
Robust System Instance Clustering for Large-Scale Web Services
Shenglin Zhang∗†
Nankai University;
HL-IT; TKL-OS
Tianjin, China

Dongwen Li
Nankai University
Tianjin, China

Zhenyu Zhong
Nankai University
Tianjin, China

Jun Zhu
Nankai University
Tianjin, China

Minghan Liang
Nankai University
Tianjin, China

Jiexi Luo
Nankai University
Tianjin, China

Yongqian Sun†‡
Nankai University;

TKL-OS
Tianjin, China

Ya Su
Kuaishou Technology

Beijing, China

Sibo Xia
Nankai University
Tianjin, China

Zhongyou Hu
Nankai University
Tianjin, China

Yuzhi Zhang∗†
Nankai University;
HL-IT; TKL-OS
Tianjin, China

Dan Pei§
Tsinghua University;

BNRist
Beijing, China

Jiyan Sun
Chinese Academy of

Sciences
Beijing, China

Yinlong Liu
Chinese Academy of

Sciences
Beijing, China

ABSTRACT
System instance clustering is crucial for large-scale Web services
because it can significantly reduce the training overhead of anomaly
detection methods. However, the vast number of system instances
with massive time points, redundant metrics, and noise bring sig-
nificant challenges. We propose OmniCluster to accurately and
efficiently cluster system instances for large-scale Web services. It
combines a one-dimensional convolutional autoencoder (1D-CAE),
which extracts the main features of system instances, with a sim-
ple, novel, yet effective three-step feature selection strategy. We
evaluated OmniCluster using real-world data collected from a top-
tier content service provider providing services for one billion+
monthly active users (MAU), proving that OmniCluster achieves
high accuracy (NMI=0.9160) and reduces the training overhead of
five anomaly detection models by 95.01% on average.
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1 INTRODUCTION
Cloud-native platforms allow developers to quickly build new ap-
plication architectures that are resilient, elastic, and agile, and thus
an increasing number of Web services are applying microservice
architecture [19]. Web service in the microservice system can have
several to thousands of instances running on different containers,
virtual machines, or physical machines [18, 28, 32, 45, 46]. Therefore,
there are a vast number of system instances, e.g., service instances,
containers, virtual machines, physical machines, switches, routers,
in a large-scaleWeb service. The reliability of these system instances
is of vital importance to Web services because their anomalous be-
havior may degrade the availability of Web services, impact user
experience and even lead to economic loss [32, 41, 44, 48].
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Figure 1: The MTS of system instances in large-scale Web
services.
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For proactively detecting the anomalous behaviors of system
instances and timely mitigate system failures, operators configure
diverse types of system-level metrics, e.g., CPU utilization, mem-
ory utilization, disk I/O, network throughput, and user-perceived
metrics, e.g., average response time, error rate, page view count,
and continuously collect their monitoring data at predefined time
intervals. The monitoring metrics of a system instance thus form a
multivariate time series (MTS), as shown in Figure 1. Recently, a col-
lection of deep learning-basedmethods have been proposed forMTS
anomaly detection because they can accurately learn the expressive
representations of complex and massive MTS data [13, 40, 47, 49].
Typically, an MTS anomaly detection model learns the normal
patterns of a system instance and determines that the instance
becomes anomalous when its behavior deviates from the learned
normal patterns. However, on the one hand, there are a huge num-
ber of system instances in large-scale Web services (e.g., millions
of system instances Alibaba [28] and ByteDance [41]), and training
an MTS anomaly detection model for each system instance will
consume a lot of computational resources (see Table 1). On the
other hand, training one anomaly detection model for all system
instances is not expressive enough for diverse system instances and
will degrade the accuracy [42] (see Table 5). Therefore, it is pretty
challenging to deploy these MTS anomaly detection methods in
large-scale Web services. Although CTF [42] moves the first step to
address the anomaly detection problem for high-dimensional time
series, it only improves the performance of RNN+VAE-based model
(i.e., OmniAnomaly [40]), and is noise-sensitive (see Table 6).

After investigating thousands of real-world system instances,
we observe that: 1) Because many system instances share similar
patterns of normal metrics, most of the system instances, except
for outliers, can be grouped into different clusters according to
their metric patterns. 2) Although the system instances housing the
same microservice have similar patterns, a system instance usually
houses several microservices, and different system instances house
different combinations of microservices. Therefore, it is impractical
to group system instances according to the combinations of mi-
croservices deploying on them. Now, it is intuitive to automatically
group system instances into different clusters, such that the system
instances of each cluster have similar normal patterns of metrics.
In this way, we can train an MTS anomaly detection model for each
cluster instead of each system instance, significantly reducing the
training overhead since the number of clusters is much smaller
than system instances. For a system instance, its MTS represents
the normal patterns of its metrics, and the problem is transformed
into an MTS clustering problem.

Over the years, several MTS clustering methods have been pro-
posed [17, 20, 23, 24, 36]. However, none of them can address the
three challenges lying in large-scale Web services: 1) There are a
vast number of system instances with massive time points contain-
ing noise and anomalies. 2) A system instance usually has redundant
and non-periodic metrics, which can degrade the performance of
MTS clustering. 3) A labeling tool is needed to efficiently cluster
MTS manually for model evaluation and improvement (§ 2.2).

In this paper, we propose OmniCluster to accurately and effi-
ciently cluster system instances for large-scale Web services. Om-
niCluster utilizes one-dimensional convolutional autoencoder (1D-
CAE) to embed high-dimensional data into low-dimensional data,

extracting the main features of MTS. Additionally, it applies a sim-
ple, novel, yet effective strategy to select periodic and representative
features. OmniCluster is task-agnostic, and it can be applied for any
type of MTS anomaly detection model.

The contributions of this paper are summarized as follows:
(1) We apply 1D-CAE to embed high-dimensional data into low

dimensional data, which not only reduces clustering over-
head but also eliminates the impact of noise and anomalies,
addressing the first challenge. To the best of our knowledge,
we are among the first to apply 1D-CAE for MTS clustering
(§ 3.3).

(2) We propose a novel strategy to select periodic and representa-
tive features, which prevents some features from interfering
with MTS clustering, addressing the second challenge (§ 3.4).

(3) We conducted extensive evaluation experiments using real-
world data collected from ByteDance, a top-tier content ser-
vice provider providing services for one billion+ monthly
active users (MAU). OmniCluster achieves an NMI of 0.9160,
significantly outperforming baseline methods (§ 4.4.2). It re-
duces the training time of five anomaly detection models by
95.01% on average without significantly degrading F1-score
(§ 5.3).

(4) We have published a labeling tool for MTS clustering and a
labeled dataset for further studies (Appendix A).

2 BACKGROUND AND CHALLENGES
2.1 Background
MTS anomalies of system instances (e.g., fluctuations or rapid
changes that deviate from normal patterns) [29, 34] often indicate
potential faults, such as hardware crash, service collapse, software
bugs, etc. These faults usually negatively impact service availability
and user experience. Therefore, it is necessary to proactively detect
anomalies to mitigate possible failures timely.

The offline training time of an anomaly detection approach is
the time between when the training begins and when the anomaly
detection system becomes effective. A collection of MTS anomaly
detection algorithms, e.g., [6, 13, 26, 40, 49], require long training
time to reach their optimal performance. In Table 1 we list the
empirical offline training time of five state-of-the-art MTS anomaly
detection approaches (see Appendix D.1) using the same dataset
(see § 4.1.1) on a high-performance server. From the second column
of Table 1, we can see that the average offline training time of these
approaches for training one model ranges from about 8 seconds to
about 8 minutes. With the number of system instances becoming
onemillion, the estimated accumulated training time is at least 99.87
days. Due to their considerable training cost, it is quite difficult, if
not infeasible, to deploy them for large-scale Web services.

2.2 Challenges
In this work, we aim to accurately cluster system instances accord-
ing to their normal metric patterns, which can be transformed into
an MTS clustering problem. It faces the following three challenges:

Avast number of system instanceswithmassive timepoints
containing noise and anomalies. The MTS of large-scale Web
services have a considerable space because: First, (instance dimen-
sion) the scale of Web services has increased fast in the past few



Robust System Instance Clustering for Large-Scale Web Services WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Table 1: The offline training time of five deep-learning-
based anomaly detection approaches on a high-
performance server.

Method 1 Instance 1 M Instances

USAD [6] 8.63 s 99.87 day
OmniAnomaly [40] 2.99 min 5.70 year

SDFVAE [13] 4.08 min 7.70 year
InterFusion [26] 8.09 min 15.40 year
DAGMM [49] 17.81 s 206.16 day

years, and it can include millions of system instances now. Sec-
ond, (temporal dimension) each system instance is monitored in a
fine-grained frequency, e.g., with a five-minute monitoring interval,
there will be 2016 time points for a system instance each week. How-
ever, a clustering algorithm usually needs to compare the pairwise
distance of all data, which will consume too many computational
resources for such large-scale MTS data. Additionally, we should
cluster MTS based on their normal patterns, whereas there are lots
of noise and anomalies in the MTS, which can degrade the perfor-
mance of MTS clustering. We apply 1D-CAE to extract the main
features and embed high-dimensional data into low-dimensional
spaces, which significantly improves the computational efficiency
of OmniCluster and avoids the interference of noise and anomalies.

Some metrics may degrade the performance of MTS clus-
tering. Operators usually configure tens to one hundred+ metrics
for a system instance. Some metrics can be highly interdependent,
e.g., the CPU-related metrics typically manifest very similar pat-
terns [33]. The abundant metrics (features) can degrade the perfor-
mance of MTS clustering [39]. Moreover, operators usually believe
that a non-periodic metric is uninformative for MTS clustering, and
thus it should be removed before MTS clustering. We select periodic
and representative metrics to eliminate the impact of redundant
and non-periodic features through feature selection.

Lack of labeling tool. Although there is no need to obtain the
labels of MTS clusters for training an unsupervised MTS cluster-
ing model, we still need labeled data to evaluate and improve the
model’s performance. It is challenging, if not impossible, to label
such large-scale data (in terms of instance dimension and temporal
dimension) without the help of user-friendly tools. Therefore, we
implement a labeling tool for MTS clustering with user-friendly
interfaces.

3 APPROACH
We denote the value of the s-th system’sm-th metric at time t by
xsmt . The MTS of the s-th system xs is a M ×T matrix, i.e., xs ∈
RM×T , whereM is the number of metrics per system instance and
T is the number of data points in each metric.

3.1 Overview
The overall architecture of OmniCluster is illustrated in Figure 2.
OmniCluster consists of two major components: offline clustering
and online classification. Offline clustering has four stages. The first
stage is preprocessing. In this stage, we smooth MTS data and do
normalization. After that, OmniCluster uses 1D-CAE to reduce the
number of time points in each metric (temporal dimension). Their
hidden representations z can be obtained. Then, feature selection
is performed on z to get z′′, reducing the number of metrics in

Multivariate 
Time Series

Preprocessing 1D-CAE
Encoder

Feature 
Indices

Latent
Representations

Assignment Clustering Feature
Selection

Cluster
Centroids

1D-CAE
Decoder

Figure 2: The overall process of OmniCluster. Solid lines de-
note offline clustering, dash lines denote online classifica-
tion.

each MTS (metric dimension). High-dimensional data is converted
into low-dimensional features through these two steps. Thus, Om-
niCluster can deal with a vast number of system instances with
massive time points and multiple metrics. Finally, we use z′′ in
hierarchical agglomerative clustering. In online classification, Om-
niCluster feeds preprocessed data into the encoder and extracts
feature subsets according to saved feature indices. Then, we assign
class labels to system instances and identify outliers.

3.2 Preprocessing
MTS usually have anomalies, noise, and missing values that can
significantly affect their shapes. It is necessary to minimize the
negative impact brought by them. Extreme values usually have
a better chance of being anomalies. We remove the top 5% data
deviating from the mean value to handle these extreme values [27].
There may also be some missing values due to errors in the data
collection process. We use linear interpolation to fill the removed
or missing values. As a result, extreme values and missing values
are replaced by normal observations around them. After that, we
smoothMTS curves by extracting their baselines. To deal with noise,
we apply the moving average algorithm with a suitable sliding
window. Each data point is replaced by the average value of w
points around it, where w is the size of the sliding window. To
deal with the difference of amplitudes, we adopt normalization in
OmniCluster , scaling each data point to be in the range of [0, 1]:

x′sm =
xsm −mint ∈T xsmt

maxt ∈T xsmt −mint ∈T xsmt
(1)

3.3 Reduction of the Temporal Dimension
To tackle the challenge of dimensionality [8],OmniCluster uses deep
learning methods to reduce the temporal dimension and capture
the non-linear relationship between the input. We employ 1D-CAE
and use the reconstruction loss function for model training (Fig-
ure 3). More details can be seen in Appendix D.2. The convolutional
encoder can be used for feature extraction and dimensionality re-
duction. It tries to learn the normal patterns of the input data and
ignores noise and anomalies. 1D-CNN will extract the local features
of MTS without making any assumptions about their distribution
and use the extracted low-dimensional representations to recon-
struct the input data. The encoder in OmniCluster is composed of
M 1D-CNNs with independent parameters. Each metric in MTS
will be input into different CNNs (composed of several 1D convolu-
tional layers) in the encoder to obtain M corresponding features.
The decoder structure is similar to that of the encoder, which is
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Figure 3: A 1D-CAE model with three convolutional layers
on each side. The input MTS has three metrics.
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Figure 4: The process of feature selection.

composed ofM different deconvolutional networks. The output of
the decoder is the reconstruction x̂ of the original data.

We use different 1D-CNN on each metric instead of 2D-CNN
on the whole MTS because the information loss of 2D-CNN will
cause some metrics to be lost. Furthermore, each metric has a corre-
sponding physical meaning, so we use different CNNs for different
metrics to avoid interference between them. The empirical exper-
iments in § 4.3 show that this network structure achieves good
performance. In addition, OmniCluster uses strided CNN instead of
spatial pooling layers and has better generalization capabilities [7].
The extracted feature set is the output of the trained encoder, de-
noted by z ∈ RM×T

′

, where T ′ is the number of data points in a
single feature.

OmniCluster continuously updates the model by minimizing the
loss between the input data x and the output data x̂. We use mean
squared error as the loss function.

3.4 Feature Selection
In this paper, a robust and generic feature selection method for MTS
is implemented to reduce the number of features in the metric di-
mension and improve the performance of clustering. Our approach
relies on two key observations: 1) MTS are usually periodic. MTS
without seasonal patterns are poorly informative and can harm
the clustering results. 2) Keeping useful information as much as
possible in the low-dimensional space can improve clustering per-
formance. We perform feature selection on the low-dimensional
feature z output by 1D-CAE in the previous stage. The periodicity
and diversity of the data itself determine the number of selected
features, without the need for expert intervention.

The feature selection process includes three steps (Figure 4). The
first step is to remove non-periodic features, the second and the
third step is to remove redundant features.

3.4.1 Step 1: Non-periodic Feature Removal. In this step, we use
YIN [12] to extract periodic information from features. YIN is de-
signed to extract the frequency of sound data.YIN (zsm ) > 0means
zsm is periodic, while YIN (zsm ) = 0 means the feature does not
have an obvious periodic pattern. Features that are non-periodic
in most system instances will be removed (see Appendix C Algo-
rithm 1 for more details). we remove non-periodic features using
and get the preserved features z′.

3.4.2 Step 2: Redundancy Matrix Construction. The second fea-
ture selection step builds a matrix of feature redundancy R ∈
[0, 1]M

′×M ′ , such that Ri j > 0 if features i and j are pairwise redun-
dant and Ri j = 0 otherwise, whereM ′ is the number of remaining
features after step 1. Given a feature matrix z′ ∈ RM

′×T ′ output
by step 1, the redundancy matrix is computed as Appendix C Al-
gorithm 2, where NCC denotes the normalized cross-correlation
function [27]. For each sample, OmniCluster computes NCC be-
tween all univariate sequences in z′s . If NCC

(
z′si , z′s j

)
> θs for

the pair i, j, we can determine that features i and j are positively
correlated on the s-th sample. The redundancy matrix R provides a
unified picture of which features positively correlate with a suffi-
ciently large share of input samples.

3.4.3 Step 3: Redundancy Elimination. The third step applies the
feature selection/elimination rules to exploit the information in
the redundancy matrix R. OmniCluster defines a set of unassigned
features F , which initially contains the indices of all the M ′ fea-
tures. The rules are applied iteratively to F following a priority
order until all features are assigned to either the set of selected
features SF or to the set of the deleted ones DF . The details of
the feature selection rules and their priority pattern are described
by the following procedure:

RULE 1: If a row Ri is completely uncorrelated with the others in
R (i.e., Ri contains only zeros),

(a) Add i to the selected subset: SF = SF ∪ {i};
(b) Remove i from F and remove the corresponding en-

tries in R;
RULE 2: If a row Ri is correlated with all the others and there is at

least one noncompletely correlated feature (i.e., R does
not contain only non-zero off-diagonal values),

(a) Add i to the deleted subset: DF = DF ∪ {i};
(b) Remove i from F and remove the corresponding en-

tries in R;
RULE 3: If all features in F are correlated with each other (i.e., R

contains only non-zero off-diagonal values),
(a) Select the feature i that is minimally correlated with

those currently in SF ;
(b) Add i to the selected subset: SF = SF ∪ {i};
(c) Remove i from F ;
(d) Move the remaining features F to the deleted subset

(DF = DF ∪ F ) and terminate.
RULE 4: If neither 3.4.3 nor 3.4.3 apply,

(a) Extract feature i ∈ F that is minimally correlated with
the features still in F ;

(b) Define S (i) ⊂ F as the subset of features correlated
with i and select j ∈ S (i) as the maximally correlated
feature with those currently in SF ;
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(c) Add i to SF and j to DF ;
(d) Remove i , j from F and remove the corresponding

entries in R.
The elimination/selection rules are tested sequentially, from

RULE 1 to RULE 4, and their test conditions are such that at least
one of them fires at each iteration of the algorithm; hence, the cost
of computing the third step is at most linear to the number of the
original features.

Note that, in rule RULE 3(a), we determine the feature i that is
minimally correlated with those in SF by

i = arg min
i′∈F

∑
j ∈SF

Ri′j (2)

where R is the complete redundancy matrix output by step 2.RULE
4(a) and RULE 4(b) uses a similar strategy to determine which
feature i is extracted or which feature j has to be deleted. Finally,
OmniCluster concatenates all the selected features in SF as z′′, the
input of clustering or assignment.

3.5 Clustering and Assignment
In OmniCluster , hierarchical agglomerative clustering (HAC) with
average linkage is adopted because of the following reasons: 1) Due
to the diversity of MTS patterns, it is difficult to specify the number
of clusters in advance. HAC is a “bottom-up” approach and can use
the threshold of the distance between clusters as a hyperparameter
τd instead of specifying the number of clusters. 2) HAC using av-
erage linkage lets each data in the cluster have an equal effect on
the distance between clusters, making the distance measurement
transitive. 3) HAC can determine whether the data is an outlier by
its distance from other data.

OmniCluster uses Euclidean distance, which is competitive in
time series classification or clustering [22]. Only when the distance
is less than the threshold, two clusters will be grouped. The distance
between two clusters A, B is defined as

Dcluster (A,B) =
1

|A| · |B|

∑
a∈A

∑
b∈B

DMTS (a, b) (3)

where

DMTS (a, b) =
M ′′∑
m=1
∥am − bm ∥2 (4)

|∗| denotes the cardinality of a set, andM ′′ is the number of features
selected by § 3.4.

After offline clustering is completed, OmniCluster saves the
encoder part of the 1D-CAE and the feature subset indices SF
obtained by feature selection. The centroid of each cluster can
represent the general characteristics of the cluster. OmniCluster
computes the centroid c of each cluster C by

c = argmin
a∈C

∑
b∈C

DMTS (a, b) (5)

The saved encoder and subset indices are used to extract useful
features from the preprocessed input, and then the extracted fea-
tures are used to calculate their distance to each cluster’s centroid.
The closest centroid is selected, and OmniCluster checks whether
the distance exceeds τd . If the distance is smaller than τd , the newly
coming data gets the same class label as the selected centroid; other-
wise, the data is considered as an outlier and reported to operators.

4 EVALUATION
4.1 Experimental Setup
4.1.1 Dataset and Environment. There are many public datasets
(e.g., Robot Failure [11], LIBRAS [14], Pendigits [5]) for MTS clus-
tering, but none of these has a large enough scale to thoroughly
test the performance of OmniCluster . In this work, we conduct
evaluation experiments on a system-related dataset collected from
ByteDance, a top-tier global content service provider providing ser-
vices for one billion+ monthly active users (MAU). The source code
of OmniCluster and the dataset is available at [1, 2]. Specifically, the
original data is 7-day-long MTS segments collected from 3175 sys-
tem instances sampled at an interval of five minutes. The number
of metrics of each instance is 19. All the data has been manually
labeled by experienced operation engineers. There are a total of 29
classes and 28 outlier instances in the dataset. We have developed
a dedicated GUI tool to help operators effectively label the classes
of instances. It is open-source and publicly available [3]. A more
detailed description of the labeling tool can be found in Appendix A.
All the experiments are run on a server with two 16C32T Intel(R)
Xeon(R) Gold 5218 CPU@2.30 GHz, one NVIDIA(R) Tesla(R) V100S,
and 192 GB RAM.

4.1.2 Evaluation Metrics. Inspired by previous works [15, 27], we
adopt two well-accepted metrics, namely normalized mutual infor-
mation (NMI) and accuracy (ACC), to measure the performance
of OmniCluster . NMI measures the mutual dependence between
the clustering results and the ground truth, considering both ho-
mogeneity and completeness. Let S be the total number of system
instances, Tp be the p-th class of the ground truth, and Cq be the
q-th cluster generated by a clustering algorithm. NMI is defined as

NMI = −
2 ×

∑
p
∑
q

(
|Tp ∩ Cq | × log

(
S×|Tp∩Cq |
|Tp |× |Cq |

))
∑
p

(
|Tp | × log

(
|Tp |

S

))
+
∑
q

(
|Cq | × log

(
|Cq |

S

)) (6)

NMI ranges from 0 to 1, where 1 means the results perfectly match
the ground truth and 0 indicates they are completely irrelevant.
ACC is measured by

ACC (y, ŷ) =
1
S

S∑
s=1

δ (ys = ŷs ) (7)

where y is the actual class labels of the results and ŷ is the labels
that match the ground truth best. δ denotes the Kronecker delta.

In addition, real-world datasets usually have outliers, where the
instances cannot be grouped into any cluster. We use F1-score (F1
for short) to test OmniCluster’s ability to detect outliers, with True
Positives (TP), False Positives (FP), and False Negatives (FN). The
calculation is given by F1 = 2 × precision×recall

precision+recall , where precision =
TP

TP+FP and recall = TP
TP+FN .

4.1.3 Hyperparameters. OmniCluster has several hyperparameters.
Some are robust and insensitive to the algorithm, e.g., θy should be
less than 50%, θs can take a value from 0.89 to 0.97, and θp should be
greater than 40% (see more details in Appendix B). Some parameters
can be automatically determined, e.g., τd is automatically calculated
to be 7 (see it in Appendix B). Some other parameters are determined
empirically or from widely accepted references. For example, the
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Table 2: The overall performance of MTS clustering algo-
rithms.

Method NMI ACC F1 #C Avg. Time

OmniCluster 0.9160 0.7990 0.9057 19 11.69 min
TICC 0.4826 0.3798 – 40 104.17 h

Mc2PCA 0.2703 0.2306 – 10 22.03 min
FCFW 0.6236 0.4117 – 10 195.86 h

SPCA+AED 0.4084 0.2746 – 40 4.91 h

length of the slidingwindoww in the preprocessing stage is set to 12,
both the encoder and the decoder of 1D-CAE have 3 convolutional
layers, the stride of each convolutional layer is 2 with the kernel
size of 7, and the number of channels in the encoder and decoder is
(16, 32, 1) and (32, 16, 1), respectively.

4.2 Overall Performance
To demonstrate the effectiveness and efficiency of OmniCluster , we
compare it with four advanced MTS clusterig methods: TICC [20],
Mc2PCA [23], FCFW [24], SPCA+AED [17] (see § 6). All of the
baseline methods need to preset the number of clusters, which
is contrary to unsupervised learning. We set it for each baseline
that can lead to the best performance through many experiments.
Table 2 shows the NMI, ACC, F1 of outlier detection, number of
clusters (#C), and average time cost of all algorithms. OmniCluster
outperforms all baselines in terms of effectiveness and efficiency.

OmniCluster’s NMI and ACC are 0.9160 and 0.7990 respectively,
while the best NMI and ACC of baselines is 0.6236 and 0.4117, which
is far lower than OmniCluster . As for outlier detection, only Omni-
Cluster can identify outliers in the data with a F1 of 0.9057. Other
baselines are unable to distinguish outliers. In addition, OmniClus-
ter takes 11.69 minutes to cluster all the system instances. Only
Mc2PCA can achieve similar time consumption (22.03 minutes),
while the other three baselines (TICC, FCFW, and SPCA+AED) cost
far more time than OmniCluster , which are not suitable for the
scenario where there are massive MTS.

We try to analyze the reasons for this result next. TICC is suitable
for short time series with consistent patterns and is ineffective for
longMTS whose patterns change over time. Therefore,OmniCluster
outperforms it in our scenario where every MTS is long. In addition,
TICC constructs a large Toeplitz Matrix for each cluster and uses the
ADMM algorithm to update the clustering result iteratively, both
of which are computationally inefficient. Mc2PCA only optimizes
the projection of data points for each cluster but does not pay
attention to the difference between the projections. It may be lead to
a large cluster number, and some clusters have a very close distance.
In FCFW, cluster centers are artificially selected and will not be
updated later, which may affect its performance. Moreover, FCFW
calculates the SBD distance independently for each metric and the
DTW distance for each pair of MTS, both of which are very time-
consuming. SPCA+AED’s result heavily relies on the correctness of
randomly initialized cluster centers. In addition, another reason for
the poor performance of competing methods is that they mainly
focus on ideal smooth data and do not consider the anomalies and
noise in the real-world MTS. OmniCluster handles anomalies and
noise by preprocessing and feature extraction, making it robust
against non-smooth MTS.

Table 3: The performance of OmniCluster and its variants.

Method NMI ACC F1 #C Avg. Time

OmniCluster 0.9160 0.7990 0.9057 19 11.69 min
C1 0.8511 0.6406 0.5243 46 6.65 min
C2 0.9102 0.8009 0.9057 23 135.60 min
C3 0.7602 0.4387 0.3022 117 9.09 min
C4 0.8724 0.6548 0.9455 35 11.48 min

4.3 Contributions of Components
To show the effects of three key techniques in OmniCluster : 1) 1D–
CAE; 2) non-periodic feature removal; 3) redundancy elimination,
we reconfigure OmniCluster to create four variants C1-C4, de-
scribed as follows:C1: The 1D-CAE is replaced by 2D-CAE, denoted
by “w/ 2D-CAE”. C2: The CAE part is removed, denoted by “w/o
CAE”. C3: The non-periodic feature removal is omited, denoted by
“w/o Non-periodic Feature Removal”. C4: The redundancy elimi-
nation step is omitted, denoted by “w/o Redundancy Elimination”.
Table 3 shows the performance of OmniCluster and its variants.

Effect of 1D-CAE. “w/o CAE” can achieve performance similar
to OmniCluster , even a little better ACC, but take a lot more time to
consume (more than ten times). This indicates 1D-CAE or 2D-CAE
can effectively reduce the dimensions of the original metrics, then
improve the efficiency clustering. When using 2D-CAE instead of
1D-CAE, the average clustering time is further reduced. However,
2D-CAE will make metrics in an MTS interfere with each other,
losing the original shape information, which leads to a relatively
worse clustering result: more worse NMI, ACC, and F1, and a more
inaccurate number of clusters.

Effect of non-periodic feature removal.With “w/oNon-periodic
Feature Removal”, the dataset is grouped into 117 clusters, four
times more than the ground truth. Both the NMI, ACC, and F1
are relatively poor. The reason is that non-periodic features are
irregular, having no contribution to clustering. On the contrary,
they increase the noise of clustering. Generally, between two in-
stances, the distance of non-periodic features can be considerable
even though their periodic features are relatively similar. Therefore,
it is indispensable to remove these non-periodic features.

Effect of redundancy elimination. “w/o Redundancy Elimi-
nation” has close time consumption and F1, but lower NMI and
ACC than OmniCluster . By using redundancy elimination, the time
for calculating distance matrices is reduced, but it takes some more
time to do redundancy elimination, so its time cost is close to
“w/o Redundancy Elimination”. If the instances contain more simi-
lar/redundancy features, their weight will be too large when calcu-
lating the distance and overshadow the role of different features,
resulting in poor clustering results.

4.4 Validation of Design Choices
4.4.1 Choice of the Distance Measure. In this experiment, we re-
place our distance measurement method DMTS with other popular
ones: Manhattan distance [35], shape-based distance (SBD) [38],
mean squared error (MSE) [4], normalized Euclidean distance (NED)
[9], Wasserstein distance [42], Jensen-Shannon divergence (JSD)
[21] and Pearson correlation coefficient (PCC) [4].

From Figure 5 we can see that OmniCluster with DMTS outper-
forms the other options. Manhattan distance, MSE, and NED are
not processed separately for different features. They just calculate
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Figure 5: The NMI and ACC for different distance measure-
ment methods.

Table 4: The performance of different clustering algorithms.

Method NMI ACC F1 #C Avg. Time

HAC 0.9160 0.7990 0.9057 19 11.69 min
k -means 0.8798 0.6998 0.1333 28 11.68 min
DBSCAN 0.8713 0.6900 0.9455 26 11.69 min

the point-wise distance of all the features. SBD considers the data
has phase shifts. However, our algorithm is based on the shape of
features, and the phase shifts between features are also a type of
shape change in our algorithm. As for Wasserstein distance and
JSD, they focus on the distribution of data and are not fit for shape-
based MTS clustering tasks. PCC is related to the length of its input.
When the length of features is big, the absolute value of PCC will be
scaled down, which can not accurately reflect the distance between
features. DMTS used by OmniCluster calculates the distance of dif-
ferent features separately and does not consider the influence of
any additional factors, which is more suitable for MTS clustering.

4.4.2 Choice of the Clustering Algorithm. We replace HAC with
DBSCAN [27] or k-means [43] to cluster on feature z′′. Table 4
shows the performance of these variants. OmniCluster with HAC
achieves the best NMI and ACC. DBSCAN and k-means are more
sensitive to extreme values. Many outliers are not successfully
detected byk-means and are all grouped into normal clusters, which
will greatly affect the performance of clustering. DBSCAN has a
slightly better performance in outlier detection, but its NMI and
ACC are lower than OmniCluster with HAC. In OmniCluster , HAC
provides more stable results and is not affected by random initial
values. This experiment proves that it has the best performance, so
OmniCluster chooses HAC as the clustering algorithm.

5 ANOMALY DETECTION
To prove OmniCluster is universal to anomaly detection algorithms,
we select five detection algorithms in this section: OmniAnomaly
[40], USAD [6], SDFVAE [13], InterFusion [26], and DAGMM [49].
The architectures of these approaches are various.

We also compare “OmniCluster + OmniAnomaly” with CTF [42],
a framework designed for OmniAnomaly to improve training effi-
ciency, to test the performance of OmniCluster with some anomaly
detection approaches against specifically designed frameworks.

Table 5: The performance of different anomaly detection se-
tups.

Method E1 E2 E4

F ∗1 Time (s) F ∗1 Time (s) F ∗1 Time (s)

OmniAnomaly 0.842 56773.77 0.833 219.36 0.845 2748.88
USAD 0.926 2726.80 0.841 8.99 0.923 133.88
SDFVAE 0.893 76740.62 0.831 242.86 0.886 3511.04

InterFusion 0.836 153378.84 0.680 295.35 0.827 9370.28
DAGMM 0.872 5628.57 0.826 18.50 0.873 254.89

5.1 Experimental Setup
We conduct four groups of experiments:

E1: Sharing No Model. Each system instance will have an
anomaly detection model dedicatedly trained for it.

E2: Sharing One Model. In this setup, one model is used for
all system instances. We randomly selected one system instance
and use it to train a model.

E3: CTF. CTF cannot be used together with other anomaly detec-
tion algorithms, sowe only compare “OmniCluster +OmniAnomaly”
with CTF.

E4: OmniCluster . We first use OmniCluster to cluster system
instances. Then we use the centroid of each cluster to train the
anomaly detection model for that cluster. The instances in the same
cluster share similar patterns so they can share the same model.

5.2 Dataset and Evaluation Metrics
We randomly selected 10% data (316 instances) from the dataset in
§ 4.1.1 for anomaly detection because of the limitations of manual
labeling cost and training time. OmniCluster clusters these data
into 19 classes. We divide each labeled 7-day-long data into two
parts, the first 1440 points (5 days) as the training input and the
other 576 points (2 days) as the test data. All selected data are
labeled by experienced engineers according to actual system fail-
ures using the tool provided by CTF. The point-wise anomaly rate,
i.e., # anomaly data points

# total data points , is 9.04%.
We use F1 to evaluate the performance of anomaly detection.

In this paper, the final F1 is obtained by micro-averaging, i.e., the
detection results of all system instances are aggregated to compute
the precision and recall. By enumerating all possible thresholds, we
calculate the best F1 of eachmodel, denoted by F ∗1 , as the algorithm’s
theoretical best possible performance on our dataset. We also take
the time required for model training into account to evaluate the
training efficiency.

5.3 Results and Analysis
The experimental results of E1, E2, and E4 are displayed in Table 5.

Comparisons with E1. The training time when combiningOm-
niCluster with anomaly detection algorithms (E4) is only about 5%
of E1. The total model training time of E1 will become exceedingly
large when dealing with a larger number of MTS. With OmniClus-
ter , we just need to train one model for each category. Even if the
scale of system instances expands further, the number of clusters
can still be a small one, so the training time will not largely increase.
Figure 6 shows that the training time of E4 will not significantly in-
crease when the number of system instances in the dataset becomes
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Figure 6: The offline training time of different anomaly de-
tectionmethods with different numbers of system instances
in the dataset.

larger. For larger datasets where each cluster contains more data,
the advantage of reducing time becomes even more significant.

Among five anomaly detection approaches, there is no apparent
difference in terms of F ∗1 between E1 and E4. In E1, dedicatedmodels
for each system instance can perform very well, which is in line
with our expectations. In E4, although only one model is trained
for each cluster, MTS in the same cluster are very similar and the
centroid that is used to train the model is representative.

Compared with training one specific model for each instance,
training anomaly detection models with E4 could largely reduce
training time by about 95.01% without impacting the performance.

Comparisons with E2. Training only one model for the whole
dataset costs the least time of all four setups. Since E4 needs to train
different models for 19 clusters, the training time of each model
is about 18 times of E2. However, the F ∗1 decreases by an average
of 7.93%. This is because MTS can have various patterns and the
selected MTS can not represent all the patterns.

In short, although E2 greatly reduces the training time, it sacri-
fices more performance, which is unacceptable in the production
environment. Compared with E2, E4 can achieve satisfactory F ∗1
within an acceptable training time.

ComparisonswithCTF.The running time of CTF (E3) is 5601.48
s, about two times of E4. This is because the model structure of CTF
is more complex and the amount of data it requires in fine-tuning
is large. CTF’s F ∗1 is 0.8323, slightly lower than OmniAnomaly com-
bined with OmniCluster . It shows that the performance of Omni-
Cluster with some anomaly detection approaches is also comparable
to frameworks that are specifically designed for a certain anomaly
detection method.

Task Agnostic Clustering for Different Anomaly Detec-
tion Algorithms. It can be seen that the F ∗1 of the combinations
of OmniCluster and all algorithms are above 0.8. No matter which
anomaly detection method is used together with OmniCluster , Om-
niCluster will not have a great impact on the effectiveness of the
algorithm. Therefore, taking the comparisons with CTF into ac-
count, we believe that OmniCluster is task-agnostic.

6 RELATEDWORK
Traditional clustering methods directly apply clustering algorithms,
e.g., k-means, DBSCAN, HAC, to the original data. Apart from
naive clustering methods, there are algorithms proposed for the

clustering of univariate time series, e.g., SPF [25], ROCKA [27].
However, these methods can not be applied to MTS directly, which
are either time-consuming or will lose important information when
compressing the data.

There have been many studies on clustering MTS data. Cop-
ulas [36] compared intra-dependence between two MTS and the
inter-dependence between two metrics in the same instance. How-
ever, non-parametric estimations of density suffer from the explo-
sion of dimensionality and are costly to compute. Mc2PCA [23]
is based on CPCA. It constructed common projection axes as the
prototype of each cluster. The reconstruction error of each MTS
projected on the corresponding common projection axes was used
to reassign the member of the cluster. However, this algorithm only
considered the similarity within the cluster instead of the similarity
between clusters. SPCA+AED [17] consists of the PCA similarity
factor (SPCA) and the average-based Euclidean distance (AED). It
used fuzzy clustering. They stated that neither SPCA nor AED alone
can effectively separate distinguishable instances. FCFW [24] is also
based on two distance measurement methods —DTW and SBD. It
utilized fuzzy c-means to calculate the fuzzy membership matri-
ces and generate clustering results. The time complexity of DTW
is O

(
N 2) , which is unacceptable for large-scale datasets. Toeplitz

Inverse Covariance-Based Clustering (TICC) [20] focuses on subse-
quences in MTS. They proposed a model-based clustering method,
with every cluster in the TICC algorithm defined by a correlation
network characterizing the interdependencies between different
observations in a typical subsequence of that cluster. Based on this
graphical representation, TICC simultaneously segments and clus-
ters MTS data. This method is also very time- and space-consuming.

7 CONCLUSION
This paper proposes OmniCluster , an efficient and robust algorithm
for clustering high-dimensional MTS with noise, anomalies, and
redundant features. The 1D-CAE of OmniCluster performs dimen-
sionality reduction on the temporal dimension to improve efficiency
and avoid the interference of noise and anomalies. Additionally, the
novel three-step feature selection strategy prevents redundant and
non-periodic features from degrading OmniCluster’s performance.
Extensive experiments using large-scale real-world data demon-
strate that OmniCluster greatly reduces the training overhead of
anomaly detection methods. We have learned several lessons from
designing OmniCluster (see Appendix E).
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A LABELING TOOL
Figure 7 shows the user interface of the tool. On the left side is the
widget displaying MTS, while buttons to assign class labels and
other actions are sitting on the right side.

It loads MTS and displays them as a group of line graphs in the
left panel. Operators can use arrow buttons and number buttons on
the right side to navigate through the data. The class label of the
current data is presented under the navigation area. When new data
comes, operators can click the checkbox before each class label to
compare new data with the manually picked centroid of each class
and determine which class it should be. However, with manually
labeling, it is impossible to set a fixed number of classes and pick
the centroid of each class at the beginning. We design our tool to be
able to create new classes and update centroids easily. If the current
data is not similar to any class centroids, operators can create a
new class with the current data by clicking the “new” button. Once
operators found a better centroid for one class, they can replace the
old one.

One possible issue of labeling is that mistakes can happen, es-
pecially when operators work with ambiguous data patterns. This
kind of data can be classified into incorrect classes. Our tool also
provides a module for visualizing the class labeling result. In this
module, MTS belonging to the same class will be displayed in the
left panel at the same time, so it is easy for operators to check if
any data should not be tagged as this class and reassign the label.
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Figure 7: The GUI of the labeling tool.

B EFFECT OF HYPERPARAMETERS
We mainly conducted experiments on four hyperparameters that
have a significant impact on the results: θy , θs , θp , and τd .

The larger theθy , the stronger the requirement for the periodicity
of features. Empirically, we set this value to 30% in OmniCluster . A
too-large θy may cause unnecessary feature loss. This will adversely
affect clustering. Figure 8a shows when θy is greater than 50%,
NMI and ACC have an obvious drop. There are too many features
removed, some of which are helpful for clustering. The value of θy
will not affect NMI and ACC within a certain range.

The larger the θs , the stricter the decision of whether two fea-
tures are considered positively correlated with each other. θs is set
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Figure 8: The effect of varying different hyperparameters.

to 0.95 in OmniCluster . A too-large θs may cause two features that
are very similar in shape are not seen as correlated. A too-small θs
will consider too many informative features redundant, which leads
to feature loss. Figure 8b shows the NMI and ACC with different θs .
When θs is greater than 0.97 or smaller than 0.89, the ACC drops
significantly. When θs is between 0.9 and 0.97, the NMI and ACC
stay at a high level. Therefore, setting θs in this range will not affect
the results too much.

The larger the θp , the stricter the decision of whether two fea-
tures can be represented by each other in the dataset. It is set to be
80% in OmniCluster . A large θp means only those features that are
correlated in most samples are considered redundant. A too-small
θp will think most of the features redundant, despite that they may
only be correlated in less than half of the samples. Figure 8c shows
when θp is smaller than 40%, there are no sufficient remaining
features to distinguish different categories.

From the experiments above, we can determine that we have
a large room to choose a good θy , θs , or θp . We claim OmniClus-
ter is robust because it is insensitive to hyperparameters. When
working with other datasets, the value of θy , θs , and θp used in our
experiments may also fit.

τd is a very important and sensitive parameter in OmniCluster ,
which will have a great influence on the clustering results. How-
ever, supervised metrics like NMI and ACC cannot help to choose
τd . OmniCluster uses the sum of squared error (SSE) to select an
appropriate τd . SSE together with the elbow method is usually
used for the selection of hyperparameters in the clustering algo-
rithm [10, 31]. Figure 8d shows the relationship between τd and
NMI, ACC, and SSE. The larger τd is, the fewer clusters OmniClus-
ter will produce. So we enumerate τd from big to small to find the
appropriate elbow of SSE. The automatically selected τd value is 7,
while the optimal τd is 6.9. The NMI and ACC at τd = 7 are very
close to those at τd = 6.9.
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Table 6: The Overview of Anomaly Detection Algorithms.
W: With inter-metric correlation. E: Efficient. P: Good inter-
pretability. N: Noise-resilient.

Method Structure W E P N

OmniAnomaly RNN+VAE ✓ × ✓ ×

USAD GAN+AE × ✓ × ✓
SDFVAE CNN+LSTM+VAE × × × ✓

InterFusion CNN+RNN+VAE ✓ × ✓ ×

DAGMM AE+GMM × ✓ × ×

C ALGORITHMS

Algorithm 1 Non-periodic Feature Removal
Require: z composed of S data instances, each of which has M features
with 7-day-long period. Threshold θy .
P← 0
for s ∈ {1, . . . , S } andm ∈ {1, . . . , M } do

if Y IN (zsm ) > 0 then
Pm ← Pm + 1

end if
end for
P← P/S
S =

{
m |Pm ≥ θy, 1 ≤ m ≤ M

}
z′ ← Select all the features in S from z
return z′

Algorithm 2 Redundancy Matrix Construction
Require: z′ composed of S data instances, each of which has M ′ features
with 7-day-long period. Thresholds θs , θp .
R← 0
for s ∈ {1, . . . , S } and i, j ∈ {1, . . . , M ′ } do

if NCC
(
z′si , z′s j

)
> θs then

Ri j ← Ri j + 1
end if

end for
R← R/S
for i, j ∈ {1, . . . , M ′ } do

if Ri j ≤ θp ∨ i = j then
Ri j = 0

end if
end for
return R

D RELATED ALGORITHMS
D.1 Anomaly Detection
The structure and properties of the five selected anomaly detection
algorithms are displayed in Table 6.

OmniAnomaly used techniques such as stochastic variable con-
nection and planar normalizing flow with VAE to learn the robust
representations of normal patterns. USAD adversely trained AE
to take advantage of the stability of AE and the ability of GAN
to isolate anomalies. It is very efficient and robust to the noise in
data. Unfortunately, USAD cannot interpret the detected anomalies.
SDFVAE learned the representations of normal patterns by factor-
izing the latent variables into dynamic and static parts to explicitly

model invariance to help resist noise in data. InterFusion modeled
the normal patterns inside MTS through hierarchical VAE with
two stochastic latent variables. It embedded the inter-metric and
temporal information into low dimensions. DAGMM utilized an AE
to generate the low-dimensional representation and the reconstruc-
tion error and fed them into a Gaussian Mixture Model (GMM) to
jointly optimize the parameters of AE and GMM simultaneously in
an end-to-end fashion. DAGMM cannot interpret anomalies either.

D.2 Convolutional Autoencoder
Autoencoder (AE) comprises two basic units: an encoder and a
decoder. The encoder compresses the input into a latent-space rep-
resentation, which is used by the decoder to reconstruct the input
data. AE can be optimized by minimizing the difference between
the input and the output. Convolutional autoencoder (CAE) uses
convolutional neural networks (CNN) [16] as its encoder and de-
coder. CNN with 1D convolution kernels is often used for time
series analysis [47]. 1D-CAE employs multiple 1D convolution ker-
nels, each sliding along the input with a fixed stride. With the
shared-weight architecture, convolution kernels have fewer param-
eters than dense layers, so deeper network structures and more
kernels can be used, which can have better performance than shal-
low networks [37]. Furthermore, the local connectivity of CNN can
preserve the relative spatial information of its input [30].

E DISCUSSION
In developing OmniCluster , we have learned the following lessons:

(1) Due to the curse of dimensionality, it is necessary to reduce
the dimensionality of high dimensional data for clustering.

(2) 1D-CNN is more effective than 2D-CNN in capturing the
shape features of MTS and saving more useful information. It
has less computational cost than dense networks and makes
the model easier to be trained.

(3) Periodicity is a very important characteristic of MTS. For
subsequent applications such as anomaly detection and out-
lier detection, it is difficult for experts to obtain sufficient
information from non-periodic data.

(4) Proper clustering methods and distance measures are essen-
tial for the clustering of MTS. We need to choose a clustering
algorithm that can effectively identify outliers.

(5) We use 7-day-long MTS (which is not a very long period for
a system instance) for experiments, because the patterns of
a system change frequently. It is not easy to use a consistent
pattern to represent one system. A pattern change is less
significant in a long period of seasonal MTS than a short
one, making sense to cluster data with a short period.

(6) OmniCluster requires that the system instances to be clus-
tered have the same number of metrics and the same number
of data points in each metric. Thus, different types of system
instances (containers, service instances) that have a differ-
ent number of metrics or a different number of data points
cannot be trained together in OmniCluster .

(7) In our scenario, a system instance represents a physical ma-
chine. However, OmniCluster can be applied to cluster vari-
ous types of instances, including virtual machines, dockers,
containers, etc.
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