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Abstract—Using multivariate time series (MTS) data for
anomaly detection is widely adopted in service systems, such as
web services and financial businesses. Researchers have recently
proposed some well-performed algorithms for MTS anomaly
detection from different perspectives. When applied to the real
world, we observe that none of the algorithms is adaptable to all
scenarios due to the complex data and anomaly characteristics.
Moreover, there is currently a lack of comprehensive analysis
work of these algorithms to guide operators in selecting the
appropriate one in practice. To bridge this gap, we conduct an
empirical study using various real-world data to gain an in-depth
understanding of state-of-the-art anomaly detection algorithms.
First, we provide general recommendations to guide operators
in selecting suitable models based on the volume of training
data, computational resources, and effectiveness requirements.
Then, we summarize the typical data characteristics and types
of anomalies and offer tailored model selection suggestions for
different data characteristics and anomaly types. At last, we apply
the summarized model selection suggestions to all the datasets
we collected. The results show that most of our suggestions can
achieve better than any single algorithm alone, demonstrating
the effectiveness and generalization of our recommendations.

Index Terms—Multivariate Time Series, Anomaly Detection,
Practical Challenges, Empirical Analysis

I. INTRODUCTION

Web services, electricity infrastructures, and financial sys-
tems have witnessed remarkable success in recent years,
resulting in an increasing number of hardware facilities and
software systems [1]. One notable example is the vast number
of system instances, such as service instances, containers,
virtual machines, physical machines, switches, and routers, in
a large-scale Web service. The reliability of these facilities
and systems is crucial to ensure optimal user experience and
maintain service stability [2].

For proactively detecting anomalous behavior of system
instances and timely mitigate system failures, operators con-
figure various types of metrics and continuously collect their
monitoring data at a predefined time interval [3]–[6]. The
monitoring metrics of system instances collectively form mul-
tivariate time series (MTS), as shown in Figure 1. MTS
anomaly detection algorithms involve learning normal patterns
and identifying data as an anomaly when its behavior deviates
from the learned normal patterns.

∗ Yongqian Sun is the corresponding author.

While the recently proposed models have demonstrated
good performance on experimental datasets, there is still
a lack of empirical studies evaluating their performance in
practical applications. Operators often rely on their experience
for model selection in practice, as quantitative guidance is
unavailable. To gain a better understanding of the strengths
and limitations of existing state-of-the-art anomaly detection
algorithms, we collect two novel real-world datasets (§III)
and conduct a comprehensive empirical investigation utilizing
these two datasets (§IV). Our findings reveal that anomaly
detection algorithms usually face three notable challenges:
1) Inefficiency in handling large-scale MTS [7], [8]. 2) Inabil-
ity to handle diverse MTS [9]. 3) Inability to detect various
types of anomalies [9].

As far as we know, no comprehensive solution currently
addresses all three issues simultaneously. A practical method
to address the abovementioned issues is selecting an ap-
propriate algorithm for each category of MTS with similar
characteristics. To guide this process, we involve six more
public datasets (§III) and compile a summary of common
data characteristics and anomaly types based on historical
incident reports and insights from interviews with experienced
engineers [10]. We conduct extensive experiments using the
public datasets from diverse application scenarios, each char-
acterized by different data characteristics and anomaly types
(§V). Through the experimental analysis, we obtain valuable
insights and provide practical recommendations for applying
MTS anomaly detection.
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Fig. 1: The MTS of system instances.



The main contributions of this paper can be summarized as
follows:

1) We highlight several practical challenges of MTS
anomaly detection. To effectively tackle these challenges,
we conduct a comprehensive empirical and experimental
investigation using large-scale real-world datasets. To
the best of our knowledge, this is the first practical
investigation work into MTS anomaly detection.

2) We collect two new datasets and develop a label tool for
case studies. Additionally, we do accurate labeling for the
newly collected and widely used public datasets based on
their data characteristics and anomaly types.

3) Through a comprehensive experimental analysis, we
come up with some recommendations on choosing suit-
able algorithms, including a general conclusion from the
perspective of effectiveness and efficiency and specific
suggestions from the perspectives of MTS characteristics
and anomaly types, respectively.

4) We apply the recommendations to all the datasets, and
the results show that most of our suggestions can achieve
better results than any single algorithm alone.

II. BACKGROUND

A. MTS Anomaly Detection

Anomalies, such as unexpected fluctuations or rapid devi-
ations from normal patterns, often indicate potential faults,
including hardware crashes, service disruptions, and software
bugs. The primary objective of MTS anomaly detection is
to identify anomalous behavior in both system status and
user behavior to prevent system crashes and mitigate potential
disruptions to the business [11]. The overall pipeline for
MTS anomaly detection can be summarized as follows: data
collection, data preprocessing, and anomaly detection [6],
[7], [9], [12]–[16]. Additionally, some models incorporate
an anomaly interpretation module. Since data collection is a
routine module in every system and the interpretation module
is only presented in some algorithms, we focus on data
preprocessing and anomaly detection modules here.

Data Preprocessing. Ensuring the perfect collection of all
monitoring data in large-scale and potentially unstable system
instances is challenging, often leading to missing values.
MTS data commonly contain anomalies and noise, which
can significantly impact the data patterns [17]. Moreover,
it is necessary to make different metrics in MTS compara-
ble, despite different metrics often exhibiting variations in
amplitude. Data preprocessing is employed to address these
issues. The training data and the online data require different
preprocessing steps. The training data requires extreme values
removal, missing values interpolation, moving average, and
normalization. However, for online data, we only apply inter-
polation and normalization. Common normalization methods
include standardization, scaling features to a specific range,
and quantile transforms.

Anomaly Detection. Anomaly detection typically consists
of two stages: offline model training and online anomaly

detection. In the offline model training stage, sufficient data is
used to train an anomaly detection model. The trained model
outputs an anomaly score for each time point during the online
detection stage, indicating the likelihood of being anomalous.
We categorize anomaly detection algorithms into three main
groups: traditional models, deep learning-based models, and
others. 1) Traditional models often rely on simple assumptions,
such as anomalies manifesting as extreme values. Represen-
tative works include the k-Nearest Neighbor (kNN) algo-
rithm [18], clustering-based algorithms [19], and classification
algorithms [20]. These algorithms identify anomalies using
techniques like nearest-neighbor analysis, clustering, and one–
class support vector machines. 2) Most deep learning-based
algorithms for MTS anomaly detection are unsupervised since
acquiring labeled MTS data is expensive. Several notable
models in this category include MSCRED [6], DAGMM [7],
USAD [12], DOMI [9], OmniAnomaly [13], SDFVAE [14],
and InterFusion [16], which utilize an autoencoder (AE) or
a variational AE (VAE) as their underlying framework. The
underlying assumption is that the reconstructed data effec-
tively filters out most noise and anomalies. The difference
(i.e., anomaly scores) between the reconstruction and true val-
ues is used to determine whether anomalies occur. Moreover,
GDN [15] incorporates a structure learning method with graph
neural networks (GNNs) to forecast the value of the next time
point. The anomaly scores are calculated by comparing the
predicted values with the actual data. The anomaly scores
are then compared to a predefined threshold to determine
anomalies. 3) Some anomaly detection algorithms employ
rule-based or alternative methods. One representative work is
JumpStarter [21], which introduces the compressed sensing
technique to reconstruct data.

B. Practical Challenges

Despite the development of numerous models for MTS
anomaly detection, their performance often falls short when
applied to various practical scenarios. This can be attributed
to several significant challenges, which can be summarized as
follows:

1) Large-scale MTS: As systems expand in scale and
complexity, the generation rate of MTS data experiences a
significant increase. For example, online Web service systems
can have several to thousands of services running on different
containers, virtual machines, and physical machines. Financial
institutions, such as banks, have tens of thousands of terminals
operating simultaneously, resulting in massive MTS generated
daily. Deep learning-based models often possess complex
structures and require high training resources. Training a
separate model for each MTS can be a tedious task. Although
techniques like clustering and transfer learning can alleviate
the training burden, the overhead of online detection remains
inevitable.

2) Various MTS Patterns: Data collected from various sys-
tems and scenarios often display distinct patterns. For example,
soil environment monitoring data exhibit annual periodicity
and are influenced by human factors such as watering and



fertilization. Online Web services generate MTS data with a
daily periodicity, which is affected by user behavior and sys-
tem status. Even in the same system, different components can
exhibit different MTS patterns. Additionally, service systems,
especially Web service systems, experience frequent changes,
including business changes and troubleshooting, leading to
changes in the underlying patterns of MTS. However, exist-
ing models are mainly evaluated on limited public datasets,
making their results non-representative and non-generic.

3) Various Anomaly Patterns: MTS exhibits various types
of anomalies when different failures occur or when it is
subjected to different attacks. For example, in a Web service,
surges in page view counts often occur briefly and result in
significant changes in metric values. On the other hand, when
it faces an access attack, the monitored MTS tends to show
longer-lasting changes with minor fluctuations. Detecting these
diverse anomaly patterns in a timely and accurate manner is
crucial to prevent unnecessary damage to the system. It is
important to note that a single algorithm, whether supervised
or unsupervised, is usually insufficient to detect all types of
anomalies. Fortunately, the inherent properties of the model
structure contribute to its varying ability to detect different
types of anomalies. However, further comprehensive investi-
gations are still needed to explore the detection capability of
existing models in detecting different types of anomalies.

III. PRELIMINARY

This paper aims to comprehensively study MTS anomaly
detection and provide insights for practical applications. We
primarily focus on investigating the following research ques-
tions:
RQ1: What are the characteristics of the most popular unsu-

pervised algorithms?
RQ2: How do the existing algorithms work in practice?
RQ3: What are the data characteristics and anomaly types

present in MTS?
RQ4: How to select the most appropriate algorithms based on

data characteristics and specific anomaly types?
We must involve large-scale data and conduct thorough

experiments to address these questions. In this section, we
first introduce two new datasets we encounter in practice (for
RQ2), and six public datasets (for RQ3 and RQ4). Then we
present the overview of existing models to answer RQ1 and
provide the preparation conditions for the experiments. Next,
RQ2 will be resolved in §IV, and RQ3 and RQ4 in §V.

A. Dataset Selection

To ensure comprehensiveness and authenticity, we collect
two datasets (D1 and D2) from our partner companies and six
public datasets from various practical scenarios.

Table I presents a summary of the characteristics of the
datasets. The number of entities varies from 1 to 107, while
the number of metrics varies from 19 to 123. Notably, the
percentage of anomalies ranges from 0.02% to 0.05%, and
at least one anomaly occurs nearly every day. This highlights

the importance of anomaly detection in various industries, with
MTS data serving as a valuable resource for such detection.

B. Dataset Labeling

To ensure reliable labeling, three experienced operators
meticulously examined each MTS and assigned anomaly
labels based on data changes and incident tickets. These
operators have at least three years of experience and a com-
prehensive understanding of the data. In cases with conflicting
annotations, they engaged in discussions to reach a consensus
on the labels. Furthermore, these operators dedicated two
weeks to labeling the data characteristics and anomaly types
for each MTS. More details about the data characteristics and
anomaly types can be found in §IV-B.

We have developed a dedicated graphical user interface
(GUI) tool for displaying MTS data and assisting operators
in efficient data annotation. Moreover, this tool enables visual
inspection of anomaly detection results, including the display
of the anomaly label and the anomaly score of each time
point. The GUI tool greatly facilitates our empirical study.
To promote further research and development in anomaly
detection, we have made the GUI tool [22] and the labeled
dataset [23] openly accessible. The only exception is D2,
which is not accessible due to commercial issues.

C. Model Overview

This paper primarily focuses on unsupervised algorithms,
mainly due to the difficulty of obtaining sufficient high-quality
labeled data for training supervised models in practical scenar-
ios [24], [25]. We select eight popular unsupervised models for
MTS anomaly detection, including one compressed sensing-
based algorithm and seven deep learning-based algorithms.
Table II presents the advantages, data preprocessing methods,
and model structures of the eight algorithms, addressing RQ1.

D. Experimental Setup

We prefer to adopt the default hyperparameters provided in
the corresponding open-source code for the studied anomaly
detection models when conducting experiments. Each instance
in the eight datasets has its unique anomaly detection model
trained using its corresponding training data. This ensures that
the anomaly detection models are specifically tailored to the
characteristics of each instance. For each combination of MTS
and algorithm, we conduct three times of experiments and
select the best result as the final result. For datasets or specific
entities that yield unsatisfactory results, we make efforts to
adjust the hyperparameters and conduct multiple experiments
to achieve improved results. All the experiments are run on
a server with two 16C32T Intel(R) Xeon(R) Gold 5218 CPU
@ 2.30 GHz, one NVIDIA(R) Tesla(R) V100S, and 192 GB
RAM.

E. Evaluation Metrics

We employ two evaluation metrics, time consumption and
F1 − score (F1 for short), to evaluate the efficiency and
effectiveness of the models. F1 is the most widely used



TABLE I: Detailed information of the experimental datasets. (The symbol ‘#’ denotes the amount of data, while the symbol
‘%’ denotes the percentage of anomalies.)

Dataset Source Scenarios #Entities #Metrics Time
Interval

#Train #Test Anomalies
(%)

D1 A global content service provider Web services. 26 49 30 sec 14400 23040 0.05
D2 An Internet service provider Network operation service. 107 22 15 min 672 672 0.02
SMD An Internet company / 28 38 1 min 28479 28479 0.04
ASD An Internet company / 12 19 5 min 8640 4320 0.05
SMAP NASA Global measurements of soil mois-

ture and its freeze-thaw status.
54 25 1 min 2818 7331 0.13

MSL NASA The Mars rover Curiosity’s opera-
tions.

27 55 1 min 4308 6100 0.11

SWaT A water treatment plant The real-world industrial water treat-
ment plant operation status.

1 51 1 sec 496800 449919 0.12

WADI A testbed A single plant operation status. 1 123 1 sec 1048571 172801 0.06

TABLE II: An overview of unsupervised MTS anomaly detection models.

Model Advantages Data Preprocessing Method Model Structures

DAGMM • Based on time point.
• Preserves the low-dimensional features and reconstruction error for
anomaly detection.

Does standardization. AE + Gaussian Mixture
Model (GMM)

USAD • Leverages the advantages of AE and adversarial training.
• A straightforward model structure and a limited number of param-
eters.

Does standardization. AE + Generative Adver-
sarial Network (GAN)

OmniAnomaly • Models the explicit temporal dependence.
• Employs a VAE to map input observations to stochastic variables.

Uses zero to fill in missing values and
does normalization.

RNN + VAE

DOMI • Simultaneously extracts both categorical variables and low-
dimensional data features.
• Works better with MTS data that exhibits multiple normal patterns.

Uses zero to fill in missing values and
does standardization.

1D-CNN + Gaussian
Mixture Variational AE
(GMVAE)

SDFVAE • Be capable of explicitly learning the representations of time-
invariant and time-varying characteristics.

Does normalization CNN + RNN + VAE

InterFusion • Employs a hierarchical VAE (HVAE) to learn different features
independently.
• Learns both low-dimensional inter-metric and temporal embed-
dings.

Uses zero to fill in missing values,
remove extreme values and does stan-
dardization.

1D-CNN + RNN+ VAE

JumpStarter • Clusters univariate time series in MTS.
• Reconstructs MTS based on compressed sensing.
• Effectively reduces initialization time.

Does normalization. Clustering +
Compressed Sensing

GDN • Uses an attention-based GNN to learn the inter-metric dependence. Uses mean values or zero to fill in
missing values and does normaliza-
tion.

Attention + GNN

metric for classification tasks, where True Positives (TP),
False Positives (FP), and False Negatives (FN) are taken
into account. It is given by: Precision = TP

TP+FP ,Recall =
TP

TP+FN , F1 = 2× Precision×Recall
Precision+Recall .

Early anomaly detection algorithms primarily focus on
detecting anomaly points. In point-wise F1, TP represents
correctly detected anomalous points, FP represents normal data
points incorrectly reported as anomalies, and FN represents
anomalous data points overlooked by the algorithm. However,
anomalies often occur continuously in practical scenarios and
form contiguous segments. It is acceptable for an alert to be
triggered in any subset of a ground truth anomaly segment.
Thus, a point-adjusted (range-based) evaluation metric is pro-
posed [26]. The entire anomalous segment is deemed correctly
detected if any point in a ground truth anomaly segment is
detected. In our study, we employ the point-adjusted F1 to
evaluate the performance of the algorithms. We directly count
the TP, FP, and FN to calculate the F1 for each instance. For
a dataset, we aggregate the TP, FP, and FN from all entities

in the dataset and compute the overall F1.

IV. PRACTICAL INVESTIGATION

To address RQ2, we study how existing algorithms work in
practice (D1 and D2) and what problems exist.

A. Current Practice and Case Study

The companies we collaborate with use an unsupervised
anomaly detection model for all instances in the same service
due to the high cost of acquiring a sufficient amount of
labeled data and training individual models for each instance.
Engineers consistently enhance the model by adjusting hy-
perparameters and modifying the structure based on practical
feedback. In large-scale services, a considerable number of
system instances exist, each demonstrating different MTS
characteristics and potentially encountering distinct anomalies.
Employing one model for all entities can be error-prone and
may not yield optimal results. However, selecting the appro-
priate algorithms for each system instance poses a significant
challenge, frustrating engineers.



TABLE III: The performance of different anomaly detection
algorithms on D1 and D2. (∗ denotes an algorithm that
performs better on the corresponding dataset, and bold denotes
the best algorithm on each dataset.)

Model D1 D2

DAGMM 0.6333∗ 0.4106
USAD 0.4982 0.9051∗

OmniAnomaly 0.4270 0.4375∗
DOMI 0.5740∗ 0.1970

SDFVAE 0.6507 0.8886∗
InterFusion 0.6369 0.7586∗
JumpStarter 0.6420∗ 0.2119

GDN 0.7394 0.7464∗

To get a preliminary understanding of the effectiveness of
these MTS anomaly detection models, we perform a case
study using two real datasets: D1 and D2. In contrast to the
practical strategy adopted by the companies mentioned above,
we train a dedicated model for each system instance. These
datasets contain sufficient training data for each instance,
enabling us to evaluate the models’ performance optimally
under experimental conditions. It is worth noting that training
a separate model for each instance can be time-consuming due
to the algorithm’s training efficiency. In our study, we invest
approximately three days to train all the models on D1 and
15 hours on D2.

Table III presents the results of our case study. Overall, the
performance of the examined models is unsatisfactory, indi-
cating potential challenges in achieving effective anomaly de-
tection performance in practical scenarios. Specifically, these
models perform unstable across different datasets. DAGMM,
DOMI, and JumpStarter show better performance on D1, while
the other five models perform better on D2. Furthermore,
Figure 2 presents the results of the eight algorithms on each
instance. No algorithm consistently achieves optimal perfor-
mance across all entities. For example, while USAD performs
well on D2 with a score of 90.51%, it does not achieve the best
performance for all entities. InterFusion yields the best result
on the 12th instance, whereas OmniAnomaly performs best
on the 25th. The algorithms exhibit varying performance on
different entities in the same dataset, even when using the same
hyperparameters. This indicates that the specific characteristics
and types of anomalies present in each instance can impact
the effectiveness of the algorithms. In conclusion, none of the
existing models always provide optimal results in practical
scenarios. The application of unsupervised anomaly detection
algorithms remains a challenging task, and it is crucial to
carefully select the appropriate algorithm for each instance
to achieve the best performance.

B. MTS Characteristics and Anomaly Types

As discussed in § II-B2 and § II-B3, MTS collected from
practical scenarios exhibit diverse data characteristics and
anomaly types. Drawing on previous research and our practical
experience from analyzing over 10,000 historical MTS seg-
ments with anomaly labels, we summarize the most valuable

data characteristics and types of anomalies in anomaly detec-
tion. Then, we conduct a statistical analysis of the collected
MTS data to get deeper insights into them.

We identify three key characteristics that significantly
impact the performance of anomaly detection algorithms:
smoothness, periodicity, and metric correlation. Smoothness
refers to the level of fluctuation between adjacent data points.
We use # smooth metrics

# metrics to quantify the smoothness of MTS.
In practical scenarios, the dynamic changes in business op-
erations and low sampling frequencies can result in frequent
fluctuations and unclear trends in the data. It is challenging to
determine whether the observed changes conform to normal
patterns. Comparing the current data with historical data is
a valid strategy for determining whether the current data
is anomalous. However, detecting anomalies in non-periodic
data poses difficulties due to the lack of reliable historical
data. We use # periodic metrics

# metrics to quantify the periodicity of
MTS. Leveraging metric correlation enables the anomaly de-
tection model to use complementary information from multiple
metrics. We quantify the correlation between metrics using
1 − #metric patterns

# metrics . Specifically, we only consider metrics
where the patterns and trends closely align, indicating a strong
positive correlation.

We categorize anomalies into six types: global anomalies,
contextual anomalies, pattern anomalies, frequency anomalies,
trend anomalies, and others. Figure 3 presents examples of
different types of anomalies. From a duration perspective,
global and contextual anomalies are relatively short-lived,
lasting less than one period. Pattern anomalies, frequency
anomalies, and trend anomalies often span longer segments
equal to or greater than one period. To be more specific,
global anomalies represent segments that exhibit extreme
values when compared to almost all the remaining time
points. Contextual anomalies represent segments with values
that deviate from the neighboring time points or differ from
corresponding time points in other cycles. Pattern anomalies
and frequency anomalies typically occur in periodic metrics.
Pattern anomalies refer to a segment with different basic
patterns compared to normal patterns. Frequency anomalies
are characterized by segments displaying unusual frequency
compared to the overall frequency. Trend anomalies refer to
segments that significantly deviate from the underlying trend
of the time series, i.e., segments that consistently deviate from
the mean value. The category “others” encompasses anomalies
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Fig. 2: The performance of anomaly detection algorithms on
different entities.



that lack distinct features or clear patterns.
Figure 4 illustrates the diversity of data characteristics

across the datasets. Most datasets exhibit a relatively un-
smooth characteristic. Only ASD displays a roughly equal
distribution between smooth and unsmooth MTS, while D2
has predominantly smooth MTS. Furthermore, even in the
same dataset, each MTS exhibits unique characteristics. For
example, in D2, approximately 60% of the entities have a
smoothness level exceeding 80%. However, the remaining
40% of entities display varying degrees of smoothness, ranging
from 26% to 80%. The periodicity of the data also varies
across the datasets. SMAP, MSL, and WADI predominantly
comprise non-periodic MTS, while D2 exhibits relatively
strong periodicity. As for the degree of metric correlation,
all datasets except SMAP, SWaT, and WADI exhibit some
level of metric correlation. According to Figure 5, we confirm
that the anomalous patterns present in MTS exhibit significant
diversity. Among the labeled anomalies, the global anomaly is
the predominant type across all datasets. However, each dataset
has noticeable variations in the proportion of anomaly types.
Specifically, global anomalies dominate D2, MSL, SWaT, and
WADI anomalies. For D1 and SMAP, there is a more balanced
distribution of all types of anomalies. In SMD, both global
anomalies and pattern anomalies are dominant. While ASD
primarily consists of global, contextual, and pattern anomalies.

V. EXPERIMENTAL AND EMPIRICAL ANALYSIS

In this section, we aim to answer RQ3 and RQ4. We
conduct an experimental study using six publicly available
datasets to comprehensively understand existing models across
various scenarios. In the following three sections, we evaluate
the performance of existing algorithms from three different
perspectives: the general case, MTS with different data char-
acteristics, and different types of anomalies. In each section,
we also provide recommendations on selecting the appropriate
algorithm based on the specific scenario being considered.
Lastly, we validate the effectiveness of our recommended
algorithms using all the collected data.

A. Overall Performance

Table IV presents the performance of the eight studied
algorithms on the public datasets. The experimental results re-
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confirm the conclusions drawn in §IV-A. Using one algorithm
for all datasets is prone to errors. The algorithm outperforming
others on one dataset often produces inconsistent results on
different datasets. Based on the experimental results, we
recommend operators preferentially use SDFVAE, InterFusion,
and GDN. These algorithms demonstrate superior performance
on most datasets and consistently produce reliable results
across all datasets. They can effectively learn inter-metric
relationships and temporal dependencies in MTS, enabling
them to perform well in MTS anomaly detection tasks.

Table V presents the training and online detection overhead.
The training overhead is the average time required for the
model to converge on one instance, while the online detection
overhead is the average time taken to detect anomalies either in
a time window or at a data point. DAGMM, OmniAnomaly,
and InterFusion have relatively high overheads due to their
complex structures and a larger number of parameters. On the
other hand, models like USAD, SDFVAE, DOMI, and GDN
demonstrate relatively low training overhead. USAD employs
a simple AE structure and adversarial training technique,
requiring only a few training epochs. SDFVAE, DOMI, and

TABLE IV: The overall F1 of the studied algorithms. (Under-
line denotes the algorithm that performs worst on the dataset,
and bold denotes the algorithm that performs best on the
dataset.)

SMD ASD SMAP MSL SWaT WADI

DAGMM 0.9492 0.8615 0.9098 0.9433 0.8663 0.6952
USAD 0.9038 0.9125 0.9812 0.9471 0.8336 0.4129

OmniAnomaly 0.9748 0.8751 0.9402 0.9202 0.6147 0.7101
DOMI 0.9141 0.5350 0.9299 0.9550 0.9422 0.1993

SDFVAE 0.9365 0.9087 0.9016 0.9365 0.9052 0.8851
InterFusion 0.9601 0.9101 0.9580 0.9611 0.8949 0.8999
JumpStarter 0.9233 0.7001 0.7540 0.8451 0.8694 0.8012

GDN 0.9494 0.8968 0.9380 0.9093 0.8463 0.9258



GDN require a small number of parameters, resulting in
low training overhead. JumpStarter, as a compressed sensing-
based algorithm, does not require a training stage and can
directly detect anomalies in real time. Consequently, it takes
longer for online detection. However, the detection overhead of
JumpStarter is acceptable as it is significantly shorter than the
time required to collect the data. JumpStarter is recommended
when there is insufficient training data or resource constraints
for training detection models. For situations where detection
resources are limited or detection speed is crucial, we suggest
using USAD, which only requires 0.02ms to 0.03ms for
detection.

Considering the balance between effectiveness and effi-
ciency, we recommend prioritizing the GDN and SDFVAE
algorithms. These algorithms consistently yield reliable results
across all datasets while maintaining low training and detec-
tion overhead. InterFusion demonstrates satisfactory overall
performance and even outperforms SDFVAE or GDN on
certain datasets. However, the training cost of InterFusion is
relatively high. On the other hand, the remaining algorithms
show poor performance on one or more datasets. Therefore,
we do not recommend directly using these models without
analyzing the data characteristics or the specific anomaly
types.

B. Performance on Various MTS

We conduct three experiments to explore the performance
of the algorithms in the presence of MTS with different
characteristics. The MTS is divided into ten groups with an
interval of 0.1. Table VI presents the results. Due to the limited
number of MTS in the public datasets, the coverage of data
characteristics is limited.

A lower degree of smoothness indicates more noise and
greater fluctuations between adjacent data points. Conse-
quently, the model must possess strong anti-noise capabilities
to effectively handle MTS data with low smoothness (ranging
from 0 to 0.5). For such cases, we recommend employing the
following algorithms: DAGMM, SDFVAE, InterFusion, and
GDN. The smoothness is typically observed in the time series.
DAGMM learns from and makes predictions on individual
time points, so whether MTS is smooth does not directly
impact its learning and prediction process. SDFVAE and
InterFusion explicitly factorize inter-metric relationships in the
MTS, making them resilient to fluctuations and variations.
GDN adopts a simple moving average (SMA) [27] method
to generate smoothed anomaly scores, helping to prevent
normal data fluctuations from being erroneously identified as
anomalies. When dealing with MTS characterized by high
smoothness (ranging from 0.5 to 0.7), we recommend us-
ing USAD, OmniAnomaly, SDFVAE, and InterFusion. These
models utilize the reconstruction error for anomaly detection.
When the data smoothness is high, the noise in the data is
relatively small. In such cases, the reconstruction error can
accurately reflect anomalies.

A lower degree of periodicity indicates fewer metrics
exhibiting periodic patterns in the MTS, resulting in more

intricate patterns across the MTS. The model must possess
strong abilities to learn complex patterns and perform few-shot
learning. When the data exhibits a low degree of periodicity
(ranging from 0 to 0.5), we recommend utilizing DAGMM,
SDFVAE, InterFusion, and GDN. DAGMM focuses on cap-
turing the patterns of individual data points, allowing it to ef-
fectively identify anomalies based on learned patterns. In cases
where MTS lacks periodicity, it becomes challenging to use
patterns learned from historical time series to assist in anomaly
detection. SDFVAE, InterFusion, and GDN leverage the inter-
metric relationships to achieve robust performance even in the
presence of data with low levels of periodicity. When the data
demonstrate a high degree of periodicity (ranging from 0.5 to
0.9), we recommend utilizing the following models: DAGMM,
USAD, OmniAnomaly, and SDFVAE. These models leverage
historical data to make accurate predictions for newly-coming
data, particularly in scenarios where the data exhibits a more
obvious periodic pattern.

A lower metric correlation indicates the presence of more
unique univariate time series patterns in the MTS. The model
must possess strong abilities to learn complex patterns. When
the degree of metric correlation is low (ranging from 0 to 0.5),
we recommend employing DAGMM, InterFusion, and GDN.
DAGMM is particularly suitable as it focuses on capturing
patterns in individual data points, and the number of complex
patterns to be learned is low. Moreover, DAGMM utilizes a
fully connected layer to learn relationships between all metrics,
avoiding incomplete consideration of metric relationships.
Despite weak correlations between metrics, InterFusion still
demonstrates strong performance by effectively modeling both
temporal and inter-metric dependencies. InterFusion adopts
a sequential learning strategy to capture both temporal and
inter-metric features. By filtering out most of the temporal
anomalies in the first step, InterFusion enhances the clarity of
inter-metric relationships. GDN leverages an attention struc-
ture to learn the relationships between metrics. In cases where
the relationships between metrics are not particularly strong,
GDN tends to focus on each metric independently and utilize
historical data to make forecasts. When the degree of metric
correlation is high (ranging from 0.5 to 0.8), we recommend
utilizing USAD, OmniAnomaly, and SDFVAE. This high
degree of correlation facilitates the detection of anomalies
because related metrics tend to change simultaneously or in
a close interval when anomalies occur. These models can
accurately capture anomalies in data with a high degree of
correlation.

C. Performance on Different Anomaly Types

We categorize the detection results based on the type of
anomalies present in the MTS. Specifically, when computing
the F1 for the global anomalies, we focus on whether the
global anomalies in the MTS are detected, disregarding other
types of anomalies. The detailed results can be found in
Table VII.

The performance of most models is superior in detecting
global anomalies. Except for OmniAnomaly, which achieves



TABLE V: The training time (T) and online detection time (D) of the studied algorithms.

SMD ASD SMAP MSL SWaT WADI

T (s) D (ms) T (s) D (ms) T (s) D (ms) T (s) D (ms) T (s) D (ms) T (s) D (ms)

DAGMM 709.91 0.95 396.25 0.94 413.80 1.16 707.10 0.91 4403.37 1.17 4520.62 1.15
USAD 620.34 0.02 75.99 0.03 60.33 0.02 83.74 0.02 10352.00 0.03 47457.65 0.03

OmniAnomaly 599.57 0.35 356.75 0.41 320.67 0.35 348.82 0.35 4208.06 0.37 5108.29 0.38
DOMI 9.92 0.31 2.16 0.25 1.03 0.28 2.09 0.44 112.41 0.38 342.83 0.98

SDFVAE 101.59 0.10 117.67 0.03 73.98 0.03 71.82 0.03 1070.42 0.03 2252.28 0.13
InterFusion 2988.92 21.93 906.78 19.60 572.00 23.22 299.92 34.59 55919.08 25.25 118290.53 22.33
JumpStarter – 4.60 – 2.33 – 3.00 – 6.65 – 6.6 – 16.69

GDN 178.42 0.13 30.78 0.14 32.99 0.25 30.38 0.12 855.38 0.28 1220.14 0.22

TABLE VI: The performance of the studied algorithms on various MTS.

(a) The performance on MTS with different degrees of smoothness.

0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0

DAGMM 0.9029 1.0000 0.8647 – 0.8571 0.9577 0.8406 – – –
USAD 0.9144 1.0000 0.8385 – 0.8263 0.9585 0.9652 – – –

OmniAnomaly 0.9245 1.0000 0.6244 – 0.8589 0.9252 0.9702 – – –
DOMI 0.8799 0.9846 0.9423 – 0.3819 0.5424 0.6868 – – –

SDFVAE 0.8928 1.0000 0.9079 – 0.8398 0.9472 0.9599 – – –
InterFusion 0.9527 1.0000 0.8975 – 0.8942 0.9513 0.9265 – – –
JumpStarter 0.8009 0.9846 0.8709 – 0.5379 0.8574 0.8166 – – –

GDN 0.9364 0.9950 0.8514 – 0.8364 0.8416 0.9542 – – –

(b) The performance on MTS with different degrees of periodicity.

0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0

DAGMM 0.8842 – 0.9451 0.9437 0.8726 0.9911 0.9297 0.9067 0.8329 –
USAD 0.9208 – 0.9269 0.9186 0.8281 0.9839 0.9489 0.9401 0.8883 –

OmniAnomaly 0.9090 – 0.9719 0.9796 0.6360 0.9989 0.9251 0.8927 0.8906 –
DOMI 0.8736 – 0.9588 0.8956 0.9353 0.9819 0.8584 0.6618 0.3291 –

SDFVAE 0.8808 – 0.9793 0.8950 0.9091 0.9988 0.8983 0.9370 0.8642 –
InterFusion 0.9499 – 0.9573 0.9678 0.8982 0.9901 0.9485 0.9455 0.7787 –
JumpStarter 0.7674 – 0.8670 0.9541 0.8722 0.9557 0.8452 0.8214 0.3478 –

GDN 0.9330 – 0.9478 0.9428 0.8552 0.9772 0.9066 0.9334 0.7545 –

(c) The performance on MTS with different degrees of metric correlation.

0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0

DAGMM 0.8842 0.9655 0.8759 0.9450 0.9645 0.9680 0.8452 0.8329 – –
USAD 0.9208 0.9399 0.8515 0.8692 0.7714 0.9722 0.9296 0.8883 – –

OmniAnomaly 0.9090 0.9951 0.6500 0.9735 0.9939 0.9489 0.8855 0.8906 – –
DOMI 0.8736 0.9847 0.9402 0.8704 0.8705 0.8270 0.6886 0.3291 – –

SDFVAE 0.9037 0.9879 0.9136 0.8510 0.9835 0.9606 0.9405 0.8642 – –
InterFusion 0.9499 0.9902 0.9056 0.9503 0.9326 0.9810 0.8980 0.7787 – –
JumpStarter 0.7674 0.8626 0.8761 0.9551 0.9028 0.9123 0.7942 0.3478 – –

GDN 0.9330 0.9742 0.8615 0.9180 0.9805 0.9428 0.9552 0.7545 – –

TABLE VII: The performance of the studied algorithms on
various anomaly types.

Global Contextual Pattern Frequency Trend Others

DAGMM 0.8977 0.6325 0.2703 0.7015 0.8491 0.2402
USAD 0.8685 0.7712 0.5107 0.4802 0.2881 0.2012

OmniAnomaly 0.7088 0.2580 0.9672 0.1109 0.8050 0.1857
DOMI 0.8667 0.5669 0.9009 0.8092 0.2661 0.2886

SDFVAE 0.8939 0.5395 0.9731 0.6596 0.9355 0.3654
InterFusion 0.9432 0.2719 0.9536 0.7533 0.8759 0.2588
JumpStarter 0.8564 0.5872 0.8032 0.5080 0.6694 0.2167

GDN 0.8828 0.9646 0.9208 0.7276 0.8754 0.2747

an F1 of 0.7088, all other models achieve an F1 of 0.85
or higher. Notably, InterFusion demonstrates the best perfor-
mance, with a score of 0.9424. Global anomalies are generally

easily detected due to obvious deviations from normal values.
They can be identified using a relatively short window of
data. Even if these anomalies persist beyond the window size,
they can be detected once the anomalies occur. InterFusion
leverages contextual information in the window data and
extracts features separately for each metric during the tem-
poral feature extraction stage, mitigating interference between
metrics. These factors contribute to the excellent performance
of InterFusion in detecting global anomalies.

The detection performance for contextual anomalies varies
across the studied algorithms, ranging from 0.25 to 0.96. GDN
achieves the highest performance with an impressive F1 of
0.9646. It is often challenging to determine contextual anoma-
lies by comparing data at a single time point with the data at



surrounding context time points. Contextual anomaly detection
heavily relies on the model’s ability to learn the temporal
relationships and inter-metric correlations in the historical
MTS data. GDN excels in modeling and detecting MTS with
short windows. It can effectively leverage the historical MTS
data that exhibit similar patterns by utilizing the window data.
Short windows allow GDN to focus more on capturing the
differences with historical MTS rather than solely relying on
the information in a single window. Furthermore, GDN models
the relationships between metrics. It is adept at capturing these
correlation changes between metrics, enabling it to effectively
detect anomalies in the data.

Five of the eight algorithms achieve a satisfactory F1 of
0.9 or higher in detecting pattern anomalies. Pattern anomalies
are generally easily detectable due to their long durations and
significant deviations from historical patterns. When a pattern
change occurs, there are simultaneous alterations in the tempo-
ral relationships between adjacent points and the relationships
between metrics. Among the algorithms, SDFVAE stands out
with an impressive F1 of 0.9731. SDFVAE is particularly
well-suited for detecting pattern anomalies because it can
effectively handle long-term time series data. Additionally,
SDFVAE explicitly models both temporal and inter-metric
relationships, enabling it to capture the pattern anomalies.

The detection performance of frequency anomalies varies
across the studied algorithms, ranging from 0.11 to 0.81.
DOMI performs the best and significantly outperforms the
other algorithms with an F1 of 0.8092. Distinguishing fre-
quency anomalies from normal data is often challenging when
only relying on contextual data and the relationships between
metrics. Moreover, in real-world MTS, multiple normal pat-
terns are typically present, and different normal window data
may exhibit distinct patterns in the same MTS. DOMI ad-
dresses these challenges by incorporating a categorical variable
to obtain robust data features. This method allows DOMI to
divide the MTS into finer categories, enabling more precise
anomaly detection ability.

Four models perform strongly in detecting trend anomalies,
with SDFVAE scoring 0.9355. Detecting trend anomalies is
also challenging when relying solely on contextual data and
the relationships between metrics. Fortunately, trend anomalies
exhibit distinct mean values that deviate from the mean value
observed in normal data. Deep learning-based models are
inherently sensitive to numerical changes, making them well-
suited for detecting trend anomalies. The ability to capture and
analyze long-term data enables SDFVAE to excel in detecting
trend anomalies in the MTS data.

The overall performance of the studied algorithms in de-
tecting anomalies in the “others” type is relatively low. Even
the best-performing algorithm, SDFVAE, achieves a score of
only 0.3654. This is because anomalies in this category are
usually labeled based on true backtracking and do not have
clear changes in the data. Detecting anomalies in this category
remains a challenging task, and further research is needed
to improve anomaly detection performance in identifying
anomalies in this specific category.

D. Performance of Recommended Algorithms

In the previous three sections, we provide recommendation
algorithms for different scenarios based on the performance
of the algorithms on public datasets. In this section, we
evaluate the effectiveness of recommended algorithms in var-
ious scenarios using all the collected MTS data. Specifically,
when we select algorithms based on the data characteristics
for each instance, we use the corresponding recommendation
model. If multiple models are recommended, we use the model
that performs best in the characteristic value interval of the
instance. Table VI provides the performance of each algorithm
for different features. Please note that when selecting algo-
rithms based on Table VI, we only consider recommendation
algorithms that match the data characteristics. When applying
algorithms based on the types of anomalies for each instance,
we usually utilize multiple algorithms since an instance can
have multiple types of anomalies. If any algorithms detect an
anomaly, the data point will be reported as an anomaly. The
experimental results are shown in Table VIII.

The recommended SDFVAE, InterFusion, and GDN all
demonstrate outstanding anomaly detection performance that
meets the performance requirements and are among the top
three algorithms. Regarding reduced model training overhead
and detection overhead, our recommended algorithms, Jump-
Starter and USAD, achieved scores of 0.7855 and 0.8269,
respectively. Although these results may not be ideal, they
are still acceptable considering the resource constraints. For a
balance between effectiveness and efficiency, we recommend
SDFVAE and GDN. They offer satisfactory performance while
maintaining low training and detection overhead.

InterFusion stands out with the highest score of 0.8878
when utilizing a single algorithm. However, our data
characteristics-based solutions consistently outperform the
best results achieved using a single algorithm, with perfor-
mance gains of up to 1.3%. Furthermore, it is worth noting
that InterFusion, despite its high performance, has the highest
training and testing overhead among all the algorithms. Our
recommended solution effectively addresses this overhead
concern by combining multiple algorithms with lower over-
head. Overall, our recommended solution offers significant
advantages in performance improvement and cost savings.

Our anomaly types-based solution achieves a score of
0.8624 on all MTS data, slightly lower than the best single al-
gorithm but still better than most. Upon analysis, we observed
a significant improvement in the recall of anomalies using
our recommended algorithms. However, there is a decrease
in precision. This decrease in precision can be attributed to
the aggregation of detection results from multiple models for a
single instance, resulting in a higher number of false positives.
Nevertheless, we firmly believe that algorithm recommen-
dation based on specific anomaly types remains meaningful
in practical applications. This is because different systems
and services typically face a limited number of attack and
failure types. Operators can easily utilize our recommended
models based on their practical application without validating



TABLE VIII: The performance of using the recommended
algorithms.

Model/Strategy F1

DAGMM 0.8499
USAD 0.8269

OmniAnomely 0.7380
DOMI 0.8372

SDFVAE 0.8657
InterFusion 0.8878
JumpStarter 0.7855

GDN 0.8823

Smoothness 0.9008
Periodicity 0.8906

Metric correlation 0.8889
Anomaly types 0.8624

all algorithms, streamlining the process.
Overall, our recommended solution is highly practical and

significantly reduces the workload for operators while ensuring
effective and efficient anomaly detection. In cases where all
data characteristics and anomaly types are known, we suggest
that operators prioritize the selection of algorithms based on
data smoothness and finally consider the specific anomaly
types.

VI. THREATS TO VALIDITY

As an empirical study, our research is subject to various
common threats that can impact the validity and reliability of
the results. These threats encompass several factors, including
the datasets, the models used, the evaluation metrics employed,
and the methods used for inspection and analysis.

Datastes. Despite our efforts to collect publicly available
datasets and real-world data from two partner companies, the
scenarios and volume of collected MTS remain constrained,
which may impact the validity and generalizability of our
empirical conclusions. Fortunately, the datasets used in our
study are derived from real-world scenarios or sophisticated
testbeds, and they have been meticulously labeled by experts
based on fault feedback. Furthermore, the gained insights have
been applied to all MTS, resulting in satisfactory performance.
While the number of MTS is limited, we have a high level of
confidence in the effectiveness of the data and our conclusions.

Studied models. We focus on evaluating the performance
of eight unsupervised algorithms in this work. It is important
to note that numerous MTS anomaly detection algorithms
still need to be evaluated. Moreover, we maintain default
hyperparameter settings for each algorithm when testing them
on different datasets. However, different algorithms often use
different hyperparameter configurations, even if the hyper-
parameter has similar meanings. These hyperparameters can
significantly impact the performance of the algorithms. While
using default hyperparameters is still an acceptable method,
as each model has its unique structure, employing different
hyperparameter settings may be necessary to achieve optimal
performance for them.

Evaluation metrics. We use the widely used metric, F1, to
evaluate the performance of the anomaly detection models. F1

is considered a suitable metric even when there is an imbal-
ance in the data categories. However, different domains have
different preferences for the capabilities of anomaly detection
algorithms. Many applications prioritize accurately predicting
large portions, detecting anomalies early, and minimizing the
number of false alarms. Analyzing these preferences is crucial
in specific scenarios. This paper aims to study the general
performance of unsupervised algorithms, and therefore, F1

score is a suitable choice for evaluation.
Inspection methods. To ensure the validity of our con-

clusions, we make efforts to mitigate the impact of various
factors on our experimental results. For efficiency experiments,
we conduct them on a dedicated server that allows only
one program to run at a time. Moreover, with limited data,
we perform separate analyses of the data characteristics and
anomaly types. This helps minimize the impact of inadequate
experimental data under multiple factors on our experimental
results and conclusions.

VII. CONCLUSION

This empirical study analyzes current practices and pro-
vides recommendations for selecting appropriate algorithms
in specific scenarios. Our insights successfully address signif-
icant practical challenges of applying MTS anomaly detection
models in real-world scenarios. Firstly, we examine eight
algorithms using two real-world datasets, allowing us to in-
tuitively understand current practices. This analysis also helps
us identify common data characteristics and types of anomalies
that are crucial for effective anomaly detection. The accurate
labels for data characteristics and types of anomalies are now
publicly available, which serves as a valuable resource for
this study and future research in anomaly detection. Following
that, we evaluate the effectiveness and efficiency of these
algorithms using publicly available datasets and provide gen-
eral recommendations for selecting the appropriate algorithms
in various scenarios. Lastly, we provide clear guidance on
choosing the appropriate algorithm for MTS with different
data characteristics and specific anomaly types. We apply the
guidance to all the datasets we collected. The results show that
most of our suggestions can achieve better than any algorithm
alone. Overall, we derive key findings and valuable insights
that aim to guide and advance future research in anomaly
detection.
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