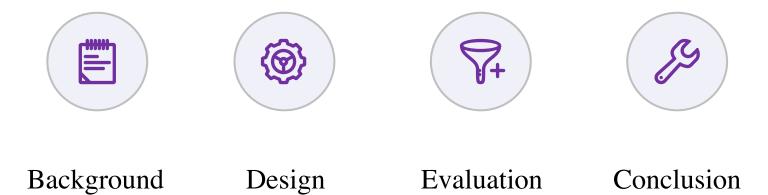
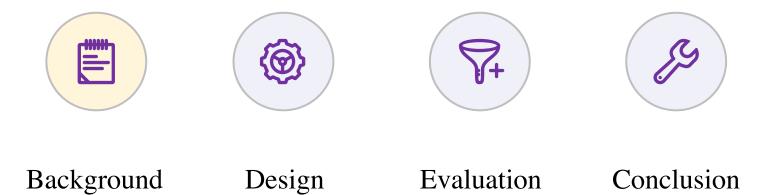
CTF: Anomaly Detection in High-Dimensional Time Series with Coarse-to-Fine Model Transfer

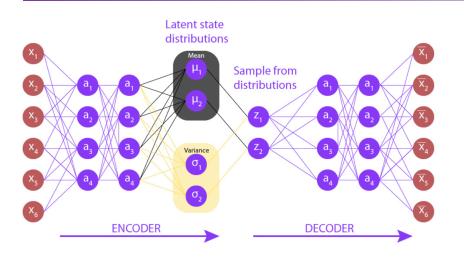
Ming Sun, Ya Su, Shenglin Zhang, Yuanpu Cao, Yuqing Liu, Dan Pei, Wenfei Wu, Yongsu Zhang, Xiaozhou Liu, Junliang Tang

INFOCOM 2021

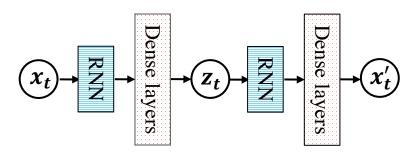




Outline


Outline

DL Algorithms in the Infra Operation


- Advantages
 - automation
 - robustness
 - Saving operator's labor
- Example:
 - RNN-VAE for anomaly detection

RNN-VAE Based Algorithms

 x_t (49) -> z_t (3) -> x'_t (49) KPI dimension reduced

Variational Auto-Encoder (VAE)

Network architecture of RNN-VAE models at time t

Network Layers

- RNN: Shallow & general
- Dense layers: Deep & specific

Scalability is the problem for large scale

- High-Dimensional Data
 - Machines: in millions
 - KPI: in tens
 - Time: Frequent data query (2880 samples/day)
 - > One model per machine: time 10X minutes * 1X million machines
 - > One model for all: accuracy

Scalability is the problem for large scale

- High-Dimensional Data
 - Machines: in millions
 - KPI: in tens
 - Time: Frequent data query (2880 samples/day)

Goal: devise scalable deep learning (DL) algorithms for large-scale anomaly detection

Intuition and Challenges

• Intuition: Cluster Machines first, then run DL for each cluster

dependency

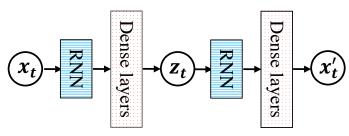
- - Clustering cannot run on high-dimensional data
 - DL cannot run on whole dataset without clustering
 - Solution: Synthetic framework

Coarse-grained model -> clustering -> fine-grained models

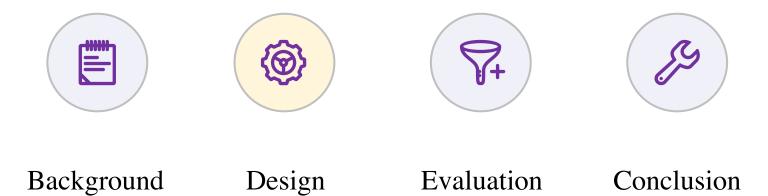
Intuition and Challenges

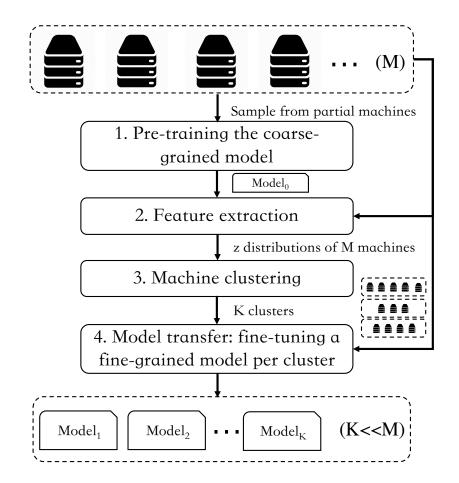
• Intuition: Cluster Machines first, then run DL for each cluster

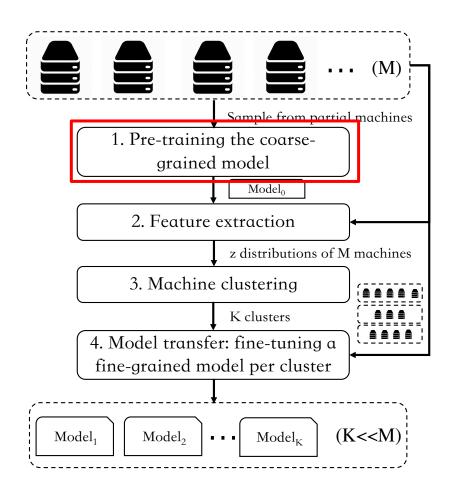
dependency

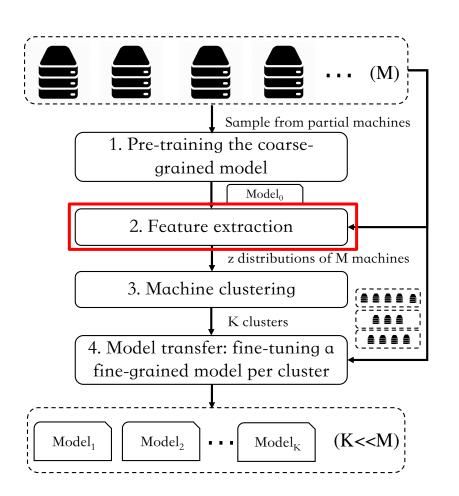

- - Clustering cannot run on high-dimensional data
 - DL cannot run on whole dataset without clustering
 - Solution: Synthetic framework
- Challenge 2: High dimension of time domain
 - Hard to cluster even KPI is compressed
 - Solution: compress sequence to z-distribution

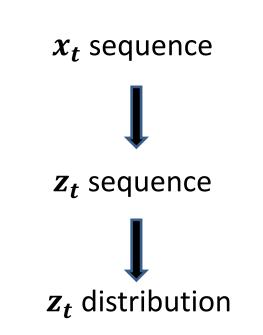
Intuition and Challenges

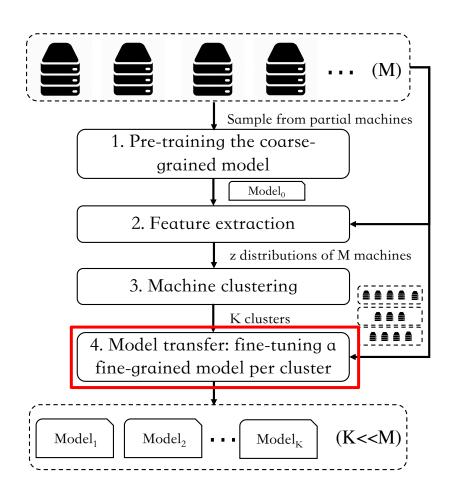

• Intuition: Cluster Machines first, then run DL for each cluster


dependency

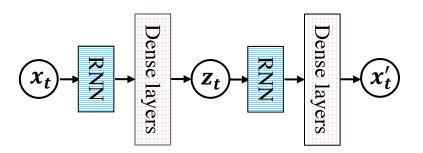

- - Clustering cannot run on high-dimensional data
 - DL cannot run on whole dataset without clustering
 - Solution: Synthetic framework
- Challenge 2: High dimension of time domain
 - Hard to cluster even KPI is compressed
 - Solution: compress sequence to z-distribution
- Challenge 3: Neural network training method
 - Solution: fine-tuning strategy
 - Freeze RNN and tune dense layers

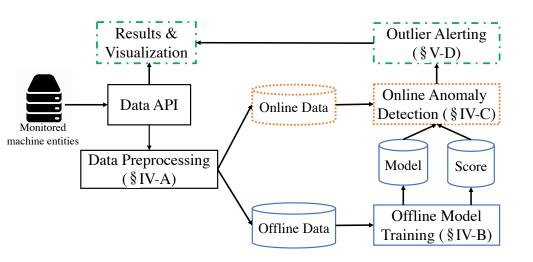

Outline





- Sampling strategy:
 - Machine sampling
 - Time sampling

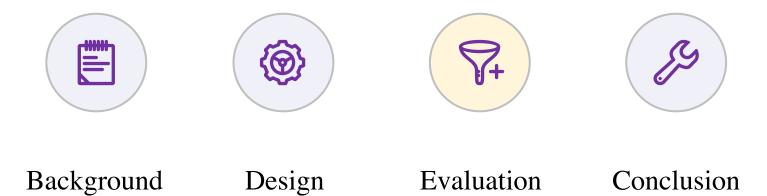




- Fine-tuning strategy:
 - RNN: fixed
 - Dense layers: tuned

System architecture

System architecture


- 1. Data preprocessing
- 2. Offline model training
- 3. Online anomaly detection

Labeling tools

The interface of the labeling tool

Outline

Dataset & performance metrics

- Dataset:
 - # Machine entities: 533
 - Dimension of each machine entity: 49 KPIs x 37440 time points (frequency: 30s, 13 days)
 - Training = first 5 days, Testing = last 8 days
- Metrics:
 - F1, Precision, Recall: average of all machine entities.
 - Model training time

• Scalability

- Pre-training: fixed (5493s)

М	533	10^{3}	10^{4}	10^{5}	10^5 (6 servers)
Pre-training	5493	5493	5493	5493	5493
Feature extraction	166	311	3113	31130	5292
Clustering	3	6	232	576	576
Model transfer	2238	2238	4475	22375	4475
Total	7900	8048	13313	59574	15836
Average	14.822	8.048	1.331	0.596	0.158

The execution time of each step under different numbers of machine entities

Methods	F1	Precision	Recall
Without alerting	0.830	0.785	0.881
With alerting	0.892	0.907	0.877

• Scalability

- Pre-training: fixed (5493s)
- feature extraction: 0.3s /

machine

М	533	10^{3}	10^{4}	10^{5}	10^5 (6 servers)
Pre-training	5493	5493	5493	5493	5493
Feature extraction	166	311	3113	31130	5292
Clustering	3	6	232	576	576
Model transfer	2238	2238	4475	22375	4475
Total	7900	8048	13313	59574	15836
Average	14.822	8.048	1.331	0.596	0.158

The execution time of each step under different numbers of machine entities

Methods	F1	Precision	Recall
Without alerting	0.830	0.785	0.881
With alerting	0.892	0.907	0.877

• Scalability

- Pre-training: fixed (5493s)
- feature extraction: 0.3s /

Μ	533	10^{3}	10^{4}	10^{5}	10^5 (6 servers)
Pre-training	5493	5493	5493	5493	5493
Feature extraction	166	311	3113	31130	5292
Clustering	3	6	232	576	576
Model transfer	2238	2238	4475	22375	4475
Total	7900	8048	13313	59574	15836
Average	14.822	8.048	1.331	0.596	0.158

machine

- Clustering: much smaller
- Fine-tuning: 448s / model

The execution time of each step under different numbers of machine entities

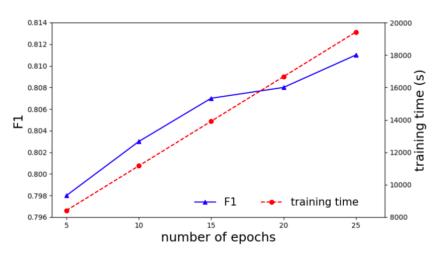
Methods	F1	Precision	Recall
Without alerting	0.830	0.785	0.881
With alerting	0.892	0.907	0.877

• Scalability

- Pre-training: fixed (5493s)
- feature extraction: 0.3s / machine
- Clustering: much smaller
- Fine-tuning: 448s / model
- Effectiveness
 - F1: 0.830->0.892

М	533	10^{3}	10^{4}	10^{5}	10^5 (6 servers)
Pre-training	5493	5493	5493	5493	5493
Feature extraction	166	311	3113	31130	5292
Clustering	3	6	232	576	576
Model transfer	2238	2238	4475	22375	4475
Total	7900	8048	13313	59574	15836
Average	14.822	8.048	1.331	0.596	0.158

The execution time of each step under different numbers of machine entities

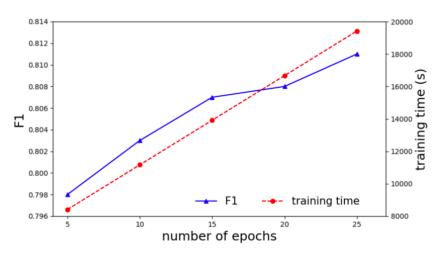

MethodsF1PrecisionRecallWithout alerting0.8300.7850.881With alerting0.8920.9070.877

- Validating the Synthetic
 Framework
 - One model/machine
 - One model for all
 - CTF w/o transfer

Methods	F1	Precision	Recall	Training time
CTF	0.830	0.785	0.881	7900
One model/machine ^a	0.842	0.820	0.864	168150
One model for all	0.796	0.791	0.802	5493
CTF w/o transfer	0.798	0.758	0.843	8413

^a We evaluate 10% machine entities in this method.

Comparison with model variations

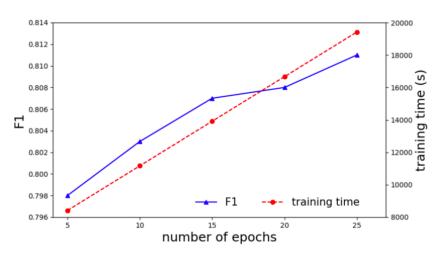


- Validating the Synthetic
 Framework
 - One model/machine
 - One model for all
 - CTF w/o transfer

	Methods	F1	Precision	Recall	Training time
	CTF	0.830	0.785	0.881	7900
	One model/machine ^a	0.842	0.820	0.864	168150
_	One model for all	0.796	0.791	0.802	5493
	CTF w/o transfer	0.798	0.758	0.843	8413

^a We evaluate 10% machine entities in this method.

Comparison with model variations

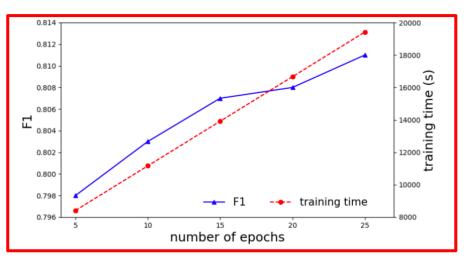


- Validating the Synthetic
 Framework
 - One model/machine
 - One model for all
 - CTF w/o transfer

F1	Precision	Recall	Training time
0.830	0.785	0.881	7900
0.842	0.820	0.864	168150
0.796	0.791	0.802	5493
0.798	0.758	0.843	8413
	0.830 0.842 0.796	0.830 0.785 0.842 0.820 0.796 0.791	0.8300.7850.8810.8420.8200.8640.7960.7910.802

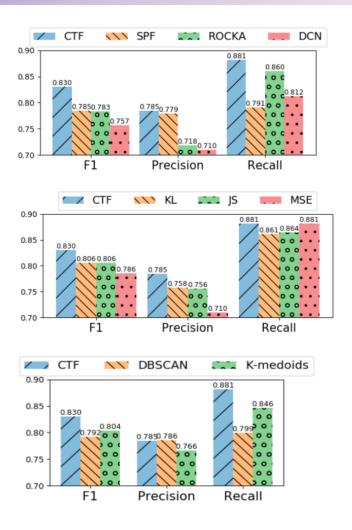
^a We evaluate 10% machine entities in this method.

Comparison with model variations

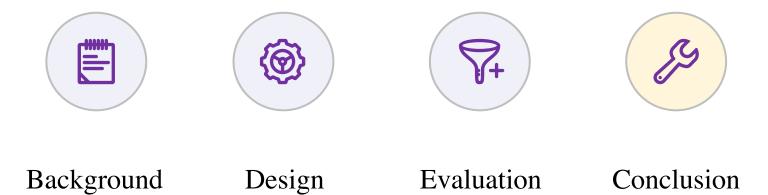

Validating the Synthetic
 Framework

Methods	F1	Precision	Recall	Training time
CTF	0.830	0.785	0.881	7900
One model/machine ^a	0.842	0.820	0.864	168150
One model for all	0.796	0.791	0.802	5493
CTF w/o transfer	0.798	0.758	0.843	8413

^a We evaluate 10% machine entities in this method.


Comparison with model variations

- One model/machine
- One model for all
- CTF w/o transfer



Validating Design Choices

- Choice of Clustering Objects
 - SPF, ROCKA, DCN
- Choice of Distance Measures
 - KL divergence, JS divergence, mean squared error
- Choice of Clustering Algorithms
 - DBSCAN, K-medoids

Outline

Conclusion

- CTF: synthetic framework, high-dimensional time series (machine, KPI, time)
- Techniques: z_t distribution clustering, model reuse, fine-tuning
- Evaluation: CTF scalability and effectiveness
- Labeling tool + labeled dataset

Thank you! Q & A

sunm19@mails.tsinghua.edu.cn

INFOCOM 2021