
IEEE TRANSACTIONS ON SERVICES COMPUTING 1

LogKG: Log Failure Diagnosis through
Knowledge Graph

Yicheng Sui, Yuzhe Zhang, Jianjun Sun, Ting Xu, Shenglin Zhang, Member, IEEE
Zhengdan Li, Yongqian Sun, Member, IEEE, Fangrui Guo, Junyu Shen, Yuzhi Zhang

Dan Pei, Senior Member, IEEE, Xiao Yang, Li Yu

Abstract—Logs are one of the most valuable data to describe the running state of services. Failure diagnosis through logs is crucial
for service reliability and security. The current automatic log failure diagnosis methods cannot fully use the multiple fields of logs, which
fail to capture the relation between them. In this paper, we propose LogKG, a new framework for diagnosing failures based on
knowledge graphs (KG) of logs. LogKG fully extracts entities and relations from logs to mine multi-field information and their relations
through the KG. To fully use the information represented by KG, we propose a failure-oriented log representation (FOLR) method to
extract the failure-related patterns. Utilizing the OPTICS clustering method, LogKG aggregates historical failure cases, labels typical
failure cases, and trains a failure diagnosis model to identify the root cause. We evaluate the effectiveness of LogKG on a real-world
log dataset and a public log dataset, respectively, showing that it outperforms existing methods. With the deployment in a top-tier global
Internet Service Provider (ISP), we demonstrate the performance and practicability of LogKG.

Index Terms—LogKG, cluster, embedding, diagnosis.

✦

1 INTRODUCTION

LARGE-SCALE services are being developed and imple-
mented at an increasing rate, resulting in increased

complexity and interdependence. As a result, when one
service fails, several other services may also suffer, affecting
the experiences of millions of users [1] [2]. An accurate
and practical failure diagnosis approach can considerably
improve service security and reliability. Log-based failure
diagnostic approaches rely on logs to establish the root
cause of a failure [3], e.g., network link down, software
bug, hardware crash, or misconfiguration. Since logs are
often the only accessible data for capturing service runtime
information, log-based failure diagnostic approaches have
attracted much attention recently [4].

Logs contain rich semantic information about service
systems, which is vitally essential for the system’s security

• S. Zhang is the corresponding author.

• Y. Sui, Y. Zhang, T. Xu, Z. Li, Y. Sun, and J. Shen are with Nankai
University, Tianjin, China. Email: {lzd, sunyongqian}@nankai.edu.cn,
{suiyicheng, zyzcs, xuting, 2120220688 }@mail.nankai.edu.cn.

• J. Sun, X. Yang, and L. Yu are with China Mobile Communica-
tions Corporation. Email:sunjianjun@gd.chinamobile.com, {yangxiaoyjy,
yuliyf}@chinamobile.com

• S. Zhang and Y. Zhang are with the College of Software, Nankai Uni-
versity, Tianjin, China, Key Laboratory of Data and Intelligent System
Security, Ministry of Education, China, and also with the Haihe Labora-
tory of Information Technology Application Innovation (HL-IT), Tianjin,
China. Email: {zhangsl, zyz}@nankai.edu.cn

• F. Guo is with Accumulus Technology (China) Co., Ltd. Email: fan-
grui.guo@yunzhanghu.com

• D. Pei is with Department of Computer Science, Tsinghua University,
Beijing, China, and also with Beijing National Research Center for
Information Science and Technology. Email: peidan@tsinghua.edu.cn.

• This work was supported in part by the Advanced Research Project of
China (No. 31511010501), National Natural Science Foundation of China
(Grant No. 62272249, 62072264), and Natural Science Foundation of
Tianjin (Grant No. 21JCQNJC00180).

Component Task ID Content
mobservice2 1ce0358e241dc150 now call service:redisservice2
mobservice1 5c85bd2cf59342ec now call service:redisservice2
redisservice2 1ce0358e241dc150 QR code has expired
redisservice1 5c85bd2cf59342ec redis write success
redisservice1 5c85bd2cf59342ec redis read information successfully
redisservice1 5c85bd2cf59342ec service accept
mobservice2 1ce0358e241dc150 information has expired
mobservice1 5c85bd2cf59342ec info write cussess
webservice2 1ce0358e241dc150 an error occurred in the downstream service
webservice1 5c85bd2cf59342ec write redis successfully

Component Task ID Content
dbservice2 efccf0c61a3fd9ce now call service:redisservice1
dbservice1 d04ac67cf6c285cd now call service:redisservice1
redisservice1 d04ac67cf6c285cd service refuse
redisservice1 efccf0c61a3fd9ce redis write success
dbservice1 d04ac67cf6c285cd dbservice1 access redis service denied
dbservice2 efccf0c61a3fd9ce token generate success
webservice2 d04ac67cf6c285cd an error occurred in the downstream service
webservice1 efccf0c61a3fd9ce write redis successfully

Fig. 1: Logs of two failure cases.

and reliability. They are semi-structured text generated by
logging statements in source code. A log has multiple fields,
including timestamp, level, content, IP, component, task
ID, and content, representing when it is generated, the
severity of the event, the detailed event information, and the
device, software component, and process that generate it,
respectively. The unstructured content field usually consists
of sentences predefined by developers in the source code
to represent a specific event or state information during
the program’s execution. The other fields are structured.
Table 1 lists several examples of logs in the Generic AIOps
Atlas (GAIA) dataset [5]. According to the experience of
operators, it is necessary to consider the information from
multiple fields in manual failure diagnosis (see §2.2.3 for
more details). Such as Figure 1 shows the logs during two
failures. The logs highlighted in red indicate the root causes

IEEE TRANSACTIONS ON SERVICES COMPUTING 2

TABLE 1: Emamples Of Logs

Timestamp Level IP Component Task ID Content

2021-07-04 00:38:16,368 INFO 0.0.0.2 logservice2 6318eaeaabe5ee2b
the list of all available services are

dbservice1: http://0.0.0.4:9388,
dbservice2: http://0.0.0.2:9389

2021-07-04 00:42:20,756 INFO 0.0.0.2 dbservice2 a80b24eb9b65be4c now call service:redisservice2, inst:
http://0.0.0.2:9387 as a downstream service

2021-07-04 00:42:45,260 WARNING 0.0.0.1 redisservice1 a39e68cffda53b88 User not scanned, please wait.
Status code: 300

2021-07-04 00:46:59,157 INFO 0.0.0.1 mobservice1 dd29a2b8bd9d9766 info 487a2bca-dc1e-11eb-b1b8-0242ac110004:
XWkAGNLi write success

TABLE 2: Entities And Relations In GAIA Dataset

Subject Predicate Object

Log hasTemplate Template
Log hasComponent Component
Log hasPID PID
Log hasLevel Level
Log hasRequestID RequestID

Template hasEvent Event
Template hasCEE CEE

of these failures, which we call failure-related logs. It is
challenging to find them from the raw logs by simply using
the content field. When information from other fields is con-
sidered holistically, things get easier. The failure-related logs
for the first case in Figure 1 can be captured using the task
ID “1ce0358e241dc150” and the components “redisservice2”
and “mobservice2”, combined with the semantic informa-
tion in the content field. For the second case, integrating
the task ID “d04ac67cf6c285cd”, the components “redisser-
vice1” and “dbservice1”, and the content field makes it
to discover the failure-related logs. They can be used to
determine the failures’ root causes.

Some log-based failure diagnosis methods [3], [6]–[10]
mine the information contained in logs. However, they
only focus on the unstructured content field, neglecting the
information of the structured fields, making them unable
to fully mine the failures’ features. Existing studies [6], [7]
have shown the knowledge graph (KG) technique can ef-
fectively fuse unstructured texts and structured data. There-
fore, we fuse the unstructured content field and structured
fields (e.g., timestamp, level, IP, component, and task ID) of
logs using and utilizing a KG for failure diagnosis.

A KG uses entities and relations to mine information
in multiple fields. Existing KG-based text fusion methods
[7] usually consists of three steps: entity extraction, entity
alignment, and relation extraction. The information in the
structured fields, as listed in Table 1, is relatively fixed
and straightforward. We can easily extract the entities from
them. For the unstructured texts, the existing log parsing
methods [11], [12] can effectively resolve the texts into tem-
plates and parameters. Log templates can be used to extract
and align the entities. Then, entities with different represen-
tations referring to the same object can be aggregated into
the same entity in the KG. As for relation extraction, there
are only several relations between logs and entities extracted
from structured fields, such as ‘hasComponent”, “hasPID”,
“hasLevel”, and “hasRequestID”. The relations between
templates and the entities extracted from templates are
“hasCEE” and “hasEvent”, etc. Moreover, another primary

relation is “hasTemplate” between a log and a template.
Table 2 lists the types of entities and relations in the KG
built based on the GAIA dataset and the triple prototypes
of them. To sum up, the KG constructed based on logs only
has several pre-defined types of relations that can be easily
obtained. Thus, the primary task of multi-field information
fusion for logs is to extract entities from various fields and
align them based on semantics. In this way, the entities
and relations included in logs can be retrieved, and we can
construct a KG to fuse the multi-field information.

To overcome the challenges lying in entity extraction,
entity alignment, and failure representation (more details
in section §2.3), we propose LogKG, a novel framework for
failure diagnosis based on KG-based multi-field informa-
tion fusion. LogKG extracts different types of entities and
relations from the multiple fields of logs and aligns the
entities based on semantics. It represents logs utilizing KG
embedding (KGE) and obtains failure-oriented log represen-
tation vectors (FOLR) for failure cases. Then it aggregates
historical failure cases and labels the root causes of the
typical failure cases for each cluster. Above all, the following
are the primary contributions of this paper:
Log Event Extraction. To extract entities from the multiple
fields of logs, we propose a log event extraction method
through open information extraction. It extracts triples from
log templates and treats them as independent events. These
events provide a more comprehensive representation of logs
and can be used in KG construction.
Alignment for Triples. An entity alignment method can
aggregate entities related to the same object and establish
indirect associations between them from multiple fields of
logs. A semantics-based clustering method generates BERT
[13] variables to obtain the vectors of log triples and merges
triples with the same semantics into one entity to align them.
Failure-Oriented Log Representations. To mine failure fea-
tures, we propose FOLR to extract failure representation
vectors from logs. It finds failure-related logs after a failure
occurs and calculates the failure’s representation vector.
Published Dataset. We publish the failure case dataset1 that
we use, which is collected from China Mobile Communi-
cations Corporation (CMCC) , a top-tier global Internet Ser-
vice Provider (ISP). These logs come from different types of
faults in real scenarios and support the subsequent research
on log-based failure diagnosis. We also publish our source
code in the same repository.

1. https://anonymous.4open.science/r/LogKG-A6BD

IEEE TRANSACTIONS ON SERVICES COMPUTING 3

TABLE 3: Related Work

Proposal Objective Data Baselines Reason

Yuan et al. [3]
LogCluster [14] Failure Diagnosis Execution logs Yes The scenario of these works is the same as ours.

LogFlash [15]
DeepLog [16] Anomaly detection Execution logs No

Their outputs are the anomalous logs that deviate
from the position of the usual path,

which is inconsistent with our objective.
LOGAN [10]

Onion [8]
FDiagV3 [9]

Failure Diagnosis Execution logs No
Their outputs are the log entries that

potentially lead to the problem,
which are inconsistent with our objective.

LADRA [17] Failure Diagnosis Execution logs No This work supports only four types of failures,
which is inconsistent with our scenario.

LogM [18] Failure Diagnosis Execution logs
Prior KG No

This work heavily relies on prior knowledge
about failure root causes and log events,

which cannot be obtained in our scenario.

Nagaraj et al. [19] Failure Diagnosis Event logs
State logs No

This work relies on the classification
of event logs and state logs,

which cannot be obtained in our work.

Ikeuchi et al. [20] Failure Diagnosis Execution logs
User actions No This work relies on user actions,

which cannot be obtained in our scenario.
Log3C [21]

Wang et al. [22] Failure Diagnosis Execution logs
KPIs No These works rely on KPIs,

which cannot be obtained in our scenario.

To measure the effectiveness of LogKG, we evaluate
it on a real-world dataset collected from CMCC and a
popular open-source GAIA dataset. LogKG improves the
accuracy and Macro-F1 scores by 4% and 1.5% over the two
baselines on the CMCC dataset, respectively. At the same
time, the improvements on the GAIA dataset are 26% and
15%, respectively. We also demonstrate the effectiveness of
FOLR and KG through ablation studies.

Based on a 5-month deployment of LogKG in CMCC,
we evaluate the workloads of manual verification and
automatic failure diagnosis based on LogKG, respectively.
LogKG handles an average of 47 service failures per day,
which can be diagnosed within five minutes, reducing the
average failure mitigation time by 20+ minutes. LogKG
significantly reduces the amount of manual work required.

The remainder of this paper is organized as follows:
In §2, we introduce the related works, NLP concepts, and
challenges. In §2.3, we elaborate on LogKG’s framework.
Later in §4, we depict our experimental setup and results.
Afterward, we describe the details of LogKG’s deployment
in §5 and conclude our paper in §6.

2 RELATED WORK AND PRELIMINARIES

We first present representative approaches related to
semantic information extraction and failure diagnosis of
logs. Next, we give the natural language processing (NLP)
concepts and KG concepts used in this paper. Then, we
briefly describe the process of the manual failure diagnosis.
Finally, we present three challenges we face.

2.1 Related Work
2.1.1 Log-based Semantic Information Extraction

Some existing log anomaly detection works [1], [23]–
[26] have been proposed to extract the semantic information
of logs. LogAnomaly [1] obtains the semantic vector of a
template by determining synonyms and antonyms. LogRo-
bust [23] uses TF-IDF to give different word vectors differ-
ent weights to obtain template vectors. [24] combines the

transaction-level topic model for learning the embedding of
logs.Log2vec [25] uses the semantic association to represent
the relations by a graph embedding-based method.

In contrast to the methods described above for extracting
semantic information from log entries, SLOGERT [27] and
LEKG [26] model semantic information in logs using a
KG. CoreNLP [28] is used by SLOGERT [27] to obtain the
keywords information contained in log templates. It also
employs regular expressions to determine the parameter
type. LEKG [26] constructs triples from extracted semantic
information using NER (Named Entity Recognition) [29]
and background knowledge, and generates new triples us-
ing rule inference. When the log-based KG is combined
with the background KG, the vast amount of information
contained in background knowledge is utilized. None of
these methods mine the semantics of logs’ structured fields.
2.1.2 Log-based Failure Diagnosis

Manual failure diagnosis is often error-prone and labor-
intensive [4]. Therefore, some methods have been proposed
for automatic failure diagnosis based on logs in recent years
[16] [3] [15] [18] [30] [10] [20] [31] [22] [21]. Table 3 lists some
related works of failure diagnosis and why they are chosen
or not as baselines in our work. We analyze the data types in
the logs to classify them into the following five categories.
a) Execution Path Analysis. DeepLog [16] and LogFlash
[15] use logs to construct log execution path and diagnose
the root cause of failures. Since the above two methods
do not explicitly give the root cause of a failure,they are
inapplicable to our circumstances.
b) Failure-related Log Extraction. All three methods ex-
tract components from logs, compare normal and abnormal
logs, and select failure-indicating logs to help diagnose
failures. LOGAN [10] groups, parses, and aligns logs to
detect normal patterns. After a failure, it calculates the log
sequence divergence from a reference model and suggests a
cause. Onion [8] extracts semantic information from the log,
compares normal and anomalous logs, and selects the log
that indicates the failure root cause to aid failure diagnosis.

IEEE TRANSACTIONS ON SERVICES COMPUTING 4

FDiagV3 [9] uses computer cluster logs to diagnose failures.
The three methods are inapplicable to our scenario because
they aim to find logs that may indicate the root cause of
failure.
c) Specific Type Root Cause Analysis. LADRA [17]can
judge the time and location of faults. It uses training and
detection in the form of real-time stream processing to
determine the time of failure. A graph-based model is built
to track the fine-grained request execution paths based on
the migration probability to identify fault anomalies. It sup-
ports only four types of root causes, namely CPU, memory,
network, and disk, which are inconsistent with our scenario.
d) Auxiliary Data Based Diagnosis. LogM [18] proposes a
analysis and anomaly KG framework for real-world failure
diagnosis. User actions help Ikeuchi et al. [20] find the cause.
Nagara et al. [19] propose comparing system behavior logs
in good and bad performance to diagnose performance
failures. Log3C [21]uses cascading clustering to quickly
group log sequences. Then, it finds significant issues that
degrade KPIs. Wang et al. [22] suggest correlating log and
KPI anomalies. These five works require a prior KG, user
action data, or KPI data, which we can not obtain in a
scenario.
e) Failure Type Determination. LogCluster [14] calculates
log sequence vectors to represent log sequences and deter-
mines failure types by clustering. Yuan et al. [3] try to extract
representation vectors from anomalous logs and use repre-
sentation vectors to build a classifier to determine the failure
type. But the clustering method provided by LogCluster
doesn’t use semantic information about the log itself. Yuan
et al. [3] adopt supervised learning, which requires manual
labels to train a classifier.

2.2 Preliminary
2.2.1 KG Construction and Embedding

LogKG utilizes the KG to fuse multi-field information.
KG construction is the process of extracting structured infor-
mation, and it includes three steps: entity extraction, relation
extraction, attribute extraction, and entity alignment.
Entity Extraction is the process of finding named entities in
text. This is usually done with algorithms like Yan et al. [32]
and Strakova et al. [33] for named entity recognition (NER).
Relation Extraction aims to identify the relation of the given
entity pair. Zeng et al. [34] propose an end-to-end model
that can jointly extract relations from sentences. Entities
are linked through relations to form a web-like knowledge
structure.
Attribute Extraction aims to capture the attribute informa-
tion of a specific entity from different information sources.
Jiang et al. [35] can mine meta patterns in a massive corpus
and can find high-quality attribute description statements
as attribute values in the scenario of attribute extraction. we
can treat entities with different label information as different
entities, so the LogKG doesn’t contain attribute extraction.
Entity Alignment aims at linking different entities with the
same meaning. Some of the extracted entity names may
differ, but they refer to the same entity, in which case they
should be aligned. Zhu et al. [36] propose a novel Relation-
aware Neighborhood Matching model named RNM for it.

KGE embeds the components of a KG, including entities
and relations, into continuous vector spaces [37]. It can be

TABLE 4: A Template Can Represent Multiple Events

Template Event
instance: VAR1 Starting instance
do build and run instance VAR2

instance is VAR1
instance is Starting

VAR1 is a valid instance name
list backing images VAR2

VAR1 is instance name
VAR1 is valid
instance name is valid

image VAR1 at VAR2 in use image is VAR1
image VAR1 is at VAR2

Anomaly
Alert

Raw
Logs

Component
Selection

Log
Selection

Failure Log
Collection

Failure
Recovery

Failure
Cause

Alert Diagnosis Recovery

Fig. 2: The workflow of the manual failure diagnosis.

categorized into two groups: translational distance models
and semantic matching models.
Translational Distance Models exploit distance-based scor-
ing functions. They measure the plausibility of a fact as
the distance between two entities, after a translation by the
relation [37]. Relations are modeled in TransE [38] as transla-
tions acting on low-dimensional embeddings of entities, and
both entities and relations are represented as vectors in the
same space. KG2E [39] uses multivariate Gaussian random
vectors to depict entities and relations. All connections are
interpreted as complex vector rotations from one entity to
another by RotatE [40].
Semantic Matching Models uses similarity-based scoring
functions. Matching latent semantics of entities and relations
in vector space representations [37] determines fact plausi-
bility. RESCAL [41] assigns latent semantics to each entity.
Each matrix represents latent factor pairwise interactions.
DistMult [42] uses neural-embedding to learn entity-relation
representations. Calculation and cost are simple.

2.2.2 NLP Concepts

Developers usually define logging statements in a natu-
ral language-like manner. LogKG utilizes some NLP tools to
extract entities from the content field.
Open Information Extraction (OpenIE) [43] extracts se-
mantic triples to represent the information in raw text, based
on different NLP toolkits. LogKG uses it to extract semantic
triples from log templates to represent events in logs.
Stanford CoreNLP is an extensible pipeline provides core
natural language analysis [28]. It integrates various func-
tions like NER, POS (part-of-speech), and OpenIE. LogKG
performs triple extraction and keyword tagging based on
CoreNLP to extract the information in the content field fully.
Common Event Expression (CEE) is a toolkit that offers a
detailed taxonomy of general events. It improves the ability
of users to interpret and analyze events [44] effectively.
LogKG annotates the keywords in logs using CEE.

IEEE TRANSACTIONS ON SERVICES COMPUTING 5

2.2.3 Manual Failure Diagnosis
Figure 2 shows the manual failure diagnosis workflow.

After receiving a performance issue, operators will establish
the failure’s influence scope. Then, they will identify failure-
related logs and determine the failure’s root cause based
on experience. Important are the failure-related logs. They
will directly affect the results of the failure diagnosis. It is
necessary to use the possible relations between logs to locate
them.

In Table 1, we can see that a log has multiple fields repre-
senting different information. Log relations are contained in
the content field and other fields. For example, different logs
may share the same task ID or IP address. As mentioned in
§1 and Figure 1, Operators cannot capture these relations
when only the content field is used.

To reduce the workload, operators usually specify rules
while searching a large number of logs. Even so, there are
some disadvantages. On the one hand, labor-intensive to
manually maintain these rules. On the other hand, it is error-
prone to diagnose the root cause of failures based on these
rules.

2.3 Challenges
Based on the above information, we introduce the three

challenges lying in KG-based log failure diagnosis.
CH.1. Entity Extraction. As listed in Table 4, a log tem-

plate can represent multiple events. For example, Table 4
lists that “instance is VAR1” and “VAR1 is instance name”
in the first template represent different events. Existing log-
based event failure diagnosis methods treat each log tem-
plate as a single entity, ignoring the multiple contextually
relevant events contained in the log. So the different events
in a log need to be extracted as different event entities.

CH.2. Entity Alignment. Entity alignment aims to merge
entities from different sources but semantically represent the
same real-world object [45]. Without entity alignment, some
entities with underlying relations cannot build associations
with each other. For instance, in Table 4, “instance is VAR1”
in the first template and “VAR1 is instance name” in the sec-
ond template represent the same event. Intuitively, the first
and second templates should build associations through the
same event entity. However, existing methods cannot align
the event entities with similar semantics and merge them
into the same entity.

CH.3. Failure Case Representation. In NLP tasks, repre-
sentation vectors are usually calculated by statistical-based
methods with TF-IDF [46]. However, unlike natural lan-
guage, logs contain much noise. E.g., logs generated by
scheduled tasks and normal business activities are usually
irrelevant to failures and may interfere with failure diagno-
sis. The native NLP methods are unsuitable for obtaining
failure-oriented log representations due to noise.

3 LOGKG
3.1 The Framework of LogKG

LogKG has two parts: offline training and online diagno-
sis in Figure 3. When extracting entities, it not only uses in-
formation in the structured data but also extracts keywords
and events from the unstructured texts. It aligns entities
from different fields and fuses the multi-field information
through a KG. It uses KGE to generate the representation

vector of each failure. Then, it aggregates these failure cases
by clustering. Operators label the root causes of typical cases
for each cluster. After a failure occurs, LogKG converts the
real-time logs into a representation vector and diagnoses the
root cause based on the trained model.

Figure 4 shows the KG construction process, where
the main steps are entity extraction and entity alignment.
LogKG extracts triples from log templates in entity extrac-
tion, addressing the first challenge (i.e., entity extraction).
In entity alignment, LogKG aligns events through seman-
tics, addressing the second challenge (i.e., entity alignment).
Then it builds a KG to fuse the aligned entities. It gets
the representations of logs through KGE. Our proposed
FOLR combines the local features of a failure and the global
features of all failures to identify the failure-relevant logs. In
this way, it obtains the failure-oriented representation vector
for each failure, solving the third challenge (i.e., failure-
oriented log representation).
3.2 Entity Extraction

A log can be divided into two main parts: structured
data and a template in Figure 4. Based on these two parts,
we can extract three types of entities, i.e., structured entities,
keywords, and event triples. Structured entities can be ex-
tracted directly. LogKG extracts keywords and event triples.

3.2.1 Keyword Extraction
Log templates contain keywords related to compo-

nents, states, and tasks in the system, such as “MySQL”,
“DataBase”, “AMQP”, and “Error”. These keywords are
important for failure diagnosis. So they need to be extracted.
Specifically, LogKG utilizes CoreNLP [28] to select key-
words from log templates based on part-of-speech tagging.

3.2.2 Event Extraction
As mentioned, a log can contain multiple events. To

efficiently extract the multiple events of each log. LogKG
performs information extraction on templates, extracting
event triples contained in them. Specifically, it combines
Rule Extraction (RE) and OpenIE [47] to extract the triples.
RE for Rule Triples. The purpose of RE is to take advantage
of the structure of logs. According to our observation, there
are some rules for systems to print logs. So, it becomes easier
to define rules to extract events precisely. Such as in our
implementation, we use some rules to extract entity-value
pairs because they’re separated by a “=” or “:” symbol.
OpenIE for Semantic Triples. OpenIE [43] is often used
to extract semantic triples. LogKG utilizes it to extract
semantic triples from logs, representing the multiple events
in each log. There has been substantial progress in OpenIE
approaches since it was proposed by Banko et al. [43].
These methods take free text as input and yield semantic
triples as output, formed by two arguments related by a
predicate such as “Instance”, “is”, and “valid”. Here, the
implementation of OpenIE is not fixed.

Based on the above two components, LogKG extracts
rule triples and semantic triples from log templates, respec-
tively. So each event is denoted as an entity through a triple.
3.3 Entity Alignment

Entity alignment aims to identify entities from different
sources but semantically represent the same real-world ob-
ject. We need to align these entities and merge the aligned

IEEE TRANSACTIONS ON SERVICES COMPUTING 6

Failure
Cases

Failure Case
Clusters

Failure Case
Vectors

Label Typical
Case

A New Failure
Case

Failure Case
Representation

Knowledge
Graph

Extracted
Entities

Template
Embeddings

Root Cause Failure Report

Offline Training Online Diagnosis

§3.5
FOLR

§3.4
KGE

Aligned
Entities

Raw
Logs

§3.2
Extract

§3.3
Align

§3.6
Diagnose

§3.4
Construct

§3.6
Assign/Update

Fig. 3: The framework of LogKG

entities. In this way, we can build associations for the entities
with underlying relations by the aligned entities. LogKG
aligns keywords and events as follows.
3.3.1 Keyword Alignment

For keyword entities, LogKG aligns them by integrating
NLP tools and domain knowledge. Specifically, it semanti-
cally annotates keyword entities based on the CEE library
[44] and maps meaningful keywords into concept entities.
However, the concepts contained in CEE are incomplete,
so we extend the concepts of the CEE library based on
domain knowledge. For example, the keyword “AMQP”
can be annotated as “message middleware”.
3.3.2 Triple Alignment

Although LogKG can automatically extract semantic
triples from logs, the syntax of various triples is very differ-
ent. Some triples representing similar semantics are pretty
dissimilar in syntax. Table 4 shows that the events “instance
is VAR1” in the first template and “VAR1 is instance name”
in the second template represent similar semantics. Logs
corresponding to these two templates are context-related.
To associate these context-related log templates, we need to
build associations for these templates using event entities.
Therefore, we need to align these triples based on semantics
and aggregate semantically similar triples into one entity.

LogKG aggregate triples into clusters and treats each
cluster as an event entity. To measure semantic similarity,
it converts these triples into vectors first. Specifically, since
each triple is a complete short sentence, LogKG utilizes a
pre-trained language model to convert each triple into a
fixed-dimensional vector. Some BERT [13] based pre-trained
language models have achieved superior performance in
recent years. We choose a pre-trained language model [48]
of them to obtain the vectors of these triples. Please note
that the selection of pre-trained natural language models is
not our main contribution. Then, LogKG aggregates these
semantically similar triples into event entities by clustering.
Since the number of clusters is pending, we choose some
algorithms that do not require specifying the number of
clusters. Here, the clustering algorithm can be DBSCAN
[49], hierarchical clustering [50], OPTICS [51], or others.
3.4 Knowledge Graph Construction and Embedding
3.4.1 Knowledge Graph Construction

LogKG requires storing large-scale unstructured data
and displaying multi-field information association relations,

Knowledge Graph

Raw Log
TemplateStructured

Text

LogParse

Keyword
Entity

Event
Entity

Structured
Entity

Entity Extraction

Entity Alignment

Structured
Entity

Concept
Entity

Clustered
Event
Entity

KG Construction

Fig. 4: The KG construction framework of LogKG

so Neo4j [52], which is based on graph structure storage,
is applied. It has excellent performance for large-scale data
queries and flexible unstructured data storage. It includes
a Neo4j data browser to execute CQL (Cassandra Query
Language) instructions which is a user-friendly interface.

After entity extraction and entity alignment, LogKG con-
structs a KG based on the explicit relations of different types
of entities. Since logs contain limited information about the
extracted entities, we cannot obtain the data properties of
the entities. An entity’s name represents the type and object
properties of the entity. Figure 5 shows a subgraph of KG
constructured by LogKG with different node types. We can
see LogKG automatically associates the structured entities
with different logs, e.g., “RequestID”, “Template”, “Level”,
“PID”, “Component”, “CEE”. Logs are also mapped to log
templates, which are associated with event entities and
keyword entities, e.g., a log template is associated with
“Event” and “CEE”.

In this way, different entities extracted from multiple log
fields are associated. We focus on the log templates and
establish direct or indirect relations between the aligned
entities and the log templates. These relations express the
correlation between the semantics of different log templates.

The KG constructed by LogKG contains several types of
entities and relations. As shown in Figure 5, the entity types
include ”Log”, ”RequestID”, ”PID”, ”Level”, ”Component”,

IEEE TRANSACTIONS ON SERVICES COMPUTING 7

Template

Log

CEE

Level

Component PID

RequestID

hasTemplate

hasPID

log_87
6151

WARN
ING

hasLevel

PID_4
2079

hasPID

a6cb
54e4 hasCEE object

_file

req-...

hasComponent

hasLevel

hasTemplate
hasTemplate

log_27
1513

log_27
1513

nova.c
omp...

Event

hasEvent
52

51

hasEvent
hasEvent

hasEvent

8cd5
6957

1ebd
32a8

a0cd
4c86

25bb
3e19

hasRequestID

hasEvent

hasEvent

hasComponent

hasComponent

hasLevel

Fig. 5: A subgraph of an example KG constructed by LogKG.

”CEE”, ”Template”, and ”Event”. Some of these entity types
correspond to the structured fields in logs. Therefore, logs
from different services may have different types of entities.
Different entities usually have different relations. For exam-
ple, the relations between the ”Template” entities and the
”Event” entities are ”hasEvent”.

3.4.2 Knowledge Graph Embedding (KGE)
We need to embed the logs into a vector space to di-

agnose failures based on logs. Based on the intuition that
different logs corresponding to different types of failures
should be easily distinguishable in a vector space, we need
to make related logs closer and irrelevant logs farther apart
in the vector space. Regular embedding methods can only
embed the unstructured content field in the logs. They can-
not leverage the multi-filed information in the logs, making
it very difficult to identify failure-related logs in the vector
space.

KGE embeds the components of a KG, including entities
and relations, into continuous vector spaces [37]. It can
utilize the multi-field information fused in the KG and
calculate the semantic relation between entities in the vector
space [53]. Therefore, we apply it to embed logs. While
training the KGE model, we take the processed triplets
representing the KG as input. We convert each entity and
relation to a single identifier and represent triples as tuples
of three identifiers. By taking the processed triples as the
input, we can train a KGE model that maps entities and
relations to the vector space.

Here, we adopt RotatE [40] as the KGE model. RotatE
is a model with superior relation inference performance. It
can describe the potential relation between various entities

in logs. Please note that choosing RotatE as the KGE model
is not our contribution. We can replace it with other KGE
models. We use the representation vectors of templates for
failure diagnosis. Because each log is mapped to a specific
template, entities associated with a log also build an under-
lying relation with a template. In this way, we can transform
the log sequence during a failure into a representation vector
sequence of templates.

3.5 Failure-Oriented Log Representations

We have obtained the representation vector of each
template. Next, we need to obtain the representation vector
of each failure for failure diagnosis. Usually, some failure-
irrelevant logs can appear multiple times during a failure. So
we need to filter them out and use the remaining for failure
representation. LogKG first obtains the logs during each
failure. The time window length of collecting logs for each
failure is ω, which varies with different types of services.
A time window length ω indicates we collect logs of ω/2
minutes before and after the time when a failure occurs. In
our scenario, we set ω = 20 minutes. Then, LogKG can map
these logs to log templates to constitute a template set.

TF-IDF [54] is a term weighting technique in informa-
tion retrieval [14]. Motivated by it, we propose Failure-
Oriented Log Representation (FOLR). According to our
observation, logs frequently appearing in all failure cases
are usually irrelevant to failures. For each template, LogKG
thus calculates its IFF (Inverse Failure Frequency) values.
IFF represents the frequency of each template in all failure
cases. Templates that appear more frequently in all failures
usually have lower IFF values. They are usually irrelevant
to a specific failure. In order to filter the noisy templates,
LogKG ignores the log templates with lower IFF values.
Moreover, for a failure-related log, its template’s occurrence
frequency differs in different types of failures. Therefore,
for each template during a failure, LogKG calculates its TF
(Template Frequency). We calculate the frequency of the
occurrence of each template corresponding to a failure as
the TF value. Then, LogKG uses TF-IFF to obtain a weighted
sum of the representation vectors of the log templates.

Formally, the IFF of template t(t ∈ T) is calculated as:

wiff (t) =


log(

N

nt
) log(

N

nt
) ≥ θiff

0 log(
N

nt
) < θiff

(1)

where N is the total number of failures, nt denotes the
number of failures where template t appears, and θiff
denotes the threshold of IFF. The TF of template t(t ∈ T)
of the i-th failure fi is calculated as:

wtf (t, fi) =
nt,i

ni
(2)

where nt,i is the number of times template t appears during
failure fi, ni denotes the number of logs during fi. By
calculating TF and IFF, LogKG can obtain the representation
vector Vi of failure fi using weighted summation:

Vi =
m∑
j=1

wtf (tj , fi)× wiff (tj) · ej (3)

IEEE TRANSACTIONS ON SERVICES COMPUTING 8

where tj is the j-th template in T , m is the number of
templates, and ej denotes the KGE of template tj . After the
above steps, LogKG can obtain each failure case’s represen-
tation vector for diagnosis.

3.6 Diagnosis

Failure diagnosis, which aims to identify the root cause
of a failure, is usually formalized as a classification task.
LogKG trains a failure diagnosis model through clustering
offline. In the online diagnosis phase, it assigns a failure to
an existing cluster or updates the clustering result.

3.6.1 Offline Training
To use the multi-field information fused by the KG

in downstream tasks, LogKG first gets the representation
vectors of log templates based on KGE, which are then
used to obtain the representation vectors of each failure.
Subsequently, LogKG groups the representation vectors of
failures into different clusters, and operators label the root
cause of the typical failure for each cluster.

Failure Clustering. We employ a density-based clus-
tering method to cluster the representation vectors of fail-
ures. Both DBSCAN [49] and OPTICS [51] are widely used
density-based clustering algorithms. After analyzing the
representation vectors of historical failures, we find that the
densities of different failure types are pretty distinct. There-
fore, we adopted the OPTICS clustering algorithm since
our scenario satisfies its assumption and it is insensitive to
hyperparameters. Here, we set the parameter MS, i.e., the
minimum number of samples per cluster, to 3.

Failure Diagnosis. After clustering, operators select each
cluster’s most representative failure. They usually select the
one closest to its cluster centroid as the most representa-
tive failure. Afterward, they label the root causes of these
cases as the root causes of their corresponding clusters. The
root causes include network congestion, excessive memory
usage, software bug, etc. In this way, we can reduce the
labeling effort because the number of failure clusters (ten in
our scenario) is much smaller than that of failures.

3.6.2 Online Diagnosis
LogKG is triggered when a service failure is detected at

τ , after that It collects logs in the following closed intervals
[τ − w/2, τ + w/2] and calculates the failure representation
vector as in the offline training stage. It assigns this failure
to a failure cluster by calculating the distance between the
calculated vector and the failure representation vectors of
different clusters of failures. Some new failure types often
appear, so the failure diagnosis model needs to be updated.
For failures quite different from the existing ones, LogKG
will update the clusters to adapt to the new failure types.

4 EVALUATION

4.1 Experiment Design

4.1.1 Datasets
We conduct experiments over the GAIA dataset [5], a

publicly available dataset, and the real-world log dataset
collected from the production environment of CMCC, a top-
tier global ISP. The detailed information for the two datasets
is listed in Table 5.

TABLE 5: Detail Of The Datasets
Datasets # of logs # of failure categories # of failure cases
GAIA 13,554,024 4 1,083
CMCC 1,461,006 6 93
TABLE 6: Root Cause Of The Failures In GAIA Dataset

Failure type Root cause

Login failure Network congestion
Memory anomaly Excessive memory usage
File not found Misconfiguration
Access permission denied Software bug

GAIA: The GAIA dataset is generated by simulating real-
world microservice failures. It contains the records of all
failure injections, including the timestamp, location, and all
service logs of each failure. Specifically, 13,554,024 logs are
related to the 1,083 failures, which can be classified into four
types. Table 6 lists the failure types and root causes labeled
by the operators who inject failures.
CMCC: The CMCC dataset is collected from an OpenStack-
based system of CMCC. OpenStack is the open-source cloud
computing platform most widely adopted in the industry
[55]. It consists of multiple service components, including
four core components: Keystone for authentication, Nova
for computing, Glance for image, and Neutron for network-
ing. In addition, it also includes some supporting services,
such as Database and Advanced Message Queue Protocol
[55], each comprising multiple running service daemons.
Based on the OpenStack framework, CMCC builds a 4G/5G
core network to provide services for hundreds of millions of
users. We collected the 1,461,006 logs related to all randomly
selected 93 failure cases in 24 days, which can be classified
into six categories. Table 7 lists the failure types and root
causes labeled by experienced operators.

In the following experiments, from either dataset, we
leverage the front 70% failure cases as the training data and
the rest 30% as the testing data.

4.1.2 Baselines
We compare LogKG with two failure diagnosis algo-

rithms: unsupervised algorithm LogCluster [14] and su-
pervised algorithm Cloud19 [3]. The parameters of these
methods are all set best for accuracy. Specifically, a hier-
archical clustering model is used to implement LogCluster,
and we set its distance threshold to 0.5. For Cloud19, we
choose Random Forest as the classification model and set
the number of trees in the forest to 9.

4.1.3 Experimental Setup
We conduct all the experiments on the Jiutian platform

provided by CMCC. It provides GPU cloud services with
TeslaV100, 16-core CPU, and 32GB DRAM memory. We
implement LogKG with Python 3.7 and PyTorch 1.8, and
we implement LogCluster and Cloud19 with Python 3.7 and
gensim (a free Python library for NLP).

TABLE 7: Root Cause Of The Failures In CMCC Dataset

Failure type Root cause

AMQP server unreachable Network link down
Mysql lost connection
Nova-conductor lost connection Software bug

Computing node down Hardware crash
Flavor disk too small
Linuxbridge-agent anomalies Misconfiguration

IEEE TRANSACTIONS ON SERVICES COMPUTING 9

4.1.4 Evaluation Metrics
In our case, failure diagnosis can be viewed as a mul-

ticlassification problem. To measure the effectiveness of
LogKG, we use accuracy and Macro-F1 score. Accuracy
is the percentage of failure cases classified into the same
category as the ground truth to all failure cases. To get a
Macro-F1 score, we should get the F1 score for each failure
category. For a particular failure category A, the precision
is the percentage of failure cases with both classification
result and ground truth being category A to all failure
cases classified as A. For all failure cases, the recall is the
percentage of failure cases with both the classification result
and the ground truth being category A. The F1 score of
failure category A is the harmonic mean of precision (A) and
recall (A). After we get the F1 score for all failure categories,
the Macro-F1 score can be calculated by taking the average
of the F1 scores of all failure categories.

4.2 Evaluation of The Overall Performance
In this section, we compare LogKG with the two baseline

methods on the two datasets to evaluate the effectiveness of
our method. We choose OPTICS as the clustering algorithm.

Figure 6 shows the comparison results of LogKG and
the two baseline methods on the CMCC and GAIA datasets,
respectively. Overall, LogKG achieves the best accuracy and
Macro-F1 score among the three methods on both two
datasets. More specifically, it has an accuracy of 1.0 and a
Macro-F1 score of 1.0 on the CMCC dataset. Meanwhile,
LogCluster and Cloud19 achieve accuracies of 0.96 and 0.90
and Macro-F1 scores of 0.96 and 0.87, respectively, which are
lower than our method. The CMCC dataset contains fewer
failure cases, and logs have simple patterns, so it is easy for
all three methods to classify the cases into correct categories.
However, even with such a task, the other two methods still
suffer from many false positives and false negatives.

On the GAIA dataset, the effectiveness of the three
methods is more clearly contrasted. LogKG has an accuracy
of 0.98 and a Macro-F1 score of 0.99. When evaluating the
performance of a multiclassification method, the shortcom-
ings of the accuracy assessment method are particularly
pronounced if the data is imbalanced. Although Cloud19
achieves an accuracy of 0.92, it has a low Macro-F1 score
of 0.60, which shows that this method cannot classify ev-
ery category of failure cases well. LogCluster achieves the
lowest accuracy and Macro-F1 score on the GAIA dataset.
Neither LogCluster nor Cloud19 thoroughly explores the
multiple fields contained in the logs. At the same time,
LogKG fuses the multi-field data of logs through KG. There-
fore, our method achieves superior failure diagnosis results
than the two baseline methods.

4.3 Ablation Study
We conduct ablation experiments on the two datasets to

evaluate the effectiveness of the two compulsory modules in
LogKG: KG (knowledge graph) and FOLR (failure-Oriented
log representations). Figure 7 shows the results of the abla-
tion experiments on the CMCC and GAIA datasets.

4.3.1 KGE
In our proposed method, we build a KG with multi-

field data and use KGE to get the embedding of each log
template, and then we use the embedding of every log

Accuracy Macro-F1 score0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

0.96 0.960.9 0.87
1.0 1.0

LogCluster
Cloud19

LogKG

(a) Score on CMCC
Accuracy Macro-F1 score0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

0.4
0.29

0.92

0.6

0.98 0.99

LogCluster
Cloud19

LogKG

(b) Score on GAIA
Fig. 6: The effectiveness of different methods on the two
datasets

template of one failure case to get the whole embedding
of this case. We believe the embedding obtained by this
strategy integrates more log data information and is more
effective. To evaluate the effectiveness of this strategy, we
design the following ablation experiments:
Removing KGE. We remove KGE from LogKG and use the
one-hot vector to embed each log template. More specifi-
cally, suppose there are n log templates with indices from
1 to n in the whole dataset, then we use an n-dimensional
vector to represent the i-th log template where the i-th bit
in the vector is 1, and all other bits are 0. By doing so, we
get the embedding of each log template. The performance of
this method is displayed in Figure 7 as “LogKG w/o KGE”.
Replacing KGE. We replace KGE with traditional algo-
rithms in the NLP domain since getting an embedding of
a sentence is a typical NLP task. We choose two typical NLP
algorithms, GloVe [56] and Word2Vec [57], to replace KGE
and generate the embedding of each log template, respec-
tively. The scores of LogKG with KGE replaced by GloVe
and Word2Vec are shown as “GloVe” and “Word2Vec” in
Figure 7, respectively.

From Figure 7, we can observe that KGE indeed im-
proves the performance of LogKG. For example, LogKG
without KGE achieves lower accuracy and Macro-F1 score
on the two datasets than LogKG, respectively. When we
replace KGE with Glove and Word2Vec, the results become
less stable and, in most cases, not as good as just replacing
LogKG with a one-hot vector. Log data is different from
natural language text. It contains many repeated logs, and
some do not conform to grammatical rules. Glove and
Word2Vec can extract the semantic information of templates,
but the above characteristics of the log data can make them
inaccurate, degrading their performance. Although the one-
hot method is simple, its statistical idea can be applied
to log data, so it performs relatively well. LogKG extracts
entities from logs and builds a KG. It not only preserves
the semantic information of logs but also mines the relation
between logs at a smaller granularity, which better adapts
to the characteristics of logs. Thus we can conclude LogKG
can achieve better accuracy with KGE.

4.3.2 FOLR

We propose FOLR to generate the embedding of each
failure from log template embedding. FOLR calculates each
failure case’s embedding by performing a weighted sum
of the embeddings of log templates. In a real production
environment, there are many noise logs during each failure,

IEEE TRANSACTIONS ON SERVICES COMPUTING 10

Accuracy Macro-F1 score0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

0.93 0.94
0.89

0.84

0.96 0.97
0.89 0.91

1.0 1.0

GloVe
Word2Vec
LogKG w/o KGE

LogKG w/o FOLR
LogKG

(a) Score on CMCC
Accuracy Macro-F1 score0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e 0.57

0.76

0.95 0.970.97 0.940.95 0.91
0.98 0.99

GloVe
Word2Vec
LogKG w/o KGE

LogKG w/o FOLR
LogKG

(b) Score on GAIA
Fig. 7: The effectiveness of LogKG when removing KGE,
FOLR, or replacing KGE with different methods on the two
datasets

easily leading to inaccurate classification. FOLR initially per-
forms denoising by discarding parts of the logs with lower
inverse failure frequencies, which are considered noisy data.
It uses a threshold to decide which logs to discard.

To verify the effectiveness of FOLR, we remove FOLR
from LogKG and use the sum of the embeddings of log
templates to get the embedding of each failure case directly.
“LogKG w/o FOLR” in Figure 7 shows the performance
of this method, and we can observe that LogKG without
FOLR has lower accuracy and Macro-F1 score on the two
datasets than LogKG with FOLR. FOLR increases the Macro-
F1 score by 0.08. The result indicates that FOLR is effective
and improves the performance of LogKG.

4.4 Evaluation of Hyper-Parameters

In this section, we evaluate the hyper-parameters of
LogKG, which contains the threshold of FOLR (θidf), the
minimum number of samples per cluster (MS) of OPTICS,
and the time window length (ω), as shown in Figure 8. We
evaluate θidf and MS on the two datasets and ω on the
CMCC dataset because we use the duration of each failure,
which can be obtained in the GAIA dataset, as a failure’s
corresponding time window. In addition, we discuss the
effect of clustering algorithms and language models in the
entity alignment, as well as the clustering algorithms used
in the failure clustering on the two datasets.

Specifically, we increase θidf from 0.00 to 0.30 with a step
size of 0.05 on the CMCC dataset and from 0.00 to 0.90 with
a step size of 0.1 on the GAIA dataset. As in Figure 8(a) and
Figure 8(b), we find as θidf increases, the Macro-F1 score
tends to increase first and then decrease. The appropriate
interval is from 0.40 to 0.50 on the CMCC dataset and from
0.10 to 0.20 on the GAIA dataset. LogKG will be influenced
by more noisy data when choosing a small θidf and discard
more useful logs when using a big one.

As for MS, as shown in Figure 8(c) and Figure 8(d),
LogKG achieves better when MS < 4 on the CMCC dataset
and when MS < 12 on the GAIA dataset. The results are
stable in most cases when MS takes a small value, and
when the dataset is relatively small, selecting a larger MS
will lead to an unstable clustering result. Besides, we also
count the number of clusters when MS varies since this
indicator determines labor consumption. A large number of
clusters bring more labeling work to operators. As shown
in Figure 8(e) and Figure 8(f), the number of clusters is
negatively correlated with MS. It is less than 20 when MS

0 0.10.20.30.40.50.60.70.80.9
0.7

0.8

0.9

1.0

Sc
or

e

Accuracy Macro-F1 score

(a) θidf on CMCC

0 0.05 0.1 0.15 0.2 0.25 0.3

0.6

0.8

1.0

Sc
or

e

Accuracy Macro-F1 score

(b) θidf on GAIA

2 3 4 5 6 7 8
MS

0.6

0.8

1.0

Sc
or

e

Accuracy Macro-F1 score

(c) MS on CMCC

3 4 5 6 7 8 9 10 11 12 13
MS

0.8

0.9

1.0

Sc
or

e

Accuracy Macro-F1 score

(d) MS on GAIA

2 3 4 5 6 7 8
MS

5

10

15

Cl
us

te
r N

um
be

r
(e) The number of clusters
as MS varies on CMCC

3 4 5 6 7 8 9 10 11 12 13
MS

20

40

60

Cl
us

te
r N

um
be

r

(f) The number of clusters as
MS varies on GAIA

5 10 15 20 25 30

0.8

0.9

1.0

Sc
or

e

Accuracy Macro-F1 score

(g) ω on CMCC
Fig. 8: The effectiveness of LogKG as its parameters vary on
the two datasets

Accuracy Macro-F1 score0.00

0.25

0.50

0.75

1.00

Sc
or

e

1.0 1.01.0 1.01.0 1.0

RoBERTa
MiniLM

MPNet

(a) Score on CMCC
Accuracy Macro-F1 score0.00

0.25

0.50

0.75

1.00

Sc
or

e

0.96 0.980.96 0.980.98 0.99

RoBERTa
MiniLM

MPNet

(b) Score on GAIA
Fig. 9: The effectiveness of LogKG as the language model of
entity alignment varies on the two datasets

changes on the CMCC dataset and has no more drastic
changes when MS > 7 on the GAIA dataset. We set
the parameters when LogKG achieves higher accuracy and
Macro-F1 score, i.e., θidf = 0.4, MS = 3 on the CMCC
dataset, and θidf = 0.15, MS = 10 on the GAIA dataset.

Figure 8(g) shows how the time window length affects
the performance of LogKG on the CMCC dataset. We in-
crease ω from 5 to 30 with a step size of 5. We can find that
LogKG achieves the best performance when ω ∈ [20, 25].
Therefore, we set ω = 20. When ω is too small, some
logs containing failure information will be missed, so the
accuracy and Macro-F1 score may be poor and unstable.
However, when ω is too large, more logs unrelated to the

IEEE TRANSACTIONS ON SERVICES COMPUTING 11

Accuracy Macro-F1 score0.00

0.25

0.50

0.75

1.00

Sc
or

e

1.0 1.01.0 1.01.0 1.0

AC(d)
DBSCAN

OPTICS

(a) Score on CMCC
Accuracy Macro-F1 score0.00

0.25

0.50

0.75

1.00

Sc
or

e

0.95 0.970.97 0.980.98 0.99

AC(d)
DBSCAN

OPTICS

(b) Score on GAIA
Fig. 10: The effectiveness of LogKG as the clustering algo-
rithm of entity alignment varies on the two datasets

failure will be introduced, making LogKG less effective.
We discuss the several components used in entity

alignment on the two datasets, including language mod-
els and clustering algorithms. We conduct experiments
with three different language models: paraphrase-mpnet-
base-v2(Mpnet), all-distilroberta-v1(Roberta), all-MiniLM-
L12-v2(MiniLM) [58], and with three different clustering al-
gorithms: OPTICS [51], Agglomerative Clustering [50] with
specified distance threshold (AC (d)) and DBSCAN [49]. The
results are shown in Figure 9 and Figure 10, respectively. All
language models and clustering algorithms achieve 1.0 of
both accuracy and Macro-F1 scores on the CMCC dataset.
Although there are some minor variations, all the language
models and clustering algorithms score above 0.95 in both
accuracy and Macro-F1 scores on the GAIA dataset. The
results show that varying language models and clustering
methods in the entity alignment cause little impact on the
effectiveness of LogKG. We choose Mpnet as the language
model and OPTICS as the clustering method in entity align-
ment since they respectively performed the best in the GAIA
dataset.

We also discuss the effect of different clustering algo-
rithms in failure clustering on the two datasets. We con-
duct experiments with five different clustering algorithms:
OPTICS, Agglomerative Clustering with specified distance
threshold (AC (d)), Agglomerative Clustering with a speci-
fied number of clusters (AC (n)), DBSCAN and KMeans, and
the results are shown in Figure 11(a) and Figure 11(b), re-
spectively. Except for DBSCAN, other clustering algorithms
all achieve 1.0 of both accuracy and Macro-F1 score on the
CMCC dataset and achieve 0.95+ of both accuracy and
Macro-F1 score on the GAIA dataset. DBSCAN achieves
low accuracy and Macro-F1 score on the CMCC dataset and
does not perform as well as the other four algorithms on the
GAIA dataset. We choose OPTICS as the clustering method
in failure clustering since the experiments show that it and
KMeans perform the best of the five algorithms.
4.5 Threats to Validity
4.5.1 Data Quality

LogKG consists of two parts: KG construction and failure
diagnosis model training. The performance of the failure
diagnosis model depends on the effect of KG construction.
In a real large-scale service scenario, some templates with
poor quality may lead to incomplete extraction of multi-field
information, affecting the effectiveness of KG construction.
In the face of complex templates or log formats, it’s neces-
sary to manually improve the quality of the log template.
These additional workloads don’t require human effort.

Accuracy Macro-F1 score0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

1.0 1.01.0 1.0

0.79
0.72

1.0 1.01.0 1.0

AC(d)
AC(n)

DBSCAN
KMeans

OPTICS

(a) Score on CMCC
Accuracy Macro-F1 score0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

0.95 0.980.95 0.97
0.89

0.940.98 0.990.98 0.99

AC(d)
AC(n)

DBSCAN
KMeans

OPTICS

(b) Score on GAIA

Fig. 11: The effectiveness of LogKG as its clustering algo-
rithm varies on the two datasets

Detection and Diagnosis

Log
Sequences

Failure Detection
Alert

Failure
Case

Failure Diagnosis
Model

Failure
Cause

Collection and Processing

Raw
Logs

Log
Database

Filebeats

Kafka

Logstash

Failure Report
(Web)

Report and Notification

SMS

Email

Fig. 12: The workflow of LogKG in the production environ-
ment of CMCC.

4.5.2 Scope of Logs during Failure
In our experiments, we set different ω for the GAIA

and the CMCC datasets, respectively. For the GAIA dataset,
since the failure duration is provided, we collect the logs
of each failure case according to the information. For the
CMCC dataset, since only the approximate time of each
failure case is given, we set ω = 20. However, in real
scenarios, the duration of a failure case is usually not fixed,
and the recorded alarm time may also have a deviation.
The above situations may affect the range of logs during
the failure, thereby affecting failure diagnosis performance.
Since the amount of data in our experiments is still limited,
verifying the impact of the above situations is impossible.
We will verify it on more online large-scale services in future
work.

5 DEPLOYMENT & CASE STUDY

We have deployed LogKG in CMCC to verify its perfor-
mance in KG construction and failure diagnosis. Compared
with manual failure diagnosis described in §2.2.3, opera-
tors don’t need to do a lot of error-prone and inefficient
log searching. LogKG shortens failure mitigation time and
increases failure diagnosis accuracy.

5.1 Deployment in CMCC

5.1.1 Workflow
Figure 12 shows the workflow of LogKG in the produc-

tion environment of CMCC, including three steps:
Step. 1: Collection and Processing. CMCC uses Filebeat

[59] to aggregate log files from different service instances
and writes log streams to Kafka [60]. Operators connect
Kafka with Logstash [61], which preprocesses logs utilizing
extensions and plugins. They match the logs to templates
using the log parsing methods. The logs can be processed
and stored in the database soon after they are generated.

IEEE TRANSACTIONS ON SERVICES COMPUTING 12

Step. 2: Failure Diagnosis. When a failure is detected
through failure detection methods, LogKG automatically
collects logs before and after it. Subsequently, LogKG com-
putes the representation vector of the failure based on
these logs and uses the clustering model trained offline to
diagnose the root cause of the failure.

Step. 3: Report and Notification After LogKG diag-
noses the failure, the system will generate a failure report.
It includes the possible root causes diagnosed by LogKG
and suggestions for failure mitigation based on historical
experience. Then, it will be displayed on the Web page and
sent to the operators via SMS and email.

5.1.2 Performance

Specifically, we have deployed LogKG in Guangdong
Mobile Communications Co., Ltd (GMCC). LogKG is re-
sponsible for diagnosing failures for more than 2000 service
instances, which generate hundreds of millions of logs daily.
During the five months of deployment, LogKG averagely
processed 47 failures daily. Based on LogKG, the failure
diagnosis can be completed within five minutes, and the av-
erage failure mitigation time has been significantly reduced
by more than 20 minutes.

5.2 Case Study

Here, we use two selected failure cases to compare
the amount of work required using LogKG and manual
keyword search, respectively. The outage of the MySQL
component caused the first failure, and the other was due
to the exception of the Nova Conductor component. As
listed in Table 8, we count the number of logs that need
to be investigated containing different keywords during the
above two failure cases. As mentioned above, the support
services such as MySQL and AMQP are used in OpenStack
to provide functions such as database and communica-
tion. When the MySQL service failed, some services also
failed because of it. For example, “Unexpected error while
reporting service status” will be printed in other service
logs. Moreover, Nova Conductor is a common component
in OpenStack. Its exception caused a VM creation failure.
It resulted in various logs in several components, such as
“Policy check failed with credentials: ...” and “qemu-img
failed to execute”. Although the operators can search by
keywords to find the failure information provided by these
logs, it requires much manual work. For instance, they have
to examine 2500+ or 200+ logs to find the logs indicating the
root causes of the two failures.

LogKG significantly reduces manual effort. It automati-
cally calculated the failure vector after an online production
failure. The offline failure diagnosis model classified it into
known root causes and generated a failure report. The whole
process is completed without any manual effort.

TABLE 8: The Number Of Logs Containing Different Key-
words During Two Real-Word Failure Cases

Failure Case Kill Fail Error Exception

Nova Conductor Error 161 60 4 4
MySQL Shutdown 322 15 811 1449

6 CONCLUSION

In this paper, we fuse the multi-field information in logs
to automatically construct a knowledge graph, which can
extract more information from logs. We use the knowledge
graph information to train a failure diagnosis model and
finally determine the cause of the failure. Extensive exper-
iments using a simulation dataset and a real-word dataset
have demonstrated the superior performance of LogKG and
the importance of its key components. We take the first
step to fuse the multi-field information in logs using a
knowledge graph. In the future, we will verify LogKG’s
performance in more scenarios.

REFERENCES

[1] W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen, R. Zhang,
S. Tao, P. Sun et al., “Loganomaly: Unsupervised detection of
sequential and quantitative anomalies in unstructured logs.” in
IJCAI, vol. 19, no. 7, 2019, pp. 4739–4745.

[2] S. Huang, Y. Liu, C. Fung, R. He, Y. Zhao, H. Yang, and Z. Luan,
“Hitanomaly: Hierarchical transformers for anomaly detection in
system log,” IEEE Transactions on Network and Service Management,
vol. 17, no. 4, pp. 2064–2076, 2020.

[3] Y. Yuan, W. Shi, B. Liang, and B. Qin, “An approach to cloud
execution failure diagnosis based on exception logs in openstack,”
in 2019 IEEE 12th International Conference on Cloud Computing
(CLOUD), 2019, pp. 124–131.

[4] S. He, P. He, Z. Chen, T. Yang, Y. Su, and M. R. Lyu, “A survey on
automated log analysis for reliability engineering,” ACM Comput-
ing Surveys (CSUR), vol. 54, no. 6, pp. 1–37, 2021.

[5] CloudWise-OpenSource, “Gaia-dataset,” [EB/OL], https:
//github.com/CloudWise-OpenSource/GAIA-DataSet Accessed
October 4, 2022.

[6] C. Deng, Y. Jia, H. Xu, C. Zhang, J. Tang, L. Fu, W. Zhang,
H. Zhang, X. Wang, and C. Zhou, “Gakg: A multimodal geoscience
academic knowledge graph,” in Proceedings of the 30th ACM Inter-
national Conference on Information & Knowledge Management, 2021,
pp. 4445–4454.

[7] A. V. Kannan, D. Fradkin, I. Akrotirianakis, T. Kulahcioglu,
A. Canedo, A. Roy, S.-Y. Yu, M. Arnav, and M. A. Al Faruque,
“Multimodal knowledge graph for deep learning papers and
code,” in Proceedings of the 29th ACM International Conference on
Information & Knowledge Management, 2020, pp. 3417–3420.

[8] X. Zhang, Y. Xu, S. Qin, S. He, B. Qiao, Z. Li, H. Zhang, X. Li,
Y. Dang, Q. Lin et al., “Onion: identifying incident-indicating logs
for cloud systems,” in Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2021, pp. 1253–1263.

[9] E. Chuah, A. Jhumka, J. C. Browne, B. Barth, and
S. Narasimhamurthy, “Insights into the diagnosis of system
failures from cluster message logs,” in 2015 11th European
Dependable Computing Conference (EDCC). IEEE, 2015, pp.
225–232.

[10] B. C. Tak, S. Tao, L. Yang, C. Zhu, and Y. Ruan, “Logan: Problem
diagnosis in the cloud using log-based reference models,” in 2016
IEEE International Conference on Cloud Engineering (IC2E). IEEE,
2016, pp. 62–67.

[11] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log
parsing approach with fixed depth tree,” in 2017 IEEE international
conference on web services (ICWS). IEEE, 2017, pp. 33–40.

[12] Y. Liu, X. Zhang, S. He, H. Zhang, L. Li, Y. Kang, Y. Xu, M. Ma,
Q. Lin, Y. Dang et al., “Uniparser: A unified log parser for hetero-
geneous log data,” arXiv preprint arXiv:2202.06569, 2022.

[13] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language under-
standing,” arXiv preprint arXiv:1810.04805, 2018.

[14] Q. Lin, H. Zhang, J.-G. Lou, Y. Zhang, and X. Chen, “Log clustering
based problem identification for online service systems,” in 2016
IEEE/ACM 38th International Conference on Software Engineering
Companion (ICSE-C). IEEE, 2016, pp. 102–111.

[15] T. Jia, Y. Wu, C. Hou, and Y. Li, “Logflash: Real-time streaming
anomaly detection and diagnosis from system logs for large-scale
software systems,” in 2021 International Symposium on Software
Reliability Engineering (ISSRE). IEEE, 2021.

https://github.com/CloudWise-OpenSource/GAIA-DataSet
https://github.com/CloudWise-OpenSource/GAIA-DataSet

IEEE TRANSACTIONS ON SERVICES COMPUTING 13

[16] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly
detection and diagnosis from system logs through deep learning,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 1285–1298.

[17] S. Lu, B. Rao, X. Wei, B. Tak, L. Wang, and L. Wang, “Log-based
abnormal task detection and root cause analysis for spark,” in 2017
IEEE International Conference on Web Services (ICWS). IEEE, 2017,
pp. 389–396.

[18] Y. Xie, K. Yang, and P. Luo, “Logm: Log analysis for multiple
components of hadoop platform,” IEEE Access, vol. 9, pp. 73 522–
73 532, 2021.

[19] K. Nagaraj, C. Killian, and J. Neville, “Structured comparative
analysis of systems logs to diagnose performance problems,” in
9th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 12), 2012, pp. 353–366.

[20] H. Ikeuchi, A. Watanabe, T. Kawata, and R. Kawahara, “Root-
cause diagnosis using logs generated by user actions,” in 2018
IEEE Global Communications Conference (GLOBECOM). IEEE, 2018,
pp. 1–7.

[21] S. He, Q. Lin, J.-G. Lou, H. Zhang, M. R. Lyu, and D. Zhang,
“Identifying impactful service system problems via log analysis,”
in Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2018, pp. 60–70.

[22] L. Wang, N. Zhao, J. Chen, P. Li, W. Zhang, and K. Sui, “Root-
cause metric location for microservice systems via log anomaly
detection,” in 2020 IEEE International Conference on Web Services
(ICWS). IEEE, 2020, pp. 142–150.

[23] X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie,
X. Yang, Q. Cheng, Z. Li et al., “Robust log-based anomaly detec-
tion on unstable log data,” in Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2019, pp. 807–817.

[24] Y. Zuo, Y. Wu, G. Min, C. Huang, and K. Pei, “An intelligent
anomaly detection scheme for micro-services architectures with
temporal and spatial data analysis,” IEEE Transactions on Cognitive
Communications and Networking, vol. 6, no. 2, pp. 548–561, 2020.

[25] F. Liu, Y. Wen, D. Zhang, X. Jiang, X. Xing, and D. Meng, “Log2vec:
A heterogeneous graph embedding based approach for detecting
cyber threats within enterprise,” in Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, 2019,
pp. 1777–1794.

[26] F. Wang, A. Bundy, X. Li, R. Zhu, K. Nuamah, L. Xu, S. Mauceri,
and J. Z. Pan, “Lekg: A system for constructing knowledge graphs
from log extraction,” in The 10th International Joint Conference on
Knowledge Graphs, 2021, pp. 181–185.

[27] A. Ekelhart, F. J. Ekaputra, and E. Kiesling, “The slogert frame-
work for automated log knowledge graph construction,” in Euro-
pean Semantic Web Conference. Springer, 2021, pp. 631–646.

[28] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, and
D. McClosky, “The stanford corenlp natural language processing
toolkit,” in Proceedings of 52nd annual meeting of the association for
computational linguistics: system demonstrations, 2014, pp. 55–60.

[29] B. Mohit, “Named entity recognition,” in Natural language process-
ing of semitic languages. Springer, 2014, pp. 221–245.

[30] D. Cotroneo, L. De Simone, P. Liguori, R. Natella, and N. Bidokhti,
“How bad can a bug get? an empirical analysis of software failures
in the openstack cloud computing platform,” in Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2019, pp. 200–211.

[31] J. Lu, F. Li, L. Li, and X. Feng, “Cloudraid: hunting concurrency
bugs in the cloud via log-mining,” in Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2018, pp. 3–
14.

[32] H. Yan, T. Gui, J. Dai, Q. Guo, Z. Zhang, and X. Qiu, “A unified
generative framework for various ner subtasks,” arXiv preprint
arXiv:2106.01223, 2021.

[33] J. Straková, M. Straka, and J. Hajič, “Neural architectures for
nested ner through linearization,” arXiv preprint arXiv:1908.06926,
2019.

[34] X. Zeng, D. Zeng, S. He, K. Liu, and J. Zhao, “Extracting relational
facts by an end-to-end neural model with copy mechanism,”
in Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 2018, pp. 506–
514.

[35] M. Jiang, J. Shang, T. Cassidy, X. Ren, L. M. Kaplan, T. P. Hanratty,
and J. Han, “Metapad: Meta pattern discovery from massive text
corpora,” in Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2017, pp. 877–
886.

[36] Y. Zhu, H. Liu, Z. Wu, and Y. Du, “Relation-aware neighborhood
matching model for entity alignment,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 35, no. 5, 2021, pp. 4749–
4756.

[37] Q. Wang, Z. Mao, B. Wang, and L. Guo, “Knowledge graph
embedding: A survey of approaches and applications,” IEEE
Transactions on Knowledge and Data Engineering, vol. 29, no. 12, pp.
2724–2743, 2017.

[38] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and
O. Yakhnenko, “Translating embeddings for modeling multi-
relational data,” in Advances in Neural Information Processing
Systems, C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K. Weinberger, Eds., vol. 26. Curran Associates, Inc., 2013.
[Online]. Available: https://proceedings.neurips.cc/paper files/
paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf

[39] S. He, K. Liu, G. Ji, and J. Zhao, “Learning to represent knowledge
graphs with gaussian embedding,” in Proceedings of the 24th ACM
international on conference on information and knowledge management,
2015, pp. 623–632.

[40] Z. Sun, Z.-H. Deng, J.-Y. Nie, and J. Tang, “Rotate: Knowledge
graph embedding by relational rotation in complex space,” in
International Conference on Learning Representations, 2019. [Online].
Available: https://openreview.net/forum?id=HkgEQnRqYQ

[41] M. Nickel, V. Tresp, H.-P. Kriegel et al., “A three-way model for
collective learning on multi-relational data.” in Icml, vol. 11, no.
10.5555, 2011, pp. 3 104 482–3 104 584.

[42] B. Yang, W.-t. Yih, X. He, J. Gao, and L. Deng, “Embedding entities
and relations for learning and inference in knowledge bases,”
arXiv preprint arXiv:1412.6575, 2014.

[43] M. Banko, M. J. Cafarella, S. Soderland, M. A. Broadhead, and
O. Etzioni, “Open information extraction from the web,” in CACM,
2008.

[44] “Mitre: Common event expression.” Website, 2014, https://cee.
mitre.org/.

[45] K. Zeng, C. Li, L. Hou, J. Li, and L. Feng, “A comprehensive
survey of entity alignment for knowledge graphs,” AI Open, vol. 2,
pp. 1–13, 2021. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S2666651021000036

[46] J. Ramos et al., “Using tf-idf to determine word relevance in
document queries,” in Proceedings of the first instructional conference
on machine learning, vol. 242, no. 1. Citeseer, 2003, pp. 29–48.

[47] G. Stanovsky, I. Dagan et al., “Open ie as an intermediate structure
for semantic tasks,” in Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume 2: Short
Papers), 2015, pp. 303–308.

[48] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings
using siamese bert-networks,” in Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), 2019, pp. 3982–3992.

[49] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “Density-based spatial
clustering of applications with noise,” in Int. Conf. Knowledge
Discovery and Data Mining, vol. 240, 1996, p. 6.

[50] F. Murtagh and P. Contreras, “Algorithms for hierarchical cluster-
ing: an overview,” Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, vol. 2, no. 1, pp. 86–97, 2012.

[51] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “Optics:
Ordering points to identify the clustering structure,” ACM Sigmod
record, vol. 28, no. 2, pp. 49–60, 1999.

[52] D. Fernandes and J. Bernardino, “Graph databases comparison:
Allegrograph, arangodb, infinitegraph, neo4j, and orientdb,” in 7th
International Conference on Data Science, Technology and Applications,
2018.

[53] Y. Dai, S. Wang, N. N. Xiong, and W. Guo, “A survey on
knowledge graph embedding: Approaches, applications and
benchmarks,” Electronics, vol. 9, no. 5, 2020. [Online]. Available:
https://www.mdpi.com/2079-9292/9/5/750

[54] H. Schütze, C. D. Manning, and P. Raghavan, Introduction to
information retrieval. Cambridge University Press Cambridge,
2008, vol. 39.

https://proceedings.neurips.cc/paper_files/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://openreview.net/forum?id=HkgEQnRqYQ
https://cee.mitre.org/
https://cee.mitre.org/
https://www.sciencedirect.com/science/article/pii/S2666651021000036
https://www.sciencedirect.com/science/article/pii/S2666651021000036
https://www.mdpi.com/2079-9292/9/5/750

IEEE TRANSACTIONS ON SERVICES COMPUTING 14

[55] T. Rosado and J. Bernardino, “An overview of openstack architec-
ture,” in Proceedings of the 18th International Database Engineering &
Applications Symposium, 2014, pp. 366–367.

[56] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vec-
tors for word representation,” in Proceedings of the 2014 conference
on empirical methods in natural language processing (EMNLP), 2014,
pp. 1532–1543.

[57] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient esti-
mation of word representations in vector space,” arXiv preprint
arXiv:1301.3781, 2013.

[58] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings
using siamese bert-networks,” 2019.

[59] B. Elasticsearch, “Filebeat-lightweight shipper for logs (2020),”
URL https://www. elastic. co/products/beats/filebeat. Accessed, pp. 02–
12, 2021.

[60] J. Kreps, N. Narkhede, J. Rao et al., “Kafka: A distributed messag-
ing system for log processing,” in Proceedings of the NetDB, vol. 11,
2011, pp. 1–7.

[61] E. Stack, “Elasticsearch, logstash, kibana— elastic,” URL:
https://www. elastic.co/what-is/elk-stack, 2021.

Yicheng Sui received a B.S. degree in Software
Engineering from Nankai University in 2020.
He is currently a Ph.D. student at the College
of Software, Nankai University. His current re-
search interests include machine learning and
deep learning.

Yuzhe Zhang received a B.S. degree in Soft-
ware Engineering from Nankai University in
2020. He is currently an M.S. student at the Col-
lege of Software, Nankai University. His research
interests include deep learning and anomaly de-
tection.

Jianjun Sun received B.S. in semiconductor
physics and devices from Tsinghua Univer-
sity, Beijing, China, in 1991, and M.S. in radio
electronics from Jinan University, Guangzhou,
China, in 1994. He is currently the general
manager of the Network Management Center
of China Mobile Communications Corporation
Guangdong Co., LTD His current research in-
terests include communication network manage-
ment and NFV cloud network architecture.

Ting Xu received the M.E. degree in Software
Engineering from Central South University in
2020. She is currently a Ph.D. student at the
College of Software, Nankai University. Her re-
search interests include anomaly detection and
failure diagnosis. She is an IEEE Member.

Shenglin Zhang received B.S. in network engi-
neering from the School of Computer Science
and Technology, Xidian University, Xi’an, China,
in 2012 and Ph.D. in computer science from Ts-
inghua University, Beijing, China, in 2017. He is
currently an associate professor with the College
of Software, Nankai University, Tianjin, China.
His current research interests include failure
detection, diagnosis, and prediction for service
management. He is an IEEE Member.

Zhengdan Li received the M.E. degree in Soft-
ware Engineering from Nankai University in
2020. She is an assistant experimentalist at
the College of Software, Nankai University. Her
research interests include Artificial Intelligence,
Software Engineering, etc.

Y. Sun et al.: HotSpot: Anomaly Localization for Additive KPIs With Multi-Dimensional Attributes

that it is infeasible to do a fair comparison with [19] in the
evaluation section.

IX. CONCLUSION
For an additive KPI with multi-dimensional attributes, it is
a hard problem to localize the overall KPI’s anomaly to
the root cause, which is one (or more) combination of
attribute values in multiple dimensions. Firstly, we consider
this anomaly localization as a search problem with a huge
space. To deal with the huge search space, our proposed
framework, HotSpot, adopts the MCTS approach (the first
time in anomaly localization literature) whose action value
is our novel potential score based on the ‘‘ripple effect’’,
which captures how anomalies propagate from the root cause
throughout the aggregation hierarchy. In addition, we propose
a hierarchical pruning approach to further reduce the search
space. Our experiments based on the data from a real-world
search engine show that HotSpot achieves much better accu-
racy than previous approaches. Our operational experiences
show that HotSpot can reduce the localization time from
about more than 1 hour in manual efforts to less than 20 sec-
onds, and that HotSpot is an approach generally applicable to
the anomaly localization for additive KPI metrics.

REFERENCES
[1] R. Bhagwan et al., ‘‘Adtributor: Revenue debugging in advertising sys-

tems,’’ inProc. 11thUSENIX Symp. Netw. Syst. Design Implement. (NSDI),
2014, pp. 43–55.

[2] Q. Lin, J.-G. Lou, H. Zhang, and D. Zhang, ‘‘iDice: Problem identification
for emerging issues,’’ in Proc. 38th Int. Conf. Softw. Eng., May 2016,
pp. 214–224.

[3] J. Han, J. Pei, and M. Kamber, Data Mining: Concepts and Techniques.
Amsterdam, The Netherlands: Elsevier, 2011.

[4] C. B. Browne et al., ‘‘A survey of Monte Carlo tree search methods,’’ IEEE
Trans. Comput. Intell. AI Games, vol. 4, no. 1, pp. 1–43, Mar. 2012.

[5] D. Silver et al., ‘‘Mastering the game of Go with deep neural networks and
tree search,’’ Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[6] S.-B. Lee et al., ‘‘Threshold compression for 3G scalable monitoring,’’ in
Proc. IEEE INFOCOM, Mar. 2012, pp. 1350–1358.

[7] L. Kocsis and C. Szepesvári, ‘‘Bandit based Monte-Carlo planning,’’ in
Proc. Eur. Conf. Mach. Learn., 2006, pp. 282–293.

[8] P. Auer, N. Cesa-Bianchi, and P. Fischer, ‘‘Finite-time analysis of the
multiarmed bandit problem,’’ Mach. Learn., vol. 47, no. 2, pp. 235–256,
2002.

[9] A. Soule, K. Salamatian, and N. Taft, ‘‘Combining filtering and statistical
methods for anomaly detection,’’ in Proc. 5th ACM SIGCOMM Conf.
Internet Meas., 2005, p. 31.

[10] List of HTTP status codes. Accessed: Oct. 1, 2017. [Online]. Available:
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes#4xx_Client_
errors

[11] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, ‘‘Pinpoint:
Problem determination in large, dynamic Internet services,’’ in Proc. Int.
Conf. Depend. Syst. Netw. (DSN), Jun. 2002, pp. 595–604.

[12] R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren, ‘‘IP fault
localization via risk modeling,’’ in Proc. 2nd Conf. Symp. Netw. Syst.
Design Implement., vol. 2. 2005, pp. 57–70.

[13] S. Kandula, D. Katabi, and J.-P. Vasseur, ‘‘Shrink: A tool for failure
diagnosis in IP networks,’’ in Proc. ACM SIGCOMM Workshop Mining
Netw. Data, 2005, pp. 173–178.

[14] R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren, ‘‘Detection
and localization of network black holes,’’ in Proc. 26th IEEE Int. Conf.
Comput. Commun. (INFOCOM), May 2007, pp. 2180–2188.

[15] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz, and
M. Zhang, ‘‘Towards highly reliable enterprise network services via infer-
ence of multi-level dependencies,’’ ACM SIGCOMM Comput. Commun.
Rev., vol. 37, no. 4, pp. 13–24, 2007.

[16] H. Yan et al., ‘‘Argus: End-to-end service anomaly detection and localiza-
tion from an ISP’s point of view,’’ in Proc. IEEE INFOCOM, Mar. 2012,
pp. 2756–2760.

[17] B. Nguyen, Z. Ge, J. Van der Merwe, H. Yan, and J. Yates, ‘‘Absence:
Usage-based failure detection in mobile networks,’’ in Proc. 21st Annu.
Int. Conf. Mobile Comput. Netw., 2015, pp. 464–476.

[18] D. Liu et al., ‘‘FOCUS: Shedding light on the high search response time in
the wild,’’ in Proc. IEEE INFOCOM, Apr. 2016, pp. 1–9.

[19] F. Ahmed, J. Erman, Z. Ge, A. X. Liu, J.Wang, and H. Yan, ‘‘Detecting and
localizing end-to-end performance degradation for cellular data services,’’
in Proc. IEEE INFOCOM, Apr. 2016, pp. 1–9.

YONGQIAN SUN received the B.S. degree in sta-
tistical specialty from Northwestern Polytechnical
University in 2012. He is currently pursuing the
Ph.D. degree with the Department of Computer
Science, Tsinghua University, Beijing, China. His
current research interests include anomaly detec-
tion, root cause localization, and high performance
switching in datacenter.

YOUJIAN ZHAO received the B.S. degree from
Tsinghua University in 1991, theM.S. degree from
the Shenyang Institute of Computing Technology,
Chinese Academy of Sciences, in 1995, and the
Ph.D. degree in computer science from Northeast-
ern University, China, in 1999. He is currently a
Professor with the Computer Science Department,
TsinghuaUniversity. His research interests include
high speed Internet architecture, switching and
routing, and high-speed network equipment.

YA SU received the B.S. degree from the Uni-
versity of Electronic Science and Technology of
China in 2016. He is currently pursuing the Ph.D.
degree with the Department of Computer Science,
Tsinghua University, Beijing, China. His current
research interests include data analysis, model
development, and machine learning.

DAPENG LIU received the B.S. degree from the
Harbin Institute of Technology in 2010 and the
Ph.D. degree from Tsinghua University, Beijing,
China, in 2016. He is currently a Senior Engineer
at Baidu, Inc. His current research interests include
monitoring, anomaly detection and troubleshoot-
ing, data analysis, and machine learning.

10922 VOLUME 6, 2018

Yongqian Sun received a B.S. degree in statis-
tical specialty from Northwestern Polytechnical
University, Xi’an, China, in 2012, and Ph.D. in
computer science from Tsinghua University, Bei-
jing, China, in 2018. He is currently an assistant
professor at the College of Software, Nankai
University, Tianjin, China. His research interests
include anomaly detection and root cause local-
ization in service management.

Fangrui Guo received the M.E. degree in Soft-
ware Engineering from Nankai University in
2020. Her research interests include anomaly
detection and failure diagnosis.

Junyu Shen received the B.S. degree in Soft-
ware Engineering from Nankai University in
2022. He is currently an M.S. student at the
College of Software, Nankai University. His cur-
rent research interest includes anomaly detec-
tion and natural language processing.

Yuzhi Zhang received the B.S. and M.S. de-
gree in computer science from the Department
of Computer Science and Technology, Tsinghua
University in 1985 and 1987, respectively, and
the Ph.D. degree in computer science from
the Institute of Computing Technology, Chinese
Academy of Sciences in 1991. He is currently
dean of the College of Software, Nankai Uni-
versity, and is also a distinguished professor.
His research interests include deep learning and
other aspects of artificial intelligence.

Dan Pei received the B.E. and M.S. degrees in
computer science from the Department of Com-
puter Science and Technology, Tsinghua Uni-
versity in 1997 and 2000, respectively, and the
Ph.D. degree in computer science from the Com-
puter Science Department, University of Califor-
nia, Los Angeles (UCLA) in 2005. He is cur-
rently an associate professor at the Department
of Computer Science and Technology, Tsinghua
University. His research interests include net-
work and service management in general. He is

an IEEE senior member and an ACM senior member.

Xiao Yang received M.S. in communication en-
gineering from Beijing University of Posts and
Telecommunications, Beijing, China, in 2017. He
is currently the project manager of the Inno-
vation Research Institute of China Mobile. His
current research interests include network man-
agement.

IEEE TRANSACTIONS ON SERVICES COMPUTING 15

Li Yu received M.S. in communication engineer-
ing from Beijing University of Posts and Telecom-
munications, Beijing, China, in 2007. He is cur-
rently the vice president of the Innovation Re-
search Institute of China Mobile (Zhejiang) His
current research interests include mobile com-
munication technology, network intelligence, and
big data of communication networks.

	Introduction
	Related Work and Preliminaries
	Related Work
	Log-based Semantic Information Extraction
	Log-based Failure Diagnosis

	Preliminary
	KG Construction and Embedding
	NLP Concepts
	Manual Failure Diagnosis

	Challenges

	 LogKG
	The Framework of LogKG
	Entity Extraction
	Keyword Extraction
	Event Extraction

	Entity Alignment
	Keyword Alignment
	Triple Alignment

	Knowledge Graph Construction and Embedding
	Knowledge Graph Construction
	Knowledge Graph Embedding (KGE)

	Failure-Oriented Log Representations
	Diagnosis
	Offline Training
	Online Diagnosis

	Evaluation
	Experiment Design
	Datasets
	Baselines
	Experimental Setup
	Evaluation Metrics

	Evaluation of The Overall Performance
	Ablation Study
	KGE
	FOLR

	Evaluation of Hyper-Parameters
	Threats to Validity
	Data Quality
	Scope of Logs during Failure

	Deployment & Case Study
	Deployment in CMCC
	Workflow
	Performance

	Case Study

	Conclusion
	References
	Biographies
	Yicheng Sui
	Yuzhe Zhang
	Jianjun Sun
	Ting Xu
	Shenglin Zhang
	Zhengdan Li
	Yongqian Sun
	Fangrui Guo
	Junyu Shen
	Yuzhi Zhang
	Dan Pei
	Xiao Yang
	Li Yu

