

AutoKAD: Empowering KPI Anomaly Detection with Label-Free Deployment

Zhaoyang Yu¹, Changhua Pei², Shenglin Zhang³, Xidao Wen⁴, Jianhui Li², Gaogang Xie², Dan Pei¹

¹Tsinghua University, ³Nankai University, ²Chinese Academy of Science ⁴BizSeer Technology

Unavoidable Failures

C-) Alibaba Cloud

December 2022 AliCloud outage lasts more than 12 hours, many customer services severely impacted

October 2021 Facebook's apps had a total outage of their external services for up to seven hours, evaporating nearly \$50bn in market value overnight

In 2020 alone, Google's global services have experienced four major downtimes, each of which has resulted in huge economic losses

How can we minimize the occurrence of catastrophic level failures and reduce economic losses?

KPI Anomaly Detection

Key Performance Indicator (KPI)

- Time-series data collected from a myriad of sources
- Reflect the health status of a service
- Most KPIs in the real world are seasonal

KPI anomaly detection is essential for service reliability

- Identifying potential issues by detecting anomalies in KPIs
- Labels are expensive
- Most algorithms are unsupervised

Configurations Matter

Configuration affects detection performance

- Configuration = Algorithm + Hyperparameter
- One configuration will not work well for all KPIs
- Same configuration performs very differently on different datasets
- Finding a satisfying configuration is challenging for IT operators

Deployment of KPI Anomaly Detection

What do operators need to do when deploying an anomaly detection model for a KPI?

Deployment Dilemma

CASH Problem and AutoML

What operators need is an end-to-end solution that auto selects algorithms and hyperparameters for different

CASH problem

Traditional ML training

- Labeling thousands and
- Black-box optimization

even millions of KPIs is impossible

Collect data

Not Practical

- Automate facets of the machine learning pipeli
- e.g. algorithm selection, data preprocessing, hyperparameter
- optimization
- Existing methods are mainly based on labeled test sets for searching configurations

a set of possible hyperparameters:

 $\Theta_i = \{\theta_1^i, \theta_2^i, \dots, \theta_{n_j}^i\}$

 $\underset{g \in G, h \in \Theta_g}{\operatorname{arg max}} L(g, \theta; X)$

Challenges

Unattainable objective function

- The objective function is used to evaluate the performance of a configuration given by the AutoML framework
- Without labels, it is unable to calculate the evaluation metrics (e.g., Precision, Recall, F1-score)
- Without these metrics, it is unfeasible to evaluate the performance of a configuration

High time complexity

- The number of KPI in practice is huge
- Training a machine learning model is time consuming
- AutoML needs to train models several times

🧱 💩 🚀 🚺 10

AutoKAD: Overview

🗐 🝥 և 🥖

Cluster-Based Warm Start

Cold Start

- AutoML will give a random configuration as a starting point for the search
- Random initial configuration leads to a timeconsuming cold start

Core idea

- Intuitively the promising configurations of similar KPIs are likely to be similar
- Using cluster to find similar KPIs
- Explore different algorithms

13 👲 և 🚀

Bayesian Optimization

Bayesian Optimization is a sequential design strategy for black-box optimization and widely used to solve the CASH problem.

Surrogate Model

Build a probability model between configuration and model performance.

"Guessing" performance based on observations

Objective Function

Evaluating the performance of a configuration. Evaluation Metric

Acquisition Function

Deciding the next configuration to observe. Exploration-Exploitation Trade-off

Acquisition Function

The goal of the acquisition function is to find the next most observable configuration.

(SW-EI)

Expected Improvement (EI) is an effective and widely used acquisition function in **BO-based AutoML** Similarity Weighted

Without labels, the gap between F1 and our objective function cannot be completely eliminated

solution is to be more inclined to Expected Improvement e different configurations

$$W-EI(h) = \sum_{i=1}^{n} w_i(h, h_i^+)(\mu(h) - f(h_i^+))\Phi(z_i) + \sum_{i=1}^{n} w_i\sigma(h)\phi(z_i) + \sigma(h)\phi(\sum_{i=1}^{n} \frac{z_i}{n})$$

 $EI(h) = \mathbb{E}[\max(\mu(h) - f(h^+), 0) | \{h_1, \cdots, h_k\}$ where $h^+ = \arg \max f(h_i)$ $i=1,\cdots,k$

Configuration Recommendation

Operators have different sensitivities to false alarms and missed alarms for different KPIs.

Dataset

Dataset A

- Based on AIOps2018 Challenge dataset.
- Collected from several big Internet companies' business systems.

Dataset B and C

- Collected from the two most important trading systems of an international commercial bank.
- Dozens of operators closely monitor these KPIs to maintain service quality

Dataset	#KPI	#Train/#Test	Anomaly rate			
${\cal A}$	29	3004066 / 2918847	2.648% / 1.869%			
${\mathcal B}$	29	1642815 / 1642810	1.089% / 1.065%			
${\mathcal C}$	30	2078848 / 2078854	0.781% / 0.817%			

Effectiveness in Searching for Configurations

Under 100 iterations and 1 hour limitation for each KPI

Methods Use MSE as the					B			C			Avg.		
		as the	F1-score	Precision	Recall	F1-score	Precision	Recall	F1-score	Precision	Recall	F1-score	
Default Do	onut	bjective fi	unction	0.531	0.457	0.689	0.550	0.707	0.638	0.671	0.682	0.569	0.620
Random Se	arch	0.676	0.537	0.599	0.663	0.631	0.647	0.675	0.783	0.725	0.671	0.650	0.661
BayesOp	ot	0.876	0.525	0.657	0.763	0.672	0.715	0.875	0.681	0.766	0.838	0.626	0.717
BOAT		0.831	0.575	0.680	0.778	0.688	0.730	0.823	0.708	0.761	0.811	0.657	0.726
AutoKAI	ס	0.861	0.694	0.769	0.920	0.723	0.810	0.916	0.781	0.843	0.899	0.733	0.807
							•						

outstanding performance on all three datasets

Compared with baseline methods, the results show that AutoKAD is indeed effective in the CASH problem for unsupervised KAD models.

Time Efficiency

0

Under 100 and 1 hour limitation for each KPI

Effectiveness of the Objective Function

The performance of MSE-NF is quite close to the performance of the ideal F1-Score

When α is close to 1, the performance is commendable

Correctness of Configuration Recommendation

Optimal Configurations VS Configurations given by our strategy

Top 3	Dataset	\mathcal{A}			${\cal B}$			С			
	Strategy	Р	R	F1	Р	R	F1	Р	R	F1	
1st	ideal	0.99	0.88	0.76	0.99	0.96	0.81	0.97	0.87	0.84	
	our	0.97	0.77	0.71	0.98	0.95	0.78	0.97	0.81	0.84	
2nd	ideal	0.99	0.77	0.73	0.98	0.95	0.80	0.97	0.83	0.83	
	our	0.98	0.71	0.71	0.97	0.88	0.78	0.97	0.81	0.83	
3rd	ideal	0.99	0.71	0.70	0.98	0.92	0.78	0.97	0.82	0.83	
	our	0.98	0.70	0.66	0.97	0.89	0.78	0.96	0.80	0.82	

Difference

- Precision: < 0.02
- Recall: < 0.11
- F1-Score: < 0.05

Conclusion

Automatic label-free deployment of KPI anomaly detection

- Operators in industry are not machine learning experts
- Automatic label-free deployment is important to ensure the detection performance

AutoKAD: an AutoML framework for unsupervised KPI Anomaly Detection

- **Cluster-based Warm Start** => Reduce the time wasted by cold start
- **MSE-NF objective function** => label-free configuration searching
- **SW-El acquisition function** => balance exploration and exploitation
- **Recommendation strategy** => satisfy operators' preferences for different KPIs
- Effectively and efficiently find a promising configuration for KPI anomaly detection Opensource *AutoKAD*
 - https://github.com/NetManAlOps/AutoKAD

Limitation

KPI Requirement

• AutoKAD is designed for univariate KPIs and cannot tackle multivariate KPIs

Univariate KPI

Algorithm Requirement

- The algorithm should have the ability to give the estimated KPI (most algorithms)
- Algorithms like PCA and kNN cannot be used in AutoKAD

Thanks Q&A

