig. 2. Log template and semantic triple.

the length of the text nor gives clear semantic information in
the log. A large number of works have been proposed for text
summarization in the NLP domain [18]. However, the four fol-
lowing challenges lie in applying existing NLP methods for
log summarization.

(1) It is difficult for the existing NLP tools to extract the
expected triples from logs accurately because logs contain not
only normal words, but also domain-specific symbols, and the
syntax of a large portion of logs significantly differs from
normal sentences.

(2) Large-scale software systems can generate a massive
number of logs in a short period. Typically, operators usually
investigate all the logs of some period (say one hour before
a failure) to obtain the summary of these logs [19]. Applying
existing NLP tools to extract triples for each newly generated
log is computationally inefficient (see Table VI).

(3) Existing NLP methods summarize texts based on the
order of sentences (logs) [20]. However, operators expect to
read the summarization of important logs first for a given log
sequence. Therefore, there is a vast gap between operators’
expectations and the summarization generated by existing NLP
methods.

(4) Applying NLP methods to learn a text summarization
model usually needs a large-scale training set [18]. However,
to the best of our knowledge, although there are publicly avail-
able log datasets [5], there is no publicly available dataset for
log summarization yet.

To address the above challenges, we propose LogSummary,
an automatic, unsupervised end-to-end log summarization
framework for software systems. The goal of LogSummary
is to obtain the summarized triples of important logs for a
given log sequence, which takes both semantic information
and domain knowledge into consideration. The contributions
of this paper are summarized as follows.

(1) We propose LogSummary, a new framework to per-
form log summarization for software systems. For a given
log sequence, LogSummary obtains the summarized triples
of important logs. The summary preserves the important
information of this log sequence and is easy to understand.
The implementation of LogSummary is available online.1

1https://github.com/LogSummary/code-and-datasets

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 16,2023 at 05:20:37 UTC from IEEE Xplore. Restrictions apply.

MENG et al.: LogSummary: UNSTRUCTURED LOG SUMMARIZATION FOR SOFTWARE SYSTEMS 3805

(2) We propose a new domain-specific and effi-
cient information extraction approach called LogIE (Log
Information Extraction). It accurately extracts the expected
triples for each log by integrating it with domain knowledge
(addressing challenge 1) and achieving efficient information
extraction by combining it with a log template (addressing
challenge 2).

(3) We propose a new simple yet effective method to rank
the triples generated by LogIE. It ranks triples according to
the global knowledge learned from all logs rather than each
triple’s local information. In this way, LogSummary accurately
obtains the triples of important logs expected by operators
(addressing challenge 3).

(4) Given the lack of a publicly-available gold standard
for log summarization, we manually labeled reference sum-
maries for four existing open-source log datasets and made
them available on github.2 We believe that the availability
of a summary gold standard would benefit future research
and facilitate the adoption of automated log summarization.
Extensive experiments based on these summaries demonstrate
that LogSummary generates highly representative (average
ROUGE F1 score of 0.741) summaries, and LogIE is more
accurate and much more efficient than baseline methods.

The rest of the paper is organized as follows: We intro-
duce the related work in Section II, discuss the background
in Section III and highlight the challenges in Section IV. In
Section V, we propose our approach. The evaluation is shown
in Section VI. In Section VII, we discuss the practicability of
LogSummary. Lastly, we conclude our work in Section VIII.

II. RELATED WORK

Different log summarization approaches have been proposed
for purposes different from ours. At the same time, different
methods have been used for similar purposes to enhance the
interpretability of the logs for troubleshooting.

Gentili et al. [13] proposed an approach to leverage a tax-
onomy graph over the events presented by the logs in order to
reduce the resulting raw data size to keep the required space to
store the data manageable and improve the performance and
system load for log analysis. Gunter et al. [19] presented an
approach for log summarization to decrease the load on the
system for logging. They do not focus on the human inter-
pretability of the logs but rather on reducing system workload
for downstream tasks. Their main evaluation metric is keep-
ing the same performance of autonomous anomaly detection
despite the compressed logs. Shang and Syer focus on under-
standing software logs [21] and examining the stability of
logs [22]. Huo et al. [23] proposed an approach to capture
message-level and instance-level semantics from logs, and they
focus on the relationship between concepts and instances in
logs. He et al. [24] presented a method to identify impactful
service problems by using log analysis. They pay more atten-
tion to visualization rather than readability. Le and Zhang [25]
used an NLP method to extract the semantic meaning of raw
log messages, which they then used to detect anomalies. They

2https://github.com/LogSummary/code-and-datasets

do not focus on semantic importance ranking and readability
either.

Satpathi et al. [15] proposed a closely related work in our
scenario. Their focus is different from ours as they aim to
mine the distribution of messages for each anomalous event
and their occurrences in the logs, getting an event signature
that represents it formed by keywords. Nonetheless, they use
an approach that resembles log summarization by first adopt-
ing their proposed change-point detection to aggregate all the
events from the given distribution, followed by summariza-
tion utilizing LDA [26]. However, LDA has proven ineffective
for short text summarization despite aggregation or previous
clustering. Additionally, they do not consider parameters from
the logs that are key to understanding an event after sum-
marization and helping operators with their troubleshooting.
Chen et al. [27] proposed an improved word mover’s dis-
tance to measure the distance between two log samples, and
Otomo et al. [28] proposed an approach to obtain a numerical
topic-distributed representation of each log. Both two methods
use LDA to obtain the log topic distribution information, and
they also have the above-mentioned drawbacks and pay more
attention to the categories of logs rather than summarization.

III. BACKGROUND

Log Parsing: Log parsing usually serves as the first step
towards automated log analysis, and it can pre-process the
unstructured part of the log. The most popular log parsing
approach is automatic template extraction [4], [5], [29], [30],
which extracts constant fields (templates) from logs. For exam-
ple, “Interface *, changed state to down” is the template of the
first and fifth logs in Fig. 1, and traditional log parsing meth-
ods can extract templates from historical logs automatically.
However, operators continuously conduct software/firmware
upgrades to introduce new features, fix bugs, or improve
performance. These upgrades usually generate new types of
logs required to update templates online [22]. Therefore, we
utilize online log parsing methods (e.g., LogParse [4]) to
extract templates in this work. Online log parsing methods
can extract and learn templates online without retraining their
model. Note that log parsing is the precursor to information
extraction and log summarization. We generate the log tem-
plate through log parsing and then use information extraction
to get triples from the template. Finally, we generate the log
summarization from the triples.

Word Embedding for Logs: Logs are designed to facil-
itate user readability. Consequently, the constant parts of
logs are defined in a human-readable manner by developers.
Many methods (e.g., word2vec [31]) thus use natural lan-
guage process (NLP) methods to represent words. However,
these methods cannot represent domain-specific words accu-
rately. For example, “down” and “up” in Fig. 1 are antonyms
but have similar contexts. Besides, system upgrades usu-
ally generate new types of logs with unseen words [32]
(e.g., “Vlan-interface” in Fig. 1), which poses a challenge
for generating distributed representations of words in logs.
For this reason, we adopt Log2Vec [32] to represent the

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 16,2023 at 05:20:37 UTC from IEEE Xplore. Restrictions apply.

3806 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 3, SEPTEMBER 2023

words of logs. Log2Vec combines a log-specific word embed-
ding method to accurately extract the semantic information
of logs with an out-of-vocabulary (OOV) word processor
to embed unseen words into a distributed representation at
runtime.

Information Extraction: Information extraction retrieves
relational triples from unstructured text. It is usually done in
the form of triples for binary relations, relating two arguments
by a predicate or relation for each relation in a given sentence,
i.e., (argument1, relation1,2, argument2) [16]. Traditional
information extraction approaches rely on predefining a lim-
ited set of target relations and hand-crafted patterns. For this,
they would adopt Named Entity Recognizers and dependency
parsers to target a specific domain. These approaches would
then require manual effort to be repurposed and applied to
a different domain. To address the challenge of scalability
for performing Web information extraction, Banko et al. [16]
introduced Open Information Extraction (OpenIE). They
presented a new information extraction paradigm that would
allow extracting relations without defining the number or type
of relations in advance.

IV. CHALLENGE AND OVERVIEW

A. Empirical Study

When a failure occurs in a system, operators can use log
summaries to figure out why the failure occurred as quickly
as possible. In the traditional method of manually extracting
summaries, operators observe the logs to extract the sum-
maries. For example, an experienced operator can summarise
from “Line protocol on Interface ae4, changed state to down.”
within about 3 seconds that “Line protocol changed to down”
is the main event described in the log. As log complexity
increases, this process can take a little longer, as each log
may contain more than one event. Meanwhile, the system
may generate thousands of logs per minute, making man-
ual extraction of log summaries infeasible in the production
environment. In the rule-based summary extraction approach,
a rule must be defined for each log type to achieve good
results. In the case of a new type of log being generated in the
system, for example, “Image 1.jpg at server A in use” con-
tains the main event “Image is in use”, but there is no way
to extract a summary based on rules without adding a specific
rule. The requirement to read and understand logs quickly in
software systems motivates the design and implementation of
LogSummary.

B. Design Challenges

Log data is an important data source recording system states
and significant events at runtime. Thus, it is intuitive for oper-
ators to observe the system’s status and inspect any potential
anomalous events using logs. A log is usually printed by log-
ging statements (e.g., printf(), logger.info()) in the source code,
which developers predefine. Typically, the predefined part of a
log is human-readable. Therefore, solving log summarization
problems using NLP tools seems promising. However, directly
applying existing NLP approaches for log summarization faces
several challenges as follows.

Fig. 3. Framework of LogSummary.

Domain-specific symbols and grammar: Logs contain many
domain-specific symbols, and their grammar may significantly
differ from normal sentences. Existing NLP tools, which are
typically designed for normal sentences, cannot get accurate
summaries for them. For example, entity-value pairs are valu-
able and structured information that should be extracted from
unstructured logs. However, existing NLP tools cannot extract
them directly because they may be separated by an equal “=”
or a colon “:” symbol. Besides, some entity-value pairs are
hidden in word combinations. For instance, when NLP tools
process the first log in Fig. 1, it may treat “Interface ae3” as
a whole, while “ae3” is a value for the entity of “Interface”.

High summarization efficiency requirement: After a failure
is detected or predicted, the operator hopes to quickly obtain
the summary of a collection of logs in some period (e.g., one
hour before a detected failure) to figure out what happens on
the software system. However, the software system can gen-
erate a large number of logs during this period. For example,
one program execution in the HDFS system generates 288,775
logs per hour [7]. On the other hand, existing NLP meth-
ods typically get the summarized triples one sentence (log)
by one sentence (log), and their efficiency cannot satisfy the
requirement of operators (see Table VI for more details).

Obtaining the summarized triples of important logs:
Typically, logs are generated in the order of program exe-
cution, and they contain redundancy and repetition. When
operators inspect a collection of logs triggered by a failure
detection or prediction, they want to obtain the triples of
those important logs first. However, existing NLP approaches
usually generate summaries according to the order of sen-
tences (logs) in the original text (log sequence). In Fig. 8, for
example, a state-of-the-art NLP method generates summaries
by compressing original logs instead of generating triples of
the expected important logs. Consequently, these approaches
cannot satisfy the expectation of operators.

C. Overview of LogSummary

In this paper, we design LogSummary (as shown in Fig. 3)
to summarize logs in software systems and help operators
read/understand logs faster. LogSummary is an automatic log
summarization approach that takes both semantic information
and domain knowledge into consideration, which differs from
existing methods and achieves a good result. We decom-
pose the LogSummary into the offline training and online

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 16,2023 at 05:20:37 UTC from IEEE Xplore. Restrictions apply.

MENG et al.: LogSummary: UNSTRUCTURED LOG SUMMARIZATION FOR SOFTWARE SYSTEMS 3807

summarization stage, involving word embedding and log tem-
plates, which we will describe in detail. LogSummary needs to
obtain both log templates and word embeddings during offline
training. On the one hand, we apply unsupervised template
extraction methods [5] to get templates from historical logs.
LogIE later uses these templates in the online stage for match-
ing and processing logs purposes. On the other hand, to rank
arbitrary summaries, LogSummary applies Log2Vec [32], a
commonly used technique to generate log embeddings in the
online system, to learn the domain-specific semantics of offline
logs and generates a new embedding for unseen (OOV) words
at runtime. Afterward, these trained embeddings are adopted
to rank summaries online.

In the online stage, LogSummary updates new templates
using online log parsing methods [4]. Then, it is followed
by two consecutive steps, LogIE and ranking summaries. The
LogIE (described in Section V-A) is a mechanism to gener-
ate triples from real-time logs and historical log templates.
It solves the challenge that logs contain domain-specific text
and outputs primary summaries of logs. In general, NLP-
based summarization methods can be divided into abstractive
and extractive methods [33]. The abstractive methods require
supervised data, while the extractive methods are usually unsu-
pervised. Since it is difficult to obtain a labeled log dataset, we
use an extractive method to extract semantic triples in LogIE.
Additionally, existing NLP-based summarization methods are
typically designed for normal sentences, and logs are usually
different from normal sentences, making it ineffective to use
them directly to obtain log summarization. So we use domain
knowledge to pre-process the log template before generating
the summarization in LogIE. Note that applying NLP-based
methods for log summarization is not the main contribution
of our work. Moreover, LogIE saves mapping caches between
triples and templates, which speeds up log processing and
solves the processing speed challenge imposed by the mas-
sive amount of logs. Eventually, LogSummary ranks triples
by adopting TextRank, which meets the requirements of oper-
ators reading critical summaries first rather than following the
program execution logs order.

V. ALGORITHM

A. LogIE

In order to accurately and efficiently extract valuable
information from logs, we propose LogIE (Log Information
Extraction). LogIE performs open information extraction on
logs, extracting triples relating entities and arguments through
relation or predicate. To achieve this, it combines both Rule
Extraction (RE) and OpenIE to extract the triples. To make
the process fast and efficient, LogIE adopts templates to
improve and speed up the information extraction of logs.
Note that templates are automatically extracted by existing
approaches [4], [5]. LogIE learns triples from the log tem-
plates, so template matching can be used to produce the LogIE
triples output. LogIE is a framework composed of four main
components, and we describe and explain how they work using
the simple example in Fig. 6.

Fig. 4. Detailed workflow of the LogIE in LogSummary (Fig. 3).

Fig. 5. Objectflow of the LogIE in LogSummary (Fig. 3).

Fig. 6. Log template example.

1) Matching & Processing: Matching and Processing are
the overarching components of LogIE supported by the RE
and the OpenIE components that perform the triple extrac-
tion. The detailed workflow and object flow of the LogIE are
shown in Fig. 4 and Fig. 5, respectively. LogIE takes both raw
logs and templates as its input. It performs template matching
on the input raw logs. Using Fig. 6 as an example, if a log
is matched with this template, LogIE retrieves the previously
extracted triples for this given log-type and substitutes the vari-
ables present in the triples by their actual value obtained from
the raw log. These variables are usually identifiers, values, or
addresses [1]. Therefore once a log is received, if a template
is matched by the matching component, it will be processed
directly by the processing component and output its LogIE
triples. This way LogIE can effectively and efficiently yield
OpenIE triples in an online manner. Since the goal of LogIE is
to get structured information from logs, we treat all these cases
equally by substituting them with a dummy token to be con-
sidered an entity or part of an argument, e.g., “VARX”, where
X is the ordinal of the variable within the template. In the case
that the log is not matched to any template, a new template
needs to be extracted [4], [29]. Since LogIE is meant to be run
online, it requires a template extraction and matching method
that can be incrementally updated online. For this reason, we
incorporate LogParse into the Matching component. The new
template is then split into subparts as shown in Fig. 6, based

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 16,2023 at 05:20:37 UTC from IEEE Xplore. Restrictions apply.

3808 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 3, SEPTEMBER 2023

TABLE I
THREE RULES IN RE

on rules predefined accordingly to the source log. These sub-
parts are then handled by the RE and OpenIE components to
extract a new set of triples from it. The RE component would
handle the structured parts, while the OpenIE one handles the
free text parts. The output triples are then stored and passed to
the Processing component to produce the final LogIE triples
output.

2) RE for Rule Triples: The purpose of the RE compo-
nent is to make the most out of the structure present in logs,
namely the structured text part from the example in Fig. 6.
According to our observation, there are some rules for systems
to print logs. Therefore it becomes easier to define rules to
extract part of the information present precisely. For example,
in our implementation, we use three different rules, where all
three cover different ways of representing entity-value pairs,
as shown in Table I. For these cases, entity-value pairs are
usually separated by an equals “=” or a colon “:” symbol.
Another common case is formatting such information in the
same way command line arguments are specified in a com-
mand line interface program. The RE component processes
unstructured logs by first extracting triples from the non-free
text parts of the logs before the OpenIE component processes
their remaining free text parts. When non-free text is pro-
cessed, OpenIE component will be more accurate and efficient
in processing the remaining free text. Besides, the output
triples of the LogIE’s RE component could be used to pro-
vide further details of the log stream in a readable structured
manner or store structured information (entity-value pairs) for
further data mining. For example, when operators see a sum-
marization (Interface, changed to, down) in a visual interface,
they usually want to know which interface has changed, and
rule triples can automatically provide this information if it is
presented in a structured way in the log. Note that rule triples
are not used for our ranking algorithm because they contain
only simple “is” relation instead of rich semantic information.

3) OpenIE for Semantic Triples: Operators pay attention
to “entities”, “events”, and the “relation” between them
when they read logs which make these the most important
pieces of information to be considered for log summarization.
OpenIE [16] is usually used to extract relational triples, which
is exactly what the operators need since they are both struc-
tured in a human-readable way [17], and a reduced version
of the original logs. After rule triples were extracted using
templates, the remainder free text is passed on to the OpenIE
component. There has been substantial progress in OpenIE

approaches since it was proposed by Banko et al. [16]. These
methods take free text as input and yield OpenIE triples as
the output, formed by two arguments related by a predicate,
e.g., (“Link bandwidth”, “is”, “resumed”). OpenIE methods
achieve their objective by leveraging the underlying semantic
structure of the sentences for a given language, enabling them
to find the arguments present and the predicates that relate to
them. Therefore, We leverage existing OpenIE approaches in
our implementation to fulfill the OpenIE component require-
ment of the LogIE framework. Since LogIE is a framework,
none of its components, including OpenIE, are tied to any
implementation in particular. Besides, many short logs do not
have the whole three elements of triples, e.g., do not contain
an entity, OpenIE can also generate “triples” with less than
three elements. The outputs of the OpenIE component are the
semantic triples, LogSummary will rank them and generate the
summary later. As you will see in our evaluation in Section VI,
we incorporate the main OpenIE methods from the literature
into our work as both baselines for LogIE and as part of the
LogIE framework for evaluation.

B. Ranking Summaries

As aforementioned, logs, which record software’s status
in real-time, usually suffer from redundancy and repetition.
Traditionally, operators need to read raw logs and extract valu-
able information manually. However, it’s labor-intensive and
time-consuming. The goal of the LogSummary is to help oper-
ators to read/understand logs faster. After the LogIE stage,
we obtain triples, the minimum units of semantic information
within logs. In this section, we introduce a mechanism to rank
the triples based on their informativeness. Operators generally
hope to find out the importance of each triple by measuring the
connection between each triple and other triples. For a set of
logs, most algorithms ignore the semantics and other elements
of its words, and simply treat a triple as a collection of words.
And each word appears independently and does not depend
on the other. However, in the log analysis domain, different
word combinations have different meanings. Operators usually
use knowledge drawn from entire logs to make local ranking
decisions. Therefore, we integrate the information from the
global corpus into the sorting algorithm in the form of word
vectors, and through the combination of the sorting algorithm
and word vectors, iteratively scores sentences and sorts them
according to the score.

1) Triple Representation: Firstly, we propose a method to
represent triples with domain-specific semantics. Log2Vec [32]
enables generalization to domain-specific words, which is
achieved by integrating the embedding of lexical and relation
features into a low-dimensional Euclidean space. By train-
ing a model over the existing vocabulary, Log2Vec [32] can
later use that model to predict the embedding of any words,
even previously unseen words at runtime. Therefore, we apply
the technique in Log2Vec to represent triples generated from
logs. Leveraging its previous components, we convert any
word in the triples into a word embedding vector and gen-
erate the triple’s vector, which is the arithmetic mean of its
word vectors.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 16,2023 at 05:20:37 UTC from IEEE Xplore. Restrictions apply.

MENG et al.: LogSummary: UNSTRUCTURED LOG SUMMARIZATION FOR SOFTWARE SYSTEMS 3809

Algorithm 1 Ranking Algorithm
Require: A semantic information triple set ST, the number of

triple candidates k and word embedding set WE
Ensure: Ranked summaries S

1: Create a triple vector set TV
2: for each triples st of ST do
3: Create a temporary empty triple vector tv
4: Let a integer variable len record the number of words

in st
5: for each word w of st do
6: Find the corresponding word vector wv for w in WE
7: Plus the current word vector wv to the temporary

triple vector tv
8: end for
9: Get the average vector av by dividing tv by len and

regard av as the triple vector st
10: Append the triple vector av to TV
11: end for
12: Init a matrix of transition probability M by calculating

cosine similarity between all tv pairs in TV
13: Convert M to a weighted graph G = (V ,E).
14: Get the triple scores TS by applying Formula (1) to G
15: Sort the triples in reverse order by scores in TS, and the

top k triples as the final summaries S.
16: return S

2) Ranking Triples: We propose a method to rank log sum-
maries in this section. Its workflow is shown in Algorithm 1.
Firstly, we build a graph associated with the logs, where the
graph vertices are representative of the units to be ranked. For
the application of triple extraction, the goal is to rank entire
semantic triples, and therefore a vertex is added to the graph
for each triple in logs. Same as sentence extraction, we define
a relation that determines a connection between two triples
if there is a “similarity” relation between them, where the
“similarity” is measured as the cosine similarity [34] of two
triples. Note that other similarity measures (e.g., Euclidean
distance [35]) are also possible. Such a relation between two
triples can be seen as a process of “recommendation”. Given
a triple that addresses certain concepts in logs, it is “recom-
mended” to refer to other triples in the logs that address similar
concepts. Therefore, a similarity link is drawn between any
two triples.

Unlike the unweighted graphs in PageRank [36], we need
to build weighted graphs. The resulting graph is highly con-
nected, with a weight associated with each edge, indicating
the strength of connections established between various triple
pairs in logs. Therefore, the logs are represented as a weighted
graph (Fig. 7 shows a weighted graph for the case study in
Section VI-C). Formally, let G = (V, E) be a directed graph
with the set of vertices V and a set of edges E, where E is
a subset of V ∗ V . For a given vertex Vi , let In(Vi) be the
set of vertices that point to it, and let Out(Vi) be the set of
vertices that vertex Vi points to. Then, we adopt the formula
in TextRank [37], which is for graph-based ranking that takes

Fig. 7. Weighted graph of case study on real-world switch logs.

into account edge weights when computing the score associ-
ated with a vertex in the graph. Textrank’s formula is defined
to integrate vertex weights.

WS(Vi) = (1− d) + d ∗
∑

Vj∈InVi

wji∑
Vk∈OutVj

wjk
WS

(
Vj

)
(1)

where d is a damping factor that can be set between 0 and 1.
After the triple-based TextRank [37] is run on the graph,

semantic triples are sorted in reverse order of their score.
Note that although the summaries of LogSummary are

highly compressed, it has a different goal from other log com-
pression applications (e.g., LogZip [3]). Other log compression
applications aim to store logs, while our summaries are more
readable for operators.

VI. EXPERIMENTS

In this section, we report all experiments conducted to
evaluate the effectiveness of the proposed LogSummary. We
evaluate LogSummary from two aspects. Firstly, we evaluate
the accuracy of LogIE on information extraction and com-
pare it with common information extraction approaches. Next,
we evaluate the accuracy of ranked summaries on the gold
references and compare the result with the baselines.

A. Experimental Setting

1) Datasets: We conduct experiments over four public log
datasets from several services: BGL logs [38], HDFS logs [7],
HPC logs [39], and Proxifier logs [3].

Since the lack of a publicly-available summary gold stan-
dard hinders the automatic evaluation, we manually label the
above public log datasets and make them available. In this
paper, we provide two kinds of gold standard datasets. For
information extraction, we label all templates for all logs
([5] only label templates for 2000 logs per dataset) and label
OpenIE triples leveraging semantic information and domain
knowledge. In detail, four researchers manually extracted the
triples from the templates and gave each template a vari-
able number of semantic triples based on experience. Then,
they discussed the annotation results and revised them again

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 16,2023 at 05:20:37 UTC from IEEE Xplore. Restrictions apply.

3810 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 3, SEPTEMBER 2023

TABLE II
EXAMPLES OF MANUAL LABELING

TABLE III
DETAIL OF THE SERVICE LOG DATASETS

TABLE IV
RESULTING NUMBER OF MANUALLY IMPROVED TEMPLATES AND

MANUALLY EXTRACTED OPENIE TRIPLES FROM THE SOURCE DATASETS

FOR BUILDING THE OPENIE GOLD STANDARD DATASET

to ensure consistency. The examples of manual labeling are
listed in Table II. To evaluate log summarization, we choose
100 groups of 20 contiguous logs per dataset and generated
their summaries manually.

The detailed information on the above datasets is listed in
Table III and Table IV.

2) Experimental Setup: We conduct all experiments on
a Linux server with Intel Xeon 2.40 GHz CPU. We
implement LogSummary with Python 3.6 and make it
open-source.

B. Evaluation on LogIE

We intrinsically evaluate the LogIE framework to choose its
best implementation and compare it to the baselines. We eval-
uate the main OpenIE methods from the literature as baselines
and incorporate them as the OpenIE component of LogIE. For
this task, we build and open-source a dataset of log information
extraction triples based on public logs. We also use this gold

standard dataset to evaluate an improved version of LogIE
which uses manually improved templates instead of an online
template extraction approach. This serves as an ablation test
showing the influence of the template quality on LogIE’s
performance.

1) Triples Gold Standard Dataset: For this dataset, we
employ it as the gold standard for building and evaluating the
different approaches within LogIE. The process of building it
can be divided into three parts: obtaining the logs data from
different services, extracting and improving templates used to
assist the triples extraction, and manual annotation.

We source the logs from different types of systems and
services. Four described in Table VII are open-source and one
comes from real-world switch logs.

As part of building the gold propositions dataset, we extract
templates from all source logs using LogParse [4]. Then, we
manually extract OpenIE triples from the logs. For each log,
we manually extract relational triples of the form (arg1, r,
arg2), meaning that arg1 is related to arg2 by predicate r. We
aim to keep the form (subject, predicate, object) in this order.
For this purpose, we considered both the domain knowledge
and the semantic structure. We make several considerations:
We extract (subject, predicate, object) triples in this order.
Where applicable, we make prepositions part of the predicate.
It’s required to have at least the predicate and the subject or
object present to extract a triple. We make linking verbs the
predicate of a triple where applicable. Conjunctions, such as
“and” or “or,” are split into several triples or combined into a
single one where the conjunction is part of the predicate. For
the cases of apposition, we define an “is” relation that would
serve as an “is-a” relation, which is usually used in ontology
building.

Lastly, we leverage domain knowledge to extract the values
of arguments or attributes as well as the instances of different
entities. Usually, these would show up as an “=” or a “:” in the
logs. In these cases, we also considered an “is” relation to rep-
resent the relation between the two. Additionally, arguments
are also represented in the format in which command-line
arguments are written. In these cases, we also use an “is”
relation and create a second argument “set” for flags.

2) Task Formulation: As explained in Section III, OpenIE
intends to obtain all relations present in a given sentence
or corpus together with the arguments or entities related by
such relations in a structured manner. Likewise, the goal of
LogIE is to extract the relations present within each log, which
are used as the minimum unit of information from each log.
Specifically, given a stream of raw logs as the input, relational
triples of the form (arg1, relation, arg2) are to be extracted for
each relation present within each log. This task will be tested
against the gold standard we propose in Section VI-B1 and
evaluated as detailed in the following Section VI-B3.

3) Metrics and Baselines: The main challenge to intrin-
sically evaluate LogIE, similarly to cases that are common
in NLP, is that we need to allow different OpenIE triples
extractions to be considered acceptable for the same gold
proposition. For this reason, we follow a similar approach
to that of Stanovsky and Dagan [40] in their OpenIE bench-
mark. Inspired by He et al. [41], where the syntactic heads

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 16,2023 at 05:20:37 UTC from IEEE Xplore. Restrictions apply.

MENG et al.: LogSummary: UNSTRUCTURED LOG SUMMARIZATION FOR SOFTWARE SYSTEMS 3811

TABLE V
TEST ACCURACY ON THE LOG OPENIE TRIPLES GOLD

REFERENCE DATASET OF PUBLIC LOGS

of the predicate and the arguments from a given extraction
should match those of the corresponding gold proposition,
they define a more lenient approach that considers their token-
level overlap instead. Therefore, we use an approach similar
to theirs3 to calculate the precision and recall of the eval-
uation. Among the main differences, we do not propagate
a match to all matching predicates but thoroughly test all
triples against all gold propositions instead. We don’t pro-
duce a confidence score for each triple, so we don’t calculate
AUC scores. The main metric we consider for comparison
between the approaches is the F1 score. The metrics are cal-
culated as follows: precision = # correct extractions

extractions , recall =
recalled gold propositions

gold propositions , F1 = 2 × precision × recall
precision + recall .

We compare LogIE with six Open Information
Extraction methods, namely, ClausIE [42], Ollie [43],
OpenIE5,4 PredPatt [44], PropS [44], and Stanford
OpenIE [45].

4) Experimental Results: We evaluate LogIE and com-
pare it against its manually augmented version and the six

3https://github.com/gabrielStanovsky/oie-benchmark
4https://github.com/dair-iitd/OpenIE-standalone

TABLE VI
COMPARISON OF SPEED MEASURED IN LOGS PER SECOND BETWEEN

LOGIE AND THE PLAIN OPENIE METHODS WHEN PROCESSING THE

INPUT LOGS MEASURED OVER THIRTY RUNS FOR EACH OPENIE
METHOD AND EACH LOGS DATASET

OpenIE baselines in Table V on the four public logs described
in Table III. LogIE learns online templates generated by
LogParse [4]. However, to perform an ablation test, we also
compare LogIE improved, an augmented version using manu-
ally improved templates that were produced as part of the gold
standard dataset introduced in Section VI-B1. Then each base-
line is plain OpenIE approaches used directly on the raw logs.
LogIE consistently produces better results across all public
logs when compared to the baselines. This is because LogIE’s
pipeline approach is optimized to take advantage of both the
structure and the free text present in logs. On the other hand,
plain OpenIE methods are meant to be used directly on free
natural language text. As you will see in Table V, even though
both versions of LogIE are consistently superior to the base-
lines, there are cases where their results could be comparable,
such as on BGL or HPC. The more free text is present in
the logs, the easier it is for plain OpenIE methods to gener-
ate correct OpenIE triples. However, as we show in Table VI,
applying plain OpenIE methods on the logs is inefficient com-
pared to LogIE, which leverages the templates used as input,
and the high speed of template matching using tries to produce
the OpenIE triples output from the raw logs. The throughput
of LogIE is over 200X that of applying plain OpenIE, and
this benefits mainly from template matching. Nonetheless, the
performance of LogIE is sensitive to the accuracy of the tem-
plates used as input, as shown in the ablation test comparison.
As demonstrated by the performance of LogIE Improved, the
more accurate templates are, the better the performance of
LogIE. Further, LogIE leverages either the structure of the log
or the semantic information of the unstructured text within
logs to extract information. If there is no rich information in
the structure or details within the log are omitted to make it
shorter, its performance is also affected. This is the case for
the HDFS logs, where the structured parts don’t provide rich
information and the natural language implicitly refers to the
arguments, which is not picked up by LogIE. This affects its
results with a low recall as seen in Table V. In turn, this affects
the output of LogSummary, given the pipeline nature of the
framework.

C. Evaluation on Ranking Summaries

1) Metrics and Baselines: To automatically evaluate the
log summarization performance of different approaches,
we use ROUGE [46]. The ROUGE metric measures the
summary quality by counting the overlapping units between

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 16,2023 at 05:20:37 UTC from IEEE Xplore. Restrictions apply.

3812 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 3, SEPTEMBER 2023

TABLE VII
LOG SUMMARIZATION PERFORMANCE AND COMPRESSION RATIO (CR)

OF LOGSUMMARY COMPARED TO ITS BASELINES

the generated summary and reference summaries. In our sce-
nario, different operators may manually generate summaries
in different orders of words/phrases. Therefore, we apply
ROUGE-1 to evaluate performance. Following the common
practice [47], we report the precision, recall, and F1 score
for ROUGE-1, where precision = # overlapping words

words in goldreference ,

recall = # overlapping words
words in automatic summary and F1socre =

2×precision×recall
precision+recall We obtain the metrics using open-

source package.5 We apply the compression ratio, i.e.,
size of summaries
size of original logs , to evaluate the log compression
performance. We compare LogSummary with three baseline
extractive summarization methods, namely, TF-IDF [48],
LDA [15], and TextRank (sentence summary) [37]. We imple-
ment TF-IDF and LDA with scikit-learn, a Python library
for software machine learning, and implement TextRank
with NetworkX, a Python library for studying graphs and
networks. Specifically, for the TF-IDF, we consider the log
sequence as a corpus and each log as a document and then
calculate the TF-IDF weight. We select the k words with the
highest weight from a log as the summarization of the log
sequence. For LDA, we set the number of topics to 10 and
select the k words with the highest weight for each topic
as the summarization of the topic, and the summarization
of the log sequence is the set of all topic summarizations.
For TextRank, we use Log2Vec [32] to generate a vector
representation of each log and then rank the importance of
the logs based on the TextRank algorithm. We select the most
important k logs as the summarization of the log sequence.
We set k = 10 in the experiments.

2) Experimental Results: We compare LogSummary with
three baselines on four public datasets. For LogSummary, we
choose the top-5 semantic triples from online logs. Table VII
shows the comparison results of LogSummary and three base-
lines. Overall, LogSummary achieves the best summarization

5https://github.com/pltrdy/rouge

accuracy among the four methods. Both TF-IDF and LDA,
however, have low F1 scores (< 0.5) on all four datasets
because TF-IDF and LDA generate summaries by extracting
keywords, which dismisses valuable information in raw logs.
Although TextRank achieves relatively high precision (e.g.,
0.904 on the BGL dataset), the high precision is at the cost of
low recalls. For instance, on the Proxifier dataset, the recall
of TextRank is only 0.050. Because there are many similar
logs with different variables, when employed on their own,
TextRank may choose many logs of the same type and ignore
other types of logs. On the contrary, LogSummary uses LogIE
to extract triples from logs as an intermediate representation,
which is more fine-grained than each complete log, before
applying TextRank achieving a ≈4.6 times higher recall.

Table VII evaluates the compression ratio for log summa-
rization on four datasets. We find that LogSummary achieves
an average compression ratio of 3.1%, which will vastly reduce
the reading and understanding load of operators.

The results mean that the outputs of LogSummary are not
only readable but also highly compressed.

D. Threats to Validility

The LogSummary framework leverages each of its compo-
nents to produce accurate summaries automatically. However,
its pipeline nature makes each component depends on the qual-
ity of the output from the previous ones. Sometimes, we should
improve the templates manually since template extraction is
not perfectly precise. These imprecisions meant there would
be redundant templates extracted from the logs. Additionally,
the variables may not have been detected properly in some
cases. Therefore, the quality of the templates may affect the
triples extracted by LogIE, which in turn affects the representa-
tions built by Log2Vec [32] which are used by TextRank [37]
to produce the ranked summaries. Nonetheless, each of the
components provides significant benefits over their baselines.
LogIE produces triples at over 200 times the throughput of
plain OpenIE methods, which serve as the intermediate result
that LogSummary leverages to achieve ≈4.6 times the recall
of TextRank [37], which is the best-performing baseline.

Further, we consider four open source log datasets as part
of the evaluation from software systems. Our approaches
outperform their baselines in all of them, which shows the
generalizability of LogSummary. However, it may encounter
challenges when dealing with short logs with non-conforming
syntax or complex application-layer logs with lots of param-
eters in their free text part. For example, operators need to
create complex rules for the Rule Extraction part when faced
with complex logs with many parameters. When a target
system has a large number of grammatically completed logs,
LogSummary will play an important role in it.

VII. DISCUSSION

To further evaluate the performance and demonstrate the
robustness of LogSummary, we do a case study on real-world
logs, which are generated by switches deployed in a top cloud
service provider. We select and label one million switch logs
in the same manner we do for the public datasets as described

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 16,2023 at 05:20:37 UTC from IEEE Xplore. Restrictions apply.

MENG et al.: LogSummary: UNSTRUCTURED LOG SUMMARIZATION FOR SOFTWARE SYSTEMS 3813

Fig. 8. A case study of LogSummary on switch logs.

in Section VI-B1. Here results are consistent with the exper-
iments on the public log datasets. Likewise, given that the
proportion of the free text is higher within this log dataset, a
complex OpenIE approach can also generate comparably accu-
rate triples. Nonetheless, both LogIE approaches outperform
all baselines at a throughput over 200 times higher. For this
real-world dataset, LogIE achieves an F1 of 0.831, whereas
other OpenIE methods get an average F1 of 0.414. At the
same time, LogSummary helps operators to increase their pro-
ductivity by orders of magnitude compared to the existing
combination of manual and rule-based methods.

We conduct a case study of LogSummary on real-world
switch logs to visualize the intermediate steps and showcase
its results. As shown in Fig. 8, we randomly select 300 logs
from real-world switch logs, apply LogIE to extract triples,
and generate summarization with LogSummary. The corre-
sponding weighted triple graph from TextRank is shown in
Fig. 7. Besides, we also conduct a case study on HPC to
ensure consistency with the evaluation. We randomly select
300 logs from the HPC dataset and apply the same process-
ing flow as in switch logs. The result is shown in Fig. 9. Both
summarization results are confirmed by operators, proving that
LogSummary is useful.

There is abundant room for further progress in improv-
ing the ranking algorithm. We do not consider the order of
logs in the ranking algorithm, which may have an impact
on the log summarization. In further work, we can add order
information to the ranking algorithm. For example, when cal-
culating the weights between triples, we could inverse the
weights to the average distance between them. We can also
calculate the number of triples in a certain interval and update
the weights proportional to it.

LogSummary can serve further downstream purposes, which
we consider for future work. The triples of LogSummary could
aid in the creation of knowledge graphs applied to perform
automatic root cause analysis. Additionally, they could serve as
an intermediate representation before other log analysis tasks.
Suppose we add domain knowledge of anomaly logs to the

Fig. 9. A case study of LogSummary on HPC logs.

triple ranking algorithm or use labeled triples to train a deep
learning model that can indicate whether a triple is anoma-
lous. In that case, LogSummary could produce a summary of
anomalous logs for troubleshooting.

VIII. CONCLUSION

Logs play an important role in network and service mainte-
nance. Operators still have to conduct log summarization for
a suspicious log sequence in a manual or rule-based manner
before taking action, even though many methods have been
proposed for automatic log detection/diagnosis/prediction. In
this paper, we propose LogSummary, a simple baseline frame-
work for automatic summarization for large-scale online
services. LogSummary combines LogIE, which accurately and
efficiently obtains information extraction triples from logs, and
a simple yet effective triple-ranking method utilizing the global
knowledge learned from all historical logs. We perform exten-
sive evaluation experiments to demonstrate LogSummary’s
performance in summarizing logs. Moreover, we have open-
sourced LogSummary and the manually labeled gold standard
references, hoping that they can benefit future research works.
In this work, we take the first step towards automated log sum-
marization in an interpretable and readable manner for online
services and believe that LogSummary will benefit researchers
for their future work in log summarization.

REFERENCES

[1] A. Pi, W. Chen, S. Wang, and X. Zhou, “Semantic-aware workflow
construction and analysis for distributed data analytics systems,” in
Proc. 28th Int. Symp. High-Perform. Parallel Distrib. Comput., 2019,
pp. 255–266.

[2] S. He, P. He, Z. Chen, T. Yang, Y. Su, and M. R. Lyu, “A survey
on automated log analysis for reliability engineering,” ACM Comput.
Surveys, vol. 54, no. 6, pp. 1–37, 2021.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 16,2023 at 05:20:37 UTC from IEEE Xplore. Restrictions apply.

3814 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 3, SEPTEMBER 2023

[3] J. Liu, J. Zhu, S. He, P. He, Z. Zheng, and M. R. Lyu, “Logzip:
Extracting hidden structures via iterative clustering for log compres-
sion,” in Proc. 34th IEEE/ACM Int. Conf. Autom. Softw. Eng. (ASE),
2019, pp. 863–873.

[4] W. Meng et al., “Logparse: Making log parsing adaptive through word
classification,” in Proc. Int. Conf. Comput. Commun. Netw. (ICCCN),
2020, pp. 1–9.

[5] J. Zhu et al., “Tools and benchmarks for automated log parsing,” in
Proc. 41st Int. Conf. Softw. Eng. (ICSE), 2019, pp. 121–130.

[6] Y. Liu et al., “Uniparser: A unified log parser for heterogeneous log
data,” in Proc. ACM Web Conf., 2022, pp. 1893–1901.

[7] M. Du, F. Li, G. Zheng, and V. Srikumar, “DeepLog: Anomaly detection
and diagnosis from system logs through deep learning,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Security (CCS), 2017, pp. 1285–1298.

[8] W. Meng et al., “Loganomaly: Unsupervised detection of sequential and
quantitative anomalies in unstructured logs,” in Proc. 28th Int. Joint
Conf. Artif. Intell., vol. 7, 2019, pp. 4739–4745.

[9] S. Zhang et al. “PreFix: Switch failure prediction in datacenter
networks,” Proc. ACM Meas. Anal. Comput. Syst., vol. 2, no. 1, p. 2,
2018.

[10] X. Zhou et al., “Latent error prediction and fault localization for
microservice applications by learning from system trace logs,” in Proc.
27th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw.
Eng., 2019, pp. 683–694.

[11] T. Jia, Y. Wu, C. Hou, and Y. Li, “LogFlash: Real-time streaming
anomaly detection and diagnosis from system logs for large-scale soft-
ware systems,” in Proc. IEEE 32nd Int. Symp. Softw. Rel. Eng. (ISSRE),
2021, pp. 80–90.

[12] P. Dogga, K. Narasimhan, A. Sivaraman, and R. Netravali, “A system-
wide debugging assistant powered by natural language processing,” in
Proc. ACM Symp. Cloud Comput., 2019, pp. 171–177.

[13] E. Gentili, A. Milani, and V. Poggioni, “Data summarization model
for user action log files,” in Proc. Int. Conf. Comput. Sci. Appl., 2012,
pp. 539–549.

[14] J.-G. Lou, Q. Fu, S. Yang, J. Li, and B. Wu, “Mining program workflow
from interleaved traces,” in Proc. 16th ACM SIGKDD Int. Conf. Knowl.
Disc. Data Min., 2010, pp. 613–622.

[15] S. Satpathi, S. Deb, R. Srikant, and H. Yan, “Learning latent events
from network message logs,” IEEE/ACM Trans. Netw., vol. 27, no. 4,
pp. 1728–1741, Aug. 2019.

[16] M. Banko, M. J. Cafarella, S. Soderland, M. A. Broadhead, and
O. Etzioni, “Open information extraction from the Web,” in Proc.
CACM, 2008, pp. 1–7.

[17] M. Mausam, “Open information extraction systems and downstream
applications,” in Proc. IJCAI, 2016, pp. 4074–4077.

[18] J. Qiang, Z. Qian, Y. Li, Y. Yuan, and X. Wu, “Short text topic
modeling techniques, applications, and performance: A survey,” IEEE
Trans. Knowl. Data Eng., vol. 34, no. 3, pp. 1427–1445, Mar. 2022.

[19] D. Gunter, B. L. Tierney, A. Brown, M. Swany, J. Bresnahan, and
J. M. Schopf, “Log summarization and anomaly detection for trou-
bleshooting distributed systems,” in Proc. 8th IEEE/ACM Int. Conf. Grid
Comput., 2007, pp. 226–234.

[20] W. Kryściński, N. S. Keskar, B. McCann, C. Xiong, and
R. Socher, “Neural text summarization: A critical evaluation,” 2019,
arXiv:1908.08960.

[21] W. Shang, M. Nagappan, A. E. Hassan, and Z. M. Jiang, “Understanding
log lines using development knowledge,” in Proc. IEEE Int. Conf. Softw.
Maintenance Evol., 2014, pp. 21–30.

[22] S. Kabinna, W. Shang, C.-P. Bezemer, and A. E. Hassan, “Examining
the stability of logging statements,” Empir. Softw. Eng., vol. 23, no. 1,
pp. 290–333, 2018.

[23] Y. Huo, Y. Su, B. Li, and M. R. Lyu, “SemParser: A semantic parser
for log analysis,” 2021, arXiv:2112.12636.

[24] S. He, Q. Lin, J.-G. Lou, H. Zhang, M. R. Lyu, and D. Zhang,
“Identifying impactful service system problems via log analysis,” in
Proc. 26th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. Found.
Softw. Eng., 2018, pp. 60–70.

[25] V.-H. Le and H. Zhang, “Log-based anomaly detection without log pars-
ing,” in Proc. 36th IEEE/ACM Int. Conf. Autom. Softw. Eng. (ASE), 2021,
pp. 492–504.

[26] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet allocation,”
J. Mach. Learn. Res., vol. 3, pp. 993–1022, Jan. 2003.

[27] R. Chen, Q. Gao, W. Ji, F. Long, and Q. Ling, “Network log analysis
based on the topic word mover’s distance,” in Proc. Chin. Control Decis.
Conf. (CCDC), 2018, pp. 4082–4086.

[28] K. Otomo, S. Kobayashi, K. Fukuda, and H. Esaki, “Latent seman-
tics approach for network log analysis: Modeling and its application,”
in Proc. IFIP/IEEE Int. Symp. Integr. Netw. Manage. (IM), 2021,
pp. 215–223.

[29] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log parsing
approach with fixed depth tree,” in Proc. IEEE Int. Conf. Web Services
(ICWS), 2017, pp. 33–40.

[30] S. Zhang et al., “Syslog processing for switch failure diagnosis and
prediction in datacenter networks,” in Proc. IEEE/ACM 25th Int. Symp.
Qual. Service (IWQoS), 2017, pp. 1–10.

[31] T. Mikolov, Q. V. Le, and I. Sutskever, “Exploiting similarities among
languages for machine translation,” 2013, arXiv:1309.4168.

[32] W. Meng et al., “A semantic-aware representation framework for online
log analysis,” in Proc. IEEE Int. Conf. Comput. Commun. (ICCCN),
2020, pp. 1–7.

[33] M. Gambhir and V. Gupta, “Recent automatic text summarization
techniques: A survey,” Artif. Intell. Rev., vol. 47, no. 1, pp. 1–66, 2017.

[34] L. Gravano, P. G. Ipeirotis, N. Koudas, and D. Srivastava, “Text joins
for data cleansing and integration in an RDBMS,” in Proc. 19th Int.
Conf. Data Eng., 2003, pp. 729–731.

[35] P.-E. Danielsson, “Euclidean distance mapping,” Comput. Graph. Image
Process., vol. 14, no. 3, pp. 227–248, 1980.

[36] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the Web,” Stanford InfoLab, Stanford, CA,
USA, Rep., 1999.

[37] R. Mihalcea and P. Tarau, “TextRank: Bringing order into text,” in Proc.
Conf. Empir. Methods Nat. Lang. Process., 2004, pp. 404–411.

[38] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” in Proc. ACM
SIGOPS Symp. Oper. Syst. Principles, 2009, pp. 117–132.

[39] Q. Lin, H. Zhang, J.-G. Lou, Y. Zhang, and X. Chen, “Log clustering
based problem identification for online service systems,” in Proc. 38th
Int. Conf. Softw. Eng. Compan. (ICSE), 2016, pp. 102–111.

[40] G. Stanovsky and I. Dagan, “Creating a large benchmark for open
information extraction,” in Proc. EMNLP, 2016, pp. 2300–2305.

[41] L. He, M. Lewis, and L. Zettlemoyer, “Question-answer driven semantic
role labeling: Using natural language to annotate natural language,” in
Proc. EMNLP, 2015, pp. 643–653.

[42] L. Del Corro and R. Gemulla, “ClausIE: Clause-based open information
extraction,” in Proc. WWW, 2013, pp. 1–11.

[43] Mausam, M. Schmitz, S. Soderland, R. Bart, and O. Etzioni, “Open
language learning for information extraction,” in Proc. EMNLP-CoNLL,
2012, pp. 523–534.

[44] G. Stanovsky, J. Ficler, I. Dagan, and Y. Goldberg, “Getting more out
of syntax with PropS,” 2016, arXiv:1603.01648.

[45] G. Angeli, M. J. J. Premkumar, and C. D. Manning, “Leveraging lin-
guistic structure for open domain information extraction,” in Proc. ACL,
2015, pp. 344–354.

[46] C.-Y. Lin, “ROUGE: A package for automatic evaluation of summaries,”
in Text Summarization Branches Out. Barcelona, Spain: Assoc. Comput.
Linguist., Jul. 2004, pp. 74–81.

[47] K. Ganesan, “Rouge 2.0: Updated and improved measures for evaluation
of summarization tasks,” 2018, arXiv:1803.01937.

[48] S. Lee and H.-J. Kim, “News keyword extraction for topic tracking,”
in Proc. 4th Int. Conf. Netw. Comput. Adv. Inf. Manage., vol. 2, 2008,
pp. 554–559.

Weibin Meng received the B.S. degree in soft-
ware engineering from Jilin University, Changchun,
China, in 2016, and the Ph.D. degree from the
Department of Computer Science and Technology
and the Institute for Network Sciences and
Cyberspace, Tsinghua University, Beijing, China, in
2021. He is currently a Principal Engineer with
Huawei. His research interests include anomaly
detection, log analysis, and network security.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 16,2023 at 05:20:37 UTC from IEEE Xplore. Restrictions apply.

MENG et al.: LogSummary: UNSTRUCTURED LOG SUMMARIZATION FOR SOFTWARE SYSTEMS 3815

Federico Zaiter received the B.S. degree in soft-
ware systems engineering from Universidad ORT
Uruguay in 2017, and the M.S. degree in com-
puter science from the Department of Computer
Science and Technology, Tsinghua University,
Beijing, China, in 2020. He is currently a
Lead Machine Learning Engineer with Tryolabs.
He is also a Lecturer with the Department of
Artificial Intelligence and Big Data, Universidad
ORT Uruguay. His research interests include log
analysis for anomaly detection and troubleshooting
within AIOps.

Yuzhe Zhang received the B.S. degree in software
engineering from Nankai University in 2020, where
he is currently pursuing the M.S. degree with the
College of Software. His research interests include
deep learning and anomaly detection.

Ying Liu (Member, IEEE) received the Ph.D. degree
in applied mathematics from Xidian University in
2001. She is currently a Full Professor with the
Institute for Network Sciences and Cyberspace,
Tsinghua University. Her research interests include
multicast routing, network architecture, and router
design and implementation.

Shenglin Zhang (Member, IEEE) received the
B.S. degree in network engineering from Xidian
University, Xi’an, China, in 2012, and the
Ph.D. degree in computer science from Tsinghua
University, Beijing, China, in 2017. He is cur-
rently an Associate Professor with the College of
Software, Nankai University, Tianjin, China. His
current research interests include failure detection,
diagnosis, and prediction in data center networks.

Shimin Tao received the M.S. degree from the
Beijing University of Aeronautics and Astronautics,
Beijing, China. He is currently a Technology Expert
with Huawei 2012 Laboratory. The main research
direction is AIOps, machine translation, and natural
language processing.

Yichen Zhu received the B.S. degree in statistic
from University of Toronto in 2020. He is currently a
Researcher with Midea Group. His research interests
are broadly in efficient deep learning and automated
machine learning.

Tao Han received the B.S. degree in 2002. He is cur-
rently the Principal Architect with Huawei Qiankun,
Huawei. His research interests are autonomous driv-
ing networks and security.

Yongpeng Zhao received the B.S. degree in 2001.
He is currently the Principal Architect with NCE
Data Communication Domain, Huawei. His research
interests are autonomous driving networks and cloud
computing.

En Wang (Member, IEEE) received the Ph.D.
degree in computer science and technology from
Jilin University, Changchun, in 2016, where he
is currently a Professor with the Department of
Computer Science and Technology. He is also a
Visiting Scholar with the Department of Computer
and Information Sciences, Temple University,
Philadelphia. His current research focuses on crowd-
sensing, data mining, and mobile computing.

Yuzhi Zhang received the B.S. and M.S. degrees in
computer science from the Department of Computer
Science and Technology, Tsinghua University in
1985 and 1987, respectively, and the Ph.D. degree
in computer science from the Institute of Computing
Technology, Chinese Academy of Sciences in 1991.
He is currently the Dean of the College of Software,
Nankai University, and is also a Distinguished
Professor. His research interests include deep learn-
ing and other aspects of artificial intelligence.

Dan Pei (Senior Member, IEEE) received the M.S.
degree in computer science from the Department
of Computer Science and Technology, Tsinghua
University in 2000, and the Ph.D. in computer
science from the Computer Science Department,
University of California at Los Angeles, Los
Angeles, in 2005. He is currently an Associate
Professor with the Department of Computer Science
and Technology, Tsinghua University. His research
interests include network and service management
in general. He is an ACM senior member.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 16,2023 at 05:20:37 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

