
Generic and Robust Performance Diagnosis via
Causal Inference for OLTP Database Systems

Xianglin Lu∗‖, Zhe Xie†, Zeyan Li∗‖, Mingjie Li∗‖, Xiaohui Nie‡, Nengwen Zhao∗‖, Qingyang Yu∗‖,
Shenglin Zhang§∗∗, Kaixin Sui‡, Lin Zhu¶, Dan Pei∗‖

∗Tsinghua University †Shanghai Jiao Tong University ‡BizSeer §Nankai University ¶China Mobile Research
‖Beijing National Research Center for Information Science and Technology (BNRist)
∗∗ Haihe Laboratory of Information Technology Application Innovation (HL-IT)

Abstract—Online transaction processing (OLTP) database sys-
tems provide an effective solution to data support for online
applications with high concurrency and low latency. An inter-
ruption or performance degradation of OLTP database systems
may impact the availability of services and bring substantial
economic loss. Thus, diagnosing the issue timely and mitigating
it rapidly are essential for database administrators (DBAs).
However, performance diagnosis for database systems is chal-
lenging due to numerous abnormal metrics, complex failure
propagation, and high-performance requirements. Existing works
relying on anomaly detection or causal graph construction cannot
handle all these challenges simultaneously. In this paper, we
propose an unsupervised learning-based method, CauseRank,
to perform root cause localization with superior efficiency,
high accuracy, and good interpretability. Two key techniques
in CauseRank are a novel causal discovery algorithm named
Group-based Greedy Equivalent Search (G-GES) incorporated
with domain knowledge which treats metric groups as nodes to
capture failure propagation and a simple yet effective ranking
method named Causal Oriented Personalized PageRank (COPP).
Extensive experiments on 97 real-world failure cases collected
from a large-scale Oracle database demonstrate the effectiveness
of CauseRank, achieving 82.5% top-3 accuracy and 93.8% top-5
accuracy and outperforming baseline approaches. The core idea
and framework of CauseRank are generic and can be applied to
other large-scale system components.

Index Terms—OLTP database systems, performance diagnosis,
causal inference

I. INTRODUCTION

Online Transaction Processing (OLTP) database systems
are well known for the characteristics of high concurrency
and low latency, which are widely used in many online
applications, including online banking, shopping, and instant
messaging. However, since the system allows a large number
of concurrent transactions to modify data, it may malfunction
due to internal or external reasons [1]. An interruption or
performance degradation of OLTP database systems may cause
service unavailability, severe economic loss, and reputation
damage on enterprises [2]. For example, the downtime for
over 12 hours of Salesforce’s systems due to a database failure
costs as high as 20 million dollars1. Therefore, it is crucial for
DBAs (Database Administrators) to continuously monitor the

¶Lin Zhu is the corresponding author.
1https://content.dsp.co.uk/how-database-failure-can-impact-your-business

performance of OLTP database systems and conduct failure
diagnosis and recovery timely.

Most OLTP database systems automatically collect detailed
statistics to monitor system performance by OLTP DBMS [3]
(such as Oracle, DB2, MySql, and SQL Server). Usually, the
collected data is in the form of time series. For instance,
in Oracle [2], Average Active Sessions (AAS) is a critical
metric to characterize the performance of the database system,
and it can be used to determine whether problems exist [4].
When such metrics behave abnormally, it means the service
quality of the database system is affected. Seasoned DBAs
usually localize the root cause manually based on years of
accumulated expert experience to restore the system to normal
operation. However, the manpower of DBAs is limited. In
large-scale OLTP database systems, DBAs have to manually
analyze thousands of metrics [1], which is labor-intensive and
time-consuming. Therefore, automated root cause localization
approaches are of great necessity to assist DBAs in rapid
failure diagnosis and recovery.

In the literature, several works adopt supervised methods
to localize the root cause through learning the patterns of
historical failures [1], [3], [5]–[8]. For example, iSQUAD [3]
matches a new failure to historical failure clusters labeled by
DBAs for root cause identification. Although these supervised
methods are accurate and efficient, they need sufficient labeled
data, which is quite difficult to obtain in practice. Additionally,
supervised methods fail to handle new types of failures (i.e.,
failures that have never occurred in history) since the patterns
of new-type failures cannot match those of historical failures.

Due to the above limitations, some works localize the
root cause in an unsupervised manner. FluxRank [9] and
ε-Diagnosis [10] localize the root cause based on anomaly
degrees. However, these methods can be biased because a
failure can introduce a large number of metrics with similar
abnormal behaviors (thus with similar anomaly degrees) due
to complex dependencies and failure propagation. Some prior
works [11]–[15] take both anomaly degrees and causal analysis
into consideration. Despite the fact that this kind of methods
can handle new-type failures and provide interpretations, they
cannot ensure high accuracy because of ignoring domain
knowledge. Moreover, these methods also suffer from low
computational efficiency since considerable abnormal metrics



bring enormous causal graph construction complexity. In a
database system, there are always multiple metrics describing
the same module of the system (e.g., CPU, Memory, and
Disk), whose anomalies imply the same kind of problem.
For example, both the excessive increase of CPU utilization
and that of CPU load average indicate that the system is
overloaded. However, existing causal discovery algorithms
scarcely consider the meanings of these metrics. They usually
directly construct a causal graph with each node containing
one single metric, leading to fuzzy relationships among metrics
and a complex causal graph with a large number of edges,
which negatively impacts localization and interpretability. In
summary, designing an automated, unsupervised, accurate, and
efficient root cause localization approach to tackle the above
limitations of existing works is in urgent need.

In this work, designing such an approach faces the following
significant challenges.

• Numerous abnormal metrics. The sharp increase in the
number of abnormal metrics that behave similarly due to
complex dependencies and failure propagation increases the
hindrance for root cause localization.

• Complex failure propagation. Failure propagation follows
a certain path. Finding the correct propagation path is
beneficial to localizing the root cause and providing inter-
pretations for DBAs. However, it is difficult to model the
failure propagation accurately without the support of domain
knowledge.

• High performance requirements. The failure localization
method is designed to assist DBAs in faster troubleshooting.
Thus, it is required to be accurate and efficient.

To address the above challenges together, in this paper,
we propose a novel approach named CauseRank. CauseRank
performs unsupervised learning on the time series data for a
time period close to the occurrence of each failure. At the
very beginning, CauseRank divides the metrics in the system
into metric groups according to their belonging modules
since localizing the root cause metric group is enough for
determining subsequent mitigation actions. In this way, the
first challenge is addressed. For online diagnosis, CauseRank
utilizes metric group analysis as its building block. First,
CauseRank generates candidate metric groups related to the
failure by measuring the fluctuation of each metric. Second,
CauseRank applies a novel causal discovery algorithm, Group-
based Greedy Equivalent Search (G-GES), to build a tempo-
rary causal graph with metric groups. It is also incorporated
with domain knowledge to obtain a more accurate failure
propagation path, addressing the second challenge. CauseRank
also adopts a penalty term during causal discovery to dynam-
ically preserve the relatively important edges, which improves
efficiency and tackles the third challenge. Third, we propose
a simple yet effective algorithm named Causal Oriented Per-
sonalized PageRank (COPP) for metric group ranking, which
further improves the performance of CauseRank.

To sum up, our contributions can be concluded as follows.

• We propose an unsupervised approach named CauseRank

to localize the root cause via causal inference with high
accuracy and efficiency for OLTP database systems, which
can also provide interpretations to assist DBAs in rapid
failure diagnosis and mitigation.

• In CauseRank, we propose a novel causal discovery algo-
rithm, G-GES, which treats metric groups as nodes to build
a causal graph and effectively captures failure propagation.
We also adopt a potent strategy to integrate domain knowl-
edge into G-GES to mitigate false inferences and enhance
accuracy. Moreover, we improve the ranking algorithm and
propose COPP to rank the metric groups.

• We extensively validate CauseRank on an Oracle dataset
collected from the production system of a large commer-
cial bank, which contains 97 real-world failures. Results
show that CauseRank ranks the root causes at top-5 for
93.8%, top-3 for 82.5% of all the failures, with an average
localization time of 12.58 seconds per failure. The mean
average rank of the root causes using CauseRank is 2.13,
outperforming the best supervised and unsupervised base-
line methods by 33.6% and 46.1%, respectively. We also
perform several additional experiments for ablation study
to demonstrate the contributions of the key techniques in
CauseRank.

II. BACKGROUND AND OVERVIEW

A. OLTP Database Systems

Online Transaction Processing (OLTP) database systems
support concurrent transaction execution under the compliance
of ACID principle [16] to maintain a high level of data
integrity, which is widely used in online applications to achieve
data storage, access, and update purposes. The DBMS is one
of the core components in the database system, which is a
layer between the users and the operating system to provide
data definition and manipulation, effective and convenient
interfaces, as well as the organization and management [17],
[18], including concurrency control, database transaction pro-
cessing, etc. It collects massive volumes of detailed statistics
and logs to reveal system service quality and internal status
[3], among which time-series metrics are the most frequently
collected items in system maintenance. For example, Oracle
collects a series of monitoring metrics, such as AAS, #transac-
tions, memory utilization, etc. It also generates alerts when the
values of certain metrics reach the thresholds configured by
DBAs. DBAs monitor the service quality through the DBMS
to ensure the stability and high availability of the database
system.

B. Problem Statement

When the OLTP database system cannot continue to provide
service or the operation of the system affects user experience,
we consider a failure occurs, which needs to be checked
as soon as possible to restore high availability. It is time-
consuming and error-prone for DBAs to investigate such a
large number of metrics for localization manually. Therefore,
our goal is to localize the root causes automatically.
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TABLE I
METRIC GROUPS AND EXAMPLE METRICS

Metric group Metrics

AAS (1) Average Active Session (AAS)
ADR (3) Automatic Diagnostic Repository (ADR) block file

write, ADR block file read, ADR file lock
CPU (5) CPUEntlUtil, CPUCpuUtil, CPUT, CPUWio, CPU
DBFile (7) db file sequential read average wait time, db file

parallel read, db file parallel write, db file sequential
read, db file single write, db file scattered read, db file
async IO submit

Disk (4) disk file mirror read, disk file mirror/media repair
write, disk file operations IO, disk busy percentage

Execution (4) #executions, #logins, #connections, connection utiliza-
tion

LogicRead (2) logical read per execution, #logical read
LogFile (10) log file single write, log file sync, log archive I/O, log

file sequential read, log file switch completion, log file
sync average wait time, log file parallel write, log file
parallel write average wait time, log writer wait for
redo copy, log file switch (checkpoint incomplete)

Memory (5) memory utilization, udp bufferoverflows, PGA allo-
cated, UpAvailabelMemPct, UpMEMComputePct

Transaction (2) transaction count, #transactions per second

Metrics. We divide the metrics of the database systems into
two categories, namely key metrics and infrastructure metrics.
In database systems, DBAs always pay close attention to the
alerts of key metrics that indicate the overall availability of the
systems, e.g., AAS metric in Oracle. And others recording the
status of each module of the system are called infrastructure
metrics. These time-series metrics are what we focus on.

Metric groups. We divide the above metrics into metric
groups for the following reasons. First, the number of metrics
is huge in database systems, which could affect the perfor-
mance of failure propagation modeling due to a large number
of nodes and edges. Besides, there are multiple different
metrics describing the status of the same module (e.g., “CPU
utilization” and “CPU idle” actually describe the character-
istics of CPU from different perspectives). These metrics
can be grouped to reduce the complexity of causal graphs.
Second, metric anomalies within the same group indicate
failures of the same module. Usually, DBAs perform the same
failure mitigation operation when they discover that root cause
metrics belong to the same metric group. Therefore, all key
metrics are grouped into one key metric group since these
metrics reflect the overall system availability from different
perspectives. Moreover, the infrastructure metrics are catego-
rized into different metric groups according to their belonging
modules by DBAs. Due to the limitation of space, we only
list ten example metric groups of our scenario in Table I for
intuitive illustrations, where the number of metrics in each
group is recorded in (). Note that the manual metric grouping
is not the main contribution of our work. DBAs can refine the
grouping method in line with actual operating environments.
Later, we will introduce how we utilize the metric groups to
localize the root cause in Sec. III.

Problem description. With the above definitions, the ob-
jective of this work can be described as follows. During
the operation of the OLTP database system, key metrics are
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Fig. 1. System workflow of CauseRank.

continuously monitored. A failure occurs when a key metric
anomaly is detected, implying that there may be a problem
with the system’s availability. Then, CauseRank utilizes the
time series data of key metrics and infrastructure metrics for
a time period close to the failure occurrence to rank potential
top-N metric groups as the most likely root causes.

C. Design Overview

The workflow of CauseRank is shown in Fig. 1, where
the stages in the dashed box are what CauseRank focuses
on. Suppose that an alert of any key metric is observed
in the database system, which indicates a failure happens.
CauseRank immediately starts to localize the root cause.

First, CauseRank generates candidate metric groups from
all infrastructure metric groups by measuring the fluctuation
of each metric and then calculates the anomaly score for each
metric group. Second, CauseRank applies a novel algorithm,
G-GES, to temporarily construct a causal graph based on these
metric groups accurately and efficiently, which is enhanced by
existing domain knowledge. We construct the causal graph per
failure to capture the propagation pattern of only the current
failure and obtain a more accurate causal graph. Potential
rules discovered by G-GES can be leveraged to enrich domain
knowledge after being confirmed by DBAs. Third, COPP is
applied to rank the candidate infrastructure metric groups on
the constructed causal graph. The ranking scores obtained
through COPP are integrated with the anomaly scores to
obtain each candidate metric group’s final root cause score.
All possible propagation paths from each potential root cause
metric group to the key metric group are delivered to DBAs
for interpretability faster troubleshooting.

III. METHODOLOGY

In this section, we present the details of CauseRank, which
utilizes metric group analysis as its building block. In CauseR-
ank, we first generate candidate metric groups to initial nodes
(Sec. III-A), and then we develop a novel graph building
algorithm (G-GES in Sec. III-B) as well as the correspond-
ing ranking technique (COPP in Sec. III-C) to address the
challenges mentioned in Sec. I.

A. Candidate Groups Generation

CauseRank is supposed to be triggered whenever a failure
arises. Denote the earliest time that the failure is observed
as talert. To obtain deeper insights, we need to filter out
suspicious infrastructure metric groups first.
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Fig. 2. An example of a failure with a key metric and the root cause
infrastructure metric.

For a certain infrastructure metric group (denoted as X),
CauseRank measures the fluctuation of each metric x in X
compared with its normal state to evaluate how suspicious
X is. An effective and widely used method (known as n-
sigma) is to model the normal state of x with its mean µx

and standard deviation σx. CauseRank estimates the anomaly
degree of x for each data point x(t) around talert with
sx = maxt |x(t) − µx|/σx based on Z-Score. With sx, the
final anomaly score of x (denoted as αx) is defined by (1).
αx considers an infrastructure metric that satisfies sx < k
as normal, where k is determined by the fluctuation level of
the system during normal operation and DBAs’ tolerance for
anomalies. In this work, we take k = 1 to avoid missing root
cause metrics with slight fluctuations. Moreover, αx applies
logarithmic conversion to sx as it limits a high sx getting
higher to avoid extreme situations.

αx =

{
log(1 + sx), sx ≥ k
0, sx < k

(1)

We use the data points in the time period [talert − `p −
`train, talert − `p] to learn µx and σx for each infrastructure
metric x, where `train denotes the training data length, which
is required to be long enough to model historical normal state
more accurately. We shift the period with `p as the system may
already be abnormal before the failure is observed at talert. For
example, Fig. 2 shows the time delay between the occurrence
of an actual failure observed in an Oracle database (indicated
by the root cause metric) and the impact on the key metric,
which are marked with two red lines. For the test data, we use
the data points in the time period [talert − `p, talert + `test],
where `test denotes the test data length, which is decided
by the real-time requirement of the system for root cause
localization. However, `test should be large enough to prevent
the localization result from being affected by noise.

Finally, for each infrastructure metric group, the metrics
with αx > 0 are retained, and the others are not considered in
this failure. The largest anomaly score of the metrics in each
group is taken as the corresponding group score αX . All the
groups with abnormal metrics are considered candidate metric
groups, which will be used as nodes to construct the causal
graph in the next stage.

B. Causal Graph Building

To address the challenge of failure propagation modeling
to provide interpretability, CauseRank explicitly models the
propagation path among candidate metric groups generated
in Sec. III-A as causal relations. In CauseRank, we propose

an efficient causal discovery algorithm called G-GES (Group-
based Greedy Equivalent Search) with novelty. G-GES takes
metric groups as vertices to infer the causality among them,
effectively reducing the complexity of the graph caused by the
excessive number of metrics and providing a more concise
and clear causal graph whose edges point from cause to
result. To improve the accuracy of the causal graph, we also
integrate domain knowledge in the building process, which
plays an essential role in improving the effectiveness of root
cause localization as described in Sec. IV-B. The metrics of
a normal system fluctuate relatively smoothly, and the causal
relations reflected in different failures are not always the same,
which may conceal some causal relations of the current failure.
Therefore, CauseRank constructs a temporary causal graph
every time a failure occurs to model a more accurate failure
propagation path.

1) Greedy Equivalent Search (GES): GES [19] is a classic
score-based causal discovery algorithm whose principle is to
maximize the overall score of the graph with maximum likeli-
hood estimation (MLE) through continuous iterations to build
the causal graph. Equation (2) shows the general definition of
scoring criterion S using the relative log posterior [19], where
G is a hypothesis causal graph and D is the observed data.

S(G,D) = log p(G) + log p(D|G) (2)

According to the structure of a directed acyclic graph G, the
metric datum x(t) at time t can be factorized as (3), where
paG(x) is the set of parent nodes of x in G.

p(x = x(t)|G) =
∏
x∈x

p(x = x(t)|paG(x) = pa
(t)
G (x)) (3)

Hence, the relative log posterior is decomposable as shown
in (4), where s(x, paG(x)) is short for s(x, paG(x)|D), called
local score.

S(G,D)

= log p(G) + log
∏
t

p(x = x(t)|G)

= log p(G) +
∑
x∈x

log
∏
t

p(x = x(t)|paG(x) = pa
(t)
G (x))

= log p(G) +
∑
x∈x

s(x, paG(x))

(4)
GES estimates the causal graph G through maximizing the
score S(G,D) with two steps called Greedy Forward Search
(GFS) and Greedy Backward Search (GBS), respectively. GES
starts with an empty graph. In GFS (GBS), it iteratively adds
(deletes) every possible edge to (from) the graph, until S(G,D)
will not increase any more.

2) Group-based Greedy Equivalent Search (G-GES): G-
GES is inspired by GES. The improvements are mainly two
folds: 1) G-GES takes metric groups as the nodes in the causal
graph instead of a single metric; 2) G-GES modifies the score
calculation mechanism of GES. Overall, G-GES is composed
of two phases: graph initialization and edge inference as shown
in Fig. 3, where each small circle is a metric, whose color
represents its metric group.
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Fig. 3. The structure of G-GES.

a) Graph initialization: In this phase, the representative
metrics are chosen for each metric group pair. As shown in
Fig. 3a, dashed larger circles represent metric groups, which
are treated as nodes in the causal graph. We infer the causal
graph with the metrics in the time period [talert− `graph, talert +
`test], where `graph denotes the historical reference length. We
select representative metrics for each metric group pair to
accelerate the edge inference phase. For each pairwise groups
(i.e., nodes) X and Y obtained from the permutation of all the
metric groups, we choose a representative metric from X for
Y , denoted as MXY (as presented in Fig. 3b with a star in a
circle), which is the metric in group X that best reflects the
causality with group Y . In order to calculate MXY , we use
GFS (Greedy Forward Search) to calculate the improved score
when only edge exy exists compared with the empty graph,
where exy is an edge from metric x in group X to metric y
in group Y. The calculation of MXY can be expressed with
the local score s as shown in (5), and it will later be used to
infer the edges when the graph presents different states.

MXY = arg max
x∈X

{
max
y∈Y

[s(y, {x})− s(y, ∅)]
}

(5)

b) Edge inference: In this phase, the causality of the
metric groups is mined to obtain directed edges. G-GES also
contains two successive steps: GFS and GBS. The difference
is that G-GES adjusts the score calculation mechanism in these
two steps to tackle grouped metrics in root cause localization
scenario. We denote the adjusted scoring criterion and local
score as SG and sG respectively. At first, there is an empty
graph denoted as G0. In the GFS (GBS) step, edges that
improve the total score of the graph the most are continuously
added to (deleted from) the graph through multiple iterations.
In the i-th iteration of GFS (GBS), the non-existent edges
(represented by the gray dashed arrows in Fig. 3c, while in
GBS, there need the existent edges represented by black solid
arrows) in the current graph Gi(Vi, Ei) are possible edges that
can be added into (deleted from) the graph. When a possible
directed edge eXY from X to Y is added (deleted) in Gi, we
obtain a temporary graph G′i(V ′i , E′i). Denote the change of
the corresponding relative log posterior as ∆SG(Gi,D, eXY ).
Under the assumption of a uniform prior of the causal graph
[19], based on (4), ∆SG(Gi,D, eXY ) is the difference between
the related local score as shown in (6), where PaG′

i
(Y ) =

PaGi(Y ) ∪ {X} (in GBS, PaG′
i
(Y ) = PaGi(Y ) \ {X}).

∆SG(Gi,D, eXY ) =SG(G′i,D)− SG(Gi,D)

=sG(Y, PaG′
i
(Y ))− sG(Y, PaGi(Y ))

(6)
And sG(Y, PaGi(Y )) of graph Gi can be calculated by (7),
where {MIY |I ∈ Pa(Y )} indicates the representative metrics
of Y ’s parent to node Y in Gi and Pa(Y ) is short forPaGi(Y ).

sG(Y, Pa(Y )) = max
y∈Y

s(y, {MIY |I ∈ Pa(Y )}) (7)

We adopt `0-penalized Gaussian maximum likelihood to es-
timate s as shown in (8), which is implemented with the
ges package2. N denotes the number of data points, while
σ is the variance of residual by linearly regressing y on
{MIY |I ∈ Pa(Y )}. The penalty term −ω(|Pa(Y )|+1) limits
the length of Pa(Y ) and preserves the most critical edges as
well as reduces the false positives so as to obtain a sparser
graph and improve efficiency.

ŝ(y, {MIY |I ∈ Pa(Y )}) = −N
2

(1+log(σ))−ω(|Pa(Y )|+1)

(8)
Then, as shown in (9), the edge ei that improves the score the
most will be finally added to Gi in GFS (deleted from Gi in
GBS) in the i-th iteration to obtain Gi+1 until the score will
not increase anymore.

ei = arg max
eXY

∆SG(Gi,D, eXY ) (9)

Through multiple iterations of GFS and GBS respectively, we
can obtain the causal graph G(V,E) constructed by G-GES as
demonstrated in Fig. 3d.

3) Enhancement with Domain Knowledge: However, when
building the causal graph, G-GES only considers the value of
each metric, but nothing about its actual meaning or its rela-
tions with other metrics. Considering that in general situations,
we usually have some external domain knowledge about the
system provided by DBAs, we can obtain an expert causal
graph with the expert rules inspired by domain knowledge.
Each of the expert rules is a confirmed causal relation between
two metric groups or two metrics. And this graph can be used
to direct G-GES to build the complete causal graph.

Nevertheless, we still need to run G-GES after getting an
expert causal graph since the expert rules are incomplete,

2https://github.com/juangamella/ges
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especially in unknown failure scenarios. The quantity and
quality of the rules mainly depend on the DBAs’ empirical
knowledge and how much efforts DBAs put in. Moreover,
even if we have a complete expert causal graph, there is no
guarantee that all the expert rules among the metrics in the
graph always exist in any scenario, resulting in incorrect failure
propagation paths and inaccurate root cause localization.

Suppose that the expert causal graph generated on the
basis of domain knowledge is GD(VD, ED). We update the
calculation of ∆SG(Gi,D, eXY ) in the GFS step of G-GES
with (10), where constant β satisfies β ≥ 1, which represents
the augmented weight of domain knowledge.

∆S∗G(Gi,D, eXY ) =

{
∆SG(Gi,D, eXY ) · β, eXY ∈ ED

∆SG(Gi,D, eXY ), eXY /∈ ED

(10)
Such scheme ensures that during the computation of CauseR-
ank, edges in GD are more likely to be added to the final
causal graph promptly, which helps us obtain a more accurate
causal graph.

After the construction, we collect the edges in the inferred
causal graph but not included in the expert causal graph and
record them as potential rules, which are recommended to
DBAs for further confirmation. Those confirmed rules will be
added to the expert rules, achieving an active update of the
expert causal graph.

C. Root Cause Ranking

Once we build a causal graph, another problem is how
we rank the nodes in the causal graph to figure out the
root cause. Existing works [12], [14], [20] mostly rely on
PageRank. They set up the weight of each edge by calculating
the similarity between the connected two nodes or the end
node of the edge and the abnormal key metrics. However, this
may result in false positives since the similarity is symmetric,
which cannot reveal the complete causality between every two
metrics. Moreover, it cannot be directly applied to the scenario
where metric groups are considered nodes.

We propose Causal Oriented Personalized PageRank
(COPP) based on Personalized PageRank to solve these issues.
Compared with naive PageRank, Personalized PageRank [21]
optimizes the probability of each moving step by adding the
personalization for each node. In the failure location scenario,
this kind of personalization can be effectively used to activate
each failure’s preference for different infrastructure metric
groups, which is more practical. COPP contains two phases,
namely graph setup and node ranking.

1) Graph Setup: The causal graph we obtained from G-
GES incorporated with domain knowledge cannot be directly
used for root cause ranking since each edge of it points from
cause to result without weight. Our solution is to convert the
causal graph to a relational graph.

First, we calculate the weight for each edge eXY in the
causal graph G(V,E) obtained by Sec. III-B through (11),
where G′(V ′, E′) is the graph without edge eXY .

Weight(eXY ) = −(SG(G′,D)− SG(G,D)) (11)

The weights are all positive since the edges that have negative
contributions to the entire graph are deleted in the GBS step.
The weight calculation step is similar to GBS in G-GES.
The difference is that the complete causal graph G remains
unchanged in the weight calculation step, while it may change
in each iteration of GBS. Then, we flip the direction of each
edge in the causal graph whose edges are from cause to result
and obtain the relational graph with a weight matrix A, where
AIJ represents the weight of the edge from I to J .

By definition, the Personalized PageRank algorithm is en-
forced to move to another node even if the causal relations
between the current node and the nodes it points to are weak.
To avoid such moving, we add self-edges for each node in the
relational graph and we update AII by (12), where ChG(I)
is the set of I’s child nodes in G.

AII = max

(
0, max

M∈ChG(I)
AMI − max

N∈PaG(I)
AIN

)
(12)

Then, we convert A to a probability transition matrix P by
(13), which is used for Personalized PageRank in the following
phase.

PIJ =
AIJ∑
O AIO

(13)

2) Node Ranking: A preference vector u is needed for
Personalized PageRank to avoid a local trap [21]. We define
u as (14), where X is a node in the relational graph, x is a
metric within node X , and K is the key metric group.

uX =

{
0, X = K

max Correlation(x, k), x ∈ X, k ∈ K, X 6= K
(14)

As for the node representing the key metric group, u is
set to zero, for the reason that the key metrics are almost
impossible to be its own root cause. When it comes to the
node representing the infrastructure metric group, we calculate
u through the correlation between each infrastructure metric in
this node and each key metric in the key metric group. In one
failure, the trends of abnormal metrics are similar so that the
correlation can be utilized as one of the foundations for root
cause judgment. The data length used for Correlation(x, k)
is `corr + `test where `corr denotes the historical data length
for correlation coefficient calculation. Considering that when
a failure occurs, it will take a certain period of time for the
failure to propagate from the root cause to the key metrics.
Therefore, when calculating Correlation(x, k), we actively
keep the time window of key metrics stationary and shift
that of infrastructure metrics to the left step by step and then
calculate the correlation. That is, for 0 ≤ i ≤ `p, we calculate
the Pearson correlation coefficient of x with the time period
[talert − `corr − i, talert + `test − i] and k with the time period
[talert − `corr, talert + `test] in a loop, where `p is the maximum
failure propagation time and talert is the start time of the alert as
stated in Sec. III-A. The maximum value obtained is regarded
as the final Correlation(x, k).

After we obtain the probability transition matrix P and
the preference vector u, the Personalized PageRank algorithm
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can be expressed as (15), where c ∈ (0, 1) is the damping
parameter for PageRank, which is usually set to 0.85 [21]. A
solution v to (15) serves as the node ranking score τX for
each node X in the causal graph.

v = cPTv + (1− c)u (15)

With τX , we can calculate the final score R with RX =
(1 − λ)αX + λτX for each infrastructure node X (i.e.,
metric group) in the causal graph, where λ is the weight
coefficient. By sorting the final scores of these infrastructure
metric groups in descending order, suspicious root cause
metric groups are obtained and presented to the DBAs with
all possible propagation paths extracted from the constructed
causal graph. These paths can provide explanations for root
cause localization. DBAs can conduct faster troubleshooting
based on the paths, thereby determining failure mitigation
actions more efficiently.

IV. EXPERIMENT

A. Evaluation Setup

1) Dataset: The experimental data is collected from an
Oracle database in the production system of a large bank with
a total length of more than 3 months to evaluate CauseRank
in practice. It contains 97 real-world failures, which fall into
9 types. The collected statistical metrics are configured by
DBAs, including 1 key metric and 233 infrastructure metrics.
These metrics are grouped into 1 key metric group and
26 infrastructure metric groups based on DBAs’ experience,
respectively. The group-level root causes of these failures are
labeled by DBAs according to the actual failure propagation
situation. Existing domain knowledge used to construct the
expert causal graph in the edge inference phase in this bank
system is sorted out by experienced DBAs according to the
relations and dependencies in real scenarios.

2) Evaluation Metrics: To quantify the performance of root
cause localization, following the existing works [11], [14],
[22], we adopt top-k accuracy (A@k) and mean average rank
(MAR) for evaluation. A@k represents the proportion of the
failures whose top-k candidate suspicious root cause metric
groups contain actual root cause metric groups. MAR is the
mean of the average rank of the root cause metric groups in the
suspicious metric groups of all the failures, which can more
accurately describe the overall performance of the approach.
The smaller the better. Specifically, MAR represents the
average number of suspicious metric groups that DBAs need
to examine in order to deal with one failure. When an actual
root cause metric group is not in the suspicious metric groups,
we apply mathematical expectations to estimate the number of
metric groups that DBAs have to check additionally, that is,
half the length of the remaining metric groups.

3) Baselines: We compare our proposed CauseRank with
one supervised approach and several unsupervised root cause
localization approaches, including anomaly degree-based ap-
proaches and causal analysis-based approaches. The chosen
approaches have proven to outperform other existing work
such as MicroScope [13] and DBSherlock [1], so they will

TABLE II
COMPARISON WITH BASELINES

Method A@1 A@3 A@5 MAR ↑MAR T. (s)

iSQUAD 0.372 0.698 0.744 3.21 33.6% 0.77
FluxRank 0.206 0.495 0.701 4.44 52.0% 0.42
CRD 0.183 0.394 0.542 6.11 65.1% 16.94
MicroCause 0.270 0.600 0.773 3.95 46.1% 958.80
CauseRank* 0.412 0.756 0.835 2.90 26.6% 11.16

CauseRank 0.557 0.825 0.938 2.13 - 12.58
iSQUAD is a supervised method. Domain knowledge is not used in the
baseline methods (including CauseRank*). The rightmost column shows
the localization time per failure for each method.

not be considered in our experiments. Notice that CauseRank
without domain knowledge is also conducted for a fair com-
parison.
• iSQUAD [3] is a supervised method for failure diagnosis in

cloud databases. It allows DBAs to point out the root cause
of each type of failure clustered by TOPIC, and then match
new queries with each failure type online for diagnosis. We
split each type of failure data into a training set and a testing
set with the proportion of 60% and 40% respectively and
its experimental results are calculated on the testing set.

• FluxRank [9] employs KDE (Kernel Density Estimation) to
detect anomaly infrastructure metrics and localizes the root
cause based on anomaly degrees.

• CRD [23] proposes to rank causal anomalies in a two-phase
manner, in which a diffusion-based network reconstruction
model is used to backtrack causal anomalies.

• MicroCause [11] proposes to detect anomaly metrics with
SPOT [24], build a causal graph with these metrics by PCTS
algorithm, and finally utilize TCORW for ranking.

• CauseRank* is a variant of CauseRank, which infers the
causal relations without any domain knowledge under the
circumstance that other stages remain unchanged.
4) Experimental Details: We conduct all the experiments

on a server with a 22-core 2.40GHz CPU (Intel(R) Xeon(R)
CPU E5-2620 v3) and 57GB RAM. All the methods are imple-
mented in Python, with which we can make a fair comparison
of the speed. Based on the expert experience and the tolerance
for failure localization of DBAs as well as the inherent charac-
teristics of our dataset, we set `p = 5mins, `train = 120mins,
`test = 10mins, `graph = 7200mins, `corr = 20mins. As for
the baseline methods, since the anomaly detection and causal
inference are in a single metric level, we use the raw metric
data (i.e. without group information) as input. The results of
these methods are changed into group form according to the
first occurrence of metrics belonging to each group, which are
in the same form with the results of CauseRank for evaluation.
For methods with randomness (i.e. CRD and MicroCause), we
repeat the experiments 5 times to eliminate deviations.

B. Overall Performance

Table II shows the comparison results between CauseRank
and the baseline methods. In addition to the above evaluation
metrics, we also collect the average localization time per
failure to evaluate the availability in the real-time scenario.
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Fig. 4. Case study of domain knowledge. The red node denotes the root
cause. Green edges denote edges inferred with domain knowledge and red
edges denote edges conflict with domain knowledge.

The results show that CauseRank performs better than the
baseline methods significantly with acceptable localization
time regarding various evaluation metrics.

iSQUAD is supervised whose experimental results are better
than other unsupervised baselines. However, iSQUAD mainly
focuses on the diagnosis of Intermittent Slow Queries. It is
still difficult to be extended to the localization of the entire
database system due to a large number of metrics and complex
internal relations. Compared with FluxRank, our proposed
approach takes the causal relations among the metric groups
into consideration, which is crucial in accurate root cause
localization. CRD requires the data to be of high quality
since it is difficult to fit AutoRegressive eXogenous models
in case of numerous missing data points. Furthermore, when
localizing, CRD finds out the root cause by comparing the
invariant network obtained from previous training with the
broken network generated at the time point that the failure
occurs. It does not consider the propagation time of failures,
i.e., the abnormal time of key metrics is not always the same as
that of the root cause metrics. Thus, in our scenario, CRD has
the worst performance. MicroCause tries to infer the causal
relations to get the failure propagation path. However, the
relations among metrics often receive the interference of many
irrelevant factors, leading to a complex and unreliable causal
graph. Besides, the causal discovery algorithm PCTS used
in MicroCause suffers from long running time, resulting in
unavailability in online systems.

The results also show that CauseRank* outperforms other
baseline methods, even without domain knowledge, which
proves the effectiveness of the proposed G-GES and COPP
in the root cause localization task. However, due to the high
similarity of the metrics, critical failure propagation paths may
be constructed incorrectly, which greatly affects the accuracy
of the results. In contrast, the proposed CauseRank can effec-
tively take advantage of domain knowledge and achieve the
best performance in our root cause localization task.

We conduct a case study for detailed explanations. Fig. 4
shows a part of the causal graphs inferred by G-GES without
and with domain knowledge, respectively. Actually, the fluctu-
ations of the metrics in “GlobalCache”, “LogFile”, and “ASM”
are similar in this failure, which makes it difficult for G-GES
to infer the correct causal relations among them. In Fig. 4a, the
causal relations among these three metric groups conflict with
those provided by DBAs. As a result, CauseRank with such a

TABLE III
ABLATION STUDY OF KEY TECHNIQUES IN CauseRank

Method A@1 A@3 A@5 MAR ↑MAR

CauseRank w/o Grouping 0.381 0.742 0.867 2.897 26.3%
CauseRank w/o G-GES 0.412 0.732 0.900 2.660 19.8%
CauseRank w/o COPP 0.495 0.763 0.928 2.289 6.8%

CauseRank 0.557 0.825 0.938 2.134 -
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graph ranks “GlobalCache” at the first by mistake. In contrast,
the causal graph inferred with domain knowledge (Fig. 4b)
shows correct causal relations among them, resulting in higher
ranking accuracy. This case shows that our integration strategy
of domain knowledge and G-GES is practical and effective.

C. Ablation Study

To investigate the contributions of key techniques of
CauseRank, we perform several additional experiments for
ablation study, in which several variants of CauseRank are
constructed. We have proved the important role of domain
knowledge in Sec. IV-B and it will not be explained in this
part. Table III summarizes the overall ablation study results.
As shown in Table III, all of the key techniques in CauseRank
have positive effects on the results of root cause localization,
which proves these techniques are of great necessity.

1) Impact of Grouping: We remove the metric grouping
technique of CauseRank, which means that naive GES is ap-
plied in the causal graph building stage, and (11) is calculated
with scoring criterion S. This variant performs poorly com-
pared with the original CauseRank method as shown in Table
III, which further demonstrates the advantages of CauseRank
in dealing with numerous metrics by metric grouping.

2) Impact of G-GES: Intuitively, the typical failure prop-
agation paths in the expert causal graph inspired by domain
knowledge can help us get accurate causal graphs. To examine
the actual performance of G-GES, we only use the expert
causal graph for root cause ranking. Results in Table III show
a huge improvement of using the causal graph constructed by
domain knowledge enhanced G-GES, indicating the impor-
tance of temporary causal discovery algorithm in root cause
localization, even with DBAs’ domain knowledge.

3) Impact of COPP: To verify our proposed ranking algo-
rithm COPP, we modify (11) by using the maximum Pearson
correlation coefficient between the metrics of adjacent nodes
as weights in the graph setup phase. From Table III, we can
conclude that COPP has a certain improvement on the overall
performance, especially on A@1.
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D. Study of Parameters

1) Evaluation of ω: In G-GES, we use the parameter ω
as the penalty coefficient to limit the number of parents of
each node as shown in (8). By applying this penalty, we can
obtain more significant failure propagation paths and reduce
the interference of noise on the construction quality of causal
graphs. To investigate the influence of ω, we conduct several
experiments with different values of ω. As shown in Fig. 5,
the performance of CauseRank does not fluctuate much with
the change of ω. The results indicate that even the number
of edges is limited, the pivotal failure propagation paths can
also be inferred by G-GES enhanced with domain knowledge
so as to achieve good performance in root cause localization.
Moreover, regarding the GFS step of G-GES in causal graph
building, the limit of graph density greatly improves the speed.
Fig. 5b shows the time costs for running CauseRank with
different ω. It can be found that the time cost decreases rapidly
as ω increases. In CauseRank, we set ω to 30 in order to
achieve high performance with reasonable time consumption.

2) Impact of β: β determines the impact degree of domain
knowledge in CauseRank, which should be set to an appropri-
ate value. Experimental results of CauseRank with different β
are depicted in Fig. 6a. From the results, we can conclude that
when β is set too small, domain knowledge will only have little
effect on the inference of causal graphs, resulting in slightly
poor performance. When β >= 10, CauseRank is not sensitive
to the parameters. In order to ensure the generalization of the
algorithm, we set β to 10 in the experiments.

3) Impact of #Rules in Domain Knowledge: In practical
applications, the number of expert rules in domain knowledge
is limited by DBAs’ empirical knowledge and time spent on
constructing rules. Therefore, in this part, we investigate the
effect of #rules on overall performance. We sample the expert
rules at different proportions randomly and obtain the results
of root cause localization separately with the sampled rules
as input. Results of different sampling proportions are shown
in Fig. 6b. It can be found that the accuracy of root cause
localization shows an increasing trend with the increase of the
number of expert rules, indicating the advantages of integrating
domain knowledge into the construction of causal graphs.

4) Impact of λ: λ controls the weight of τX in calculating
the final root cause ranking score. Results demonstrated in
Fig. 6c indicate that the performance reaches the best when
λ = 0.4. Compared with the results of only adopting the

anomaly degrees (i.e. λ = 0.0), the overall performance of
CauseRank is significantly improved by taking causal graphs
into consideration, which shows the crucial contribution of the
causal information.

V. RELATED WORK

In this section, we discuss the related work on root cause
analysis algorithms and causal discovery algorithms.
Root Cause Analysis Several works [1], [3], [5]–[8] focus
on supervised approaches. Fingerprint [8] characterizes the
system status through analyzing metrics and identifies the
performance crises by comparing the current status with the
historical failure status. iSQUAD [3] performs online diagnosis
by matching the pattern of each failure type consistent with
that of a new query, where failure types are clustered and
labeled by DBAs offline. MEPFL [6] only focuses on three
common types of failures and uses supervised machine learn-
ing techniques to predict the specific types. However, these
methods generally rely on historical annotated data, which is
not always available in reality and also cannot handle new-type
failures.

In order to improve the versatility and flexibility of the
approaches, many researchers focus on unsupervised methods
to address the localization problem. FluxRank [9] ranks the
potential root cause according to the anomaly degree of the
metrics. ε-Diagnosis [10] also adopts an anomaly detection-
based method to localize a specific type of microservice
failure. While the determination of root cause metrics cannot
rely solely on the anomaly degree. Dbsherlock [1] requires
the end-user to select the region of unexpected performance
to provide support for its predicates analysis and mark the
root cause metric to construct causal models for the root
cause ranking in online scenarios, which requires too many
end-user instructions. MonitorRank [14] adopts the random
walk algorithm on the calling graph generated by Hadoop
for root cause ranking, which is not that suitable for our
scenario because the causal relations of metrics are unknown
in database systems. MicroScope [13] finds the metrics related
to the failure through traversing the causal graph built by the
parallelized PC algorithm and uses the metric similarity as the
ranking score. CauseInfer [15] builds the metric causal graph
through PC algorithm and uses DFS to obtain the possible
root cause metrics. However, when the causal graph is not
ensured to be accurate, the metric represented by the root
node is not always the root cause. ExplainIt [25] performs
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root cause analysis by sorting the candidate causal hypotheses
identified by the operators, which requires heavy reliance on
operators. MicroCause [11] proposes PCTS for constructing
causal graphs more accurately, but it is very time-consuming
so that it cannot be adapted to the online scene.
Causal Discovery Existing works usually apply constraint-
based algorithms to build the causal graphs, such as PC
[15], parallelized PC [13], and PCTS [11] algorithms. These
constraint-based algorithms [26], [27] mostly rely on condi-
tional independence tests. However, conditional independence
tests are not guaranteed to be correct due to the noise [28],
[29], especially when it is applied on a large-scale time-
series dataset, leading to high dimensionality and low detection
power [27]. The score-based algorithms [19], [30] build the
causal graph by optimizing the global score of the graph,
which can overcome the shortcomings mentioned above.

VI. CONCLUSION

Performance diagnosis in OLTP database systems is a
critical task for maintaining service availability and user expe-
rience. The primary requirements and challenges are accuracy
and efficiency, especially in the face of a large number of
metrics. In this paper, we propose CauseRank, which utilizes
metric group analysis to provide high-quality failure localiza-
tion. Core techniques in CauseRank are a causal discovery
algorithm (G-GES) integrating domain knowledge and a rank-
ing algorithm (COPP). Extensive experiments on 97 real-world
failures demonstrate that CauseRank outperforms the baseline
methods in terms of accuracy and the time cost of localization
can meet the requirements of online diagnosis. Besides, the
framework of CauseRank is generic to other large-scale system
components, e.g., cloud databases, middleware, load balancers,
and web servers. We believe that CauseRank can also achieve
good performance in other root cause localization tasks.
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