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Introduction

» Microservice systems are widely used in modern software
development.

» They consist of multiple service instances that communicate with
each other.

» Failures in one instance can affect the entire system,



« Operators continuously collect three types of monitoring data, including metrics,

logs, and traces for proactively detecting instance failures.

Logs Templates

—— normal

---- anomalous ERROR|<*>|bservsicel|db_helper.py ...

INFO | <*> | webservicel | ...

ERROR | <*> | <*> | dbservicel | ...

IPAddress POST <*> HTTP/1.1 <*> ...

W‘\MM INFO | <*> Deploying application <*>

e o Ls
Time WARNING | GC <*> | <*> ...
Metrics Logs Traces



Motivation

For metrics-based anomaly detection methods:

- Frequent fluctuations can be judged as AN\»/\A'\WA/\/W\W

anomalies.

* Result in a large number of false positives. P




- Focus on keywords such as “error”. “ INFO $<*>S webservice! $1S

 Some failures do not manifest
180 IPAddress POST $<>$ HTTP/1.1 $<*>§...

themselves obviously in logs.
« Some anomalous logs do not indicate an 270 INFO $| <*>§ Deploying application $<">$

nstance failure. 60 | ERRORSISSenvers<$iDOWN...

® RGSU't |n a Iarge number Of false 450 INFO $| <*>|$ proxy $<*>$ has no server

positives and false negatives.
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For traces-based failure detection methods:
0 | st-s2Time=00ts
. w0 | s2-S3Time=0.32s
* Focus on response time.
* Alarger response time quickly returning to 180 S3—354 Time=0.57s
normal status does not indicate an 270 _
* Result in a huge number of false positives. 450 S7—S8 Time=0.78s
540 S8—S9 Time=0.32s




« Single-modal data may not be sufficient to detect all types of failures.

Failure Type  Metric Log Trace # Failures
failed of QR code Mem T — — 505
system stuck Mem | - —~ 16
login failure — ERR RTs,_,5,=11s 527
file not found - - RTs,5,=1.5s 36

access denied - ERR RTs,_,s,=1.1s 15




Require two or more modalities to have anomalies for failure detection.

It ignores the correlation of the multimodal data.

Result in many false negatives or false positives.

Metrics

Metrics
detection

Logs

Logs
detection

Traces

Traces
detection

\ 4

Voting

\ 4

Result

10



VVVYVY

A failure detection modal.

Unsupervised method.

Based on multimodal monitor data.

Consider the heterogeneity and correlation.

Handle the dynamically changing of data.
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Challenge
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"o Modeling the complex correlations among multimodal data.

When a failure occurs, one, two, or three modalities of data can become
anomalous, and they are correlated with each other.

Neglecting the correlations can degrade the failure detection accuracy.
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‘o' Dealing with the heterogeneous and dynamically of multimodal data.

Metrics are usually in the form of multivariate time series.

Logs are typically semi-structured text.

Traces consist of spans in a tree structure.

Integrating such heterogeneous multimodal data is quite challenging.

An instance’s multimodal data usually changes dynamically over time.
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Contribution
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Contribution1

-
-)

o Modeling the complex correlations among multimodal data.

Apply Graph Transformer Network (GTN).
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Contribution2

-
-)

o Dealing with the heterogeneous and dynamically changing multimodal data.

Serialize the data of each modality and adopt GAT and a GRU.
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Architecture
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Architecture
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Architecture

@® Multimodal Data Serialization ® Graph Stream Construction
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» Metric data: Regular preprocessing steps.
* Log data: By clustering and sliding windows.

» Trace data: Response time and status code. )



Architecture

T,: info <*> write success

T,: INFO | <*> | <*> | dbservice2 | <*> | the list of all available
services are redisservicel: http:/<*>, redisservice2: http:/<*>",1195
Tyt <F>-<¥>-<*> <*oicksic*> <*> | INFO | <*> | dbservice2 |
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Architecture

@® Multimodal Data Serialization ® Graph Stream Construction
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» Metric data: Regular preprocessing steps.
* Log data: By clustering and sliding windows.

» Trace data: Response time and status code. |



Architecture

@® Multimodal Data Serialization
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Construct a heterogeneous graph for each time using the extracted

data channels.
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Architecture

® Multimodal Data Serialization
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 GTN is used to capture the correlation among different data modalities.

» The GAT is used to identify different patterns and achieving feature filtering.
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Architecture

® Multimodal Data Serialization / ® Graph Stream Construction
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 GRU is applied to temporal sequences to predict the values at the next

moment based on the previous inputs.
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Architecture

@® Multimodal Data Serialization ® Graph Stream Construction [
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Serialize the data using its previous historical observations.
Construct the graph stream

Get a prediction vector and calculate the failure score.
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Evaluation
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Dataset 1

Dataset 2

Mli\(l:l:czzt:\r/igfas l;lnusr’?abnecre(: railures ((%o) Modality f
Metric 734,165
5 10 4.908 Log 87,974,577
Trace 28,681,438
M[i\:;l:czr;t;?\:iggs TnusTabnecrezf Fallyres (o)) | Modalty f
Metric 3,122,168
14 28 1.243 Log 14,894,069
Trace 9,473,763
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Effectiveness

gproud | Modality | D1 | D2
| Metric Log Trace ‘ Precision Recall F;-score ’ Precision Recall F;-score

JumpStarter [25] v 0.466 0.785 0.584 0.533 0.413 0.465
USAD [1] v 0.459 0.825 0.590 0.837 0.341 0.484
LogAnomaly [27] v 0.486 0.957 0.644 0.126 0.344 0.184
Deeplog [5] v 0.506 0.812 0.623 0.105 0.275 0.151
TraceAnomaly [21] 0.550 0.548 0.549 0.521 0.699 0.597
SCWarn [46] v v 0.547 0.425 0.447 0.633 0.891 0.734
JLT v v 0.461 0.940 0.618 0.800 0.344 0.481
AnoFusion v v 0.795 0.945 0.857 0.863 0.991 0.922
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We propose AnoFusion, one of the first studies using multimodal data, i.e., metrics, logs,

and traces, to detect failures of instances in microservice systems robustly.

We apply AnoFusion on two microservice systems, which proves that it significantly

improves the F1-score for failure detection.

We believe that the solution of applying multimodal data for failure detection will benefit

more areas beyond microservice systems.
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Thank you!

Q&A
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