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Abstract. DNS is a key protocol of the Internet infrastructure, which
ensures network connectivity. However, DNS suffers from various threats.
In particular, DNS covert communication is one serious threat in enter-
prise networks, by which attackers establish stealthy communications be-
tween internal hosts and remote servers. In this paper, we propose D? C?
(Detection of DNS Covert Communication), a practical and flexible ma-
chine learning-based framework to detect DNS covert communications.
D?(C? is an end-to-end framework contains modular detection models in-
cluding supervised and unsupervised ones, which detect multiple types
of threats efficiently and flexibly. We have deployed D?>C? in a large
commercial bank with 100 millions of DNS queries per day. During the
deployment, D* C? detected over 4k anomalous DNS communications per
day, achieving high precision over 0.97 on average. It uncovers a signif-
icant number of unnoticed security issues including seven compromised
hosts in the enterprise network.

1 Introduction

As a core infrastructure on the Internet, the Domain Name System (DNS)
is commonly used in all kinds of Internet applications, to translate easy-to-
recognize domain names into IP addresses. Unfortunately, the DNS system suf-
fers from known vulnerabilities, such as DDoS [27], spoofing [24] and other ex-
ploits [8,30, 36]. To defend against these attacks, approaches such as [10,18,24]

* Qi Li is the corresponding author.
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have been proposed. Unlike those traditional attacks which target DNS system
itself, DNS covert communication is leveraged to transmit messages cross the
boundary between an enterprise’s LAN (i.e., office network and datacenter) and
the Internet, through DNS messages in a stealthy and unauthorized manner.
However, the defense against DNS covert communication in enterprises is still
not well-studied, and is the focus of this paper.

In enterprises, security tools are commonly deployed to closely monitor the
traffic between the enterprise’s LAN and the Internet to detect serious security
attacks such as data ezfiltration (which transmits valuable internal data to the
Internet), command-and-control (C&C) of internal hosts by external attackers,
and so on. However, those data exfiltration and C&C using covert communication
via the DNS traffic [7,8,22,23,28] are still hard to detect.

Fig. 1 shows examples of normal DNS lookup and DNS covert communica-
tion. In the normal DNS lookup in Fig. 1 (a), a normal host queries its local
DNS server about google.com, and the local DNS server then iteratively queries
DNS root server and .com top-level domain server (both are omitted in the fig-
ure) and relays the response (which indicates the corresponding IP address is
172.217.164.100) from the authoritative name server for google.com to the host.
Fig. 1(b) shows an example of real point of sale (POS) malware, in which POS
malware exfiltrated credit card information in the domain names of the DNS
queries [20]. Such exfiltration incidents (e.g., MULTIGRAIN [20], UDPoS [28])



caused many loss to the users and providers. The compromised host encodes the
stolen credit card information as subdomains in the domain name to be queried,
and when the query arrives at the authoritative name server controlled by the
attacker, the attacker can then easily decode the credit card information from
the queried domain name. Fig. 1(c) shows an example of DNS C&C [22] where
a malware-infected host talks to and receives command from its C&C server by
sending a DNS query message to and receiving corresponding DNS response from
the compromised authoritative name server, which is the C&C server. In this
example, the seemingly-random domain name (rohgoruhgsorhugih.nl) queried
are actually dynamically generated by Domain-Generation-Algorithms (DGAs)
and automatically synchronized between the compromised host and the C&C
server [9,13,29,30,35, 36].

Therefore, new detection methods are needed to detect these DNS covert
communication because traditional security tools based on blacklists, rules, sig-
natures cannot enumerate or capture the dynamically changing subdomain names
in the DNS covert communications exemplified in Fig. 1 (b)(c).

Our intuitive idea in detecting DNS covert communication is to apply ma-
chine learning (ML) to capture a suspicious domain based on its features (see
the feature list in Table 2, e.g., the length of the domain). Although this idea
is promising, previous ML-based approaches along this direction have not been
deployed in the real-world enterprises yet, to the best of our knowledge, due to
the following the three challenges.

First, the performance of different ML algorithms might be different for dif-
ferent enterprises because the DNS traffic data distribution might be different.
Furthermore, the machine learning algorithms used in previous works, super-
vised models perform better and are preferred for some kinds of known threat
types, while unsupervised models are more preferred for some unknown but rare
threats. Thus, the algorithms used should be generic and flexible (as opposed to
being fixed) in the detection system. Second, different DNS covert communica-
tion threats might have different patterns, thus previous machine-leaning based
approaches, to the best of our knowledge, so far only focuses on specific types
of such attacks, e.g., [7,8] only detect data exfiltration, and [30] only detects
DGA domains. However, enterprises in the real-world are interested in detect-
ing various attacks, thus are reluctant to deploy the aforementioned piece-meal
approaches that can detect only one type of DNS covert communication. Third,
a practical ML-based detection system needs to have feedback mechanisms to
either add labeled data for re-training in the supervised approaches and/or tune
the parameters in the unsupervised approaches, and also fully utilize (as opposed
to replacing) the traditional DNS security tools such as the domain blacklist.

To tackle the above challenges, in this paper we propose a practical, flexi-
ble and end-to-end ML-based framework, called D? C? (Detecting DNS Covert
Communication), to effectively detect various DNS covert communications in
enterprises by leveraging supervised and unsupervised classifiers trained by var-
ious types of features extracted from DNS logs. It is an end-to-end framework
and consists of several modules with an intuitive but efficient workflow, which



is easy to be deployed and maintained in enterprise environments. One flexible
detection module is used to detect all types of covert communication threats
via domain names in DNS traffic. D?C? also uses feedback to take advantage of
manual investigations on alerts to improve detection performance. The results
of detection are aggregated and visualized, for better display for the operators,
to make D?C? more friendly to the users.

In the flexible detection module, modular multiple detection models are used,
including supervised and unsupervised approaches so that, for each type of
threat, the most suitable model (detector) for it can be applied. Based on all
results aggregated from detectors, D?C? is able to reveal covert communication
threats in a comprehensive way. The flexible and modular design of multiple
detectors also makes it very flexible. Each detector can be adjusted easily and
individually for updating or modification, e.g., model tuning or re-training.

Our major contributions can be summarized as follows.

— We propose the first practical, flexible, and end-to-end ML-based framework,
D?(?, which is easy to be deployed in enterprises to detect DNS covert
communication threats, to the best of our knowledge.

— We design a modular threat detection component which consists of super-
vised and unsupervised methods in series, and can be modified flexibly and
individually to handle different data distribution in different enterprises.

— We deployed D?>C? in a large commercial bank with more than 25K hosts,
detecting more than 100 millions DNS queries per day. D?C? is the first
large-scale deployment of DNS covert communication detection system in
the wild, to the best of our knowledge.

— Based on our evaluation over 5 billion DNS logs, D? C? detected 4k anomalous
logs per day efficiently, and achieved high precision (over 0.97). It uncovered
real covert communication threats in the wild, including 7 compromised hosts
unknown to the operators previously.

2 Background

2.1 Domain Name System

A DNS log contains several important fields: NAME (the queried domain name),
TYPE (A for IPv4 address, CNAME for canonical names, TXT for text records
and etc.), and RDATA (the resource) [21]. For example, the query in Fig. 1(a)
contains the queried name (www.google.com), class (IN), type (A). The response
log contains the response: RCODE (Response Code), TTL (Time to Live) and
the answer, and the corresponding query. The answer is the IPv4 address(es) for
the queried name. RCODE indicates the condition of the answer, NOERROR
(in this example) means a normal answer, and NXDomain indicates that the
queried name does not exist.

Although DNS is a fundamental system that many services rely on, some
enterprise operators treat DNS as a “set and forget” infrastructure, and do not
update them from time to time with the latest security mechanisms [17]. For
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example, DNSSEC [12] is one security extension of DNS proposed early, but its
adoption is quite slow till recently [10,15]. Some operators may be interested in
the availability of DNS only when DNS servers go wrong.

Fig. 2 shows some typical exploits against DNS [17]. Attacks against DNS
infrastructure itself (i.e., DDoS and spoofing) are much easier to be noticed
because it leads to the failures or errors in DNS servers. DDoS (Distributed
Denial of Service) attacks compromise the availability of DNS, and spoofing (to
redirect users to attackers) leads to wrong or unreachable destinations. Besides
these, some attackers take advantage of the lack of monitoring on DNS traffic,
and choose DNS as a channel for covert communication (in bold in Fig. 2), which
is more difficult to notice.

2.2 Covert Communications in DNS Channel

In this paper, we focus on DNS Covert Communication, which is one of the
most important DNS-related threats in enterprise environments, where operators
pay close attention to malicious communication to the Internet. In a covert
communication case, attackers use DNS to establish a communication channel
between compromised hosts and remote servers, without being monitored by
other security measures.

A common attack is to encode data in certain fields in the DNS packet [8,
17, 31]. Attackers can simply use the subdomains as payloads, encoding data
into the NAME field like “<encoded...information>.evildomain.com.” as shown
in Fig. 1(b), which is known as data exfiltration. Such encoded data are usu-
ally long strings that are not commonly seen in normal domain names. Some
attackers also use DNS channel to transmit C&C communication between
compromised hosts and remote C&C servers. In this way, the compromised hosts
can inform the attackers of their current status. Fig. 1(c) shows an example of
a host querying a C&C domain, which is generated by an algorithm (IRCBot).
Obvious differences can be seen between popular domain names and this domain
name, which contains no recognizable words or abbreviation.

In general, malicious communication through DNS channel can be deter-
mined by two indicators: whether the DNS packets carry malicious payloads
or the hosts connect to malicious destinations. As mentioned before, the do-
main name directly tells where the host is looking for, and it also can be used to
carry messages. Besides domain name in NAME field, RDATA field in response
also provides a good payload for attackers. RDATA fields in TYPE CNAME or



TXT packets allow more characters to be sent, which means larger “bandwidth”
for attackers [17,23]. However, TYPE A (and AAAA) logs account for the vast
majority of all DNS logs (see data trace statistics in §5), therefore in this
paper we consider anomalies in domain names as our primary threats
to be detected in this paper.

In this paper, we only focus on domains that are related to covert communi-
cation threats (mainly data exfiltration and C&C threats). However, not all mali-
cious domains are related to covert communication. Some malicious domains are
disguised for phishing, e.g., Domain Shadowing (hijack normal domains and cre-
ate new subdomains to redirect users [19]) and Typo-Squatting (register domain
names which are similar to popular websites and leverage typos of users [34]),
which are not considered as covert communication.

2.3 Related Work

Exfiltration in domain names, by nature, contain more information because of
the extra payload, thus are longer than normal ones. Thus, some security engi-
neers detect suspicious domains using a domain name length threshold. However,
such signature-based methods do not always work due to the static threshold
and can be easily evaded. In recent years, anomaly detection based approaches
are proposed to detect exfiltration based on features in DNS traffic. Das et al.
detect encoded data in DNS traffic related to exfiltration and tunneling [11].
Ahmed et al. present an Isolation Forest approach to detecting exfiltration in an
enterprise [7,8]. However, these approaches have not been tested on real attacks
in the wild, but only on synthetic data generated by toolkits.

Many prior work about C&C communications focused on DGA [9,13,29,
30, 35,36], which are widely used to generate seemingly random domain names
(Algorithmically-Generated Domains, AGDs). AGDs appear in many security
events, for instance, botnets, to avoid traditional blocking mechanisms like black-
lists, sinkholes or signature-based firewalls. Many prior studies used classifiers to
detect AGDs because they are different from normal domain names. Antonakakis
et al. present an approach to detecting DGA based on Bipartite Graph Recursive
Clustering and multi-class Alternating Decision Trees from NXDomains (queries
for non-existed domains) [9]. Schiippen et al. propose FANCI, using Random
Forests (RF) and Support Vector Machines (SVM) to detect DGAs with a high
accuracy [30]. Sun et al. use a Heterogeneous Information Network to model the
DGAs and detect them via transductive classification [33]. Tong et al. propose
D3N, a system using Convolutional Neural Networks (CNN) to detect DGA do-
mains from NXDomains [35]. Most of these classifiers are supervised because
researchers can easily get DGA domains as positive samples by synthetic gener-
ating, but there are also unsupervised approaches used in detecting them. Gao
et al. use X-Means to cluster domains, also from NXDomains [13]. Zang et al.
extract features from domain names and other registration information and use
X-Means algorithm to detect AGDs related to Fast-flux [36].

Summary: Each of the aforementioned prior studies focus on just one spe-
cific type of anomalous domain names. However, in enterprises, operators have to



Processmg Detection Input

X [ Data Parsing ]_I.[ Blacklist H Feature ] . Data Exfiltration Detector IC] o
. Extraction ! T =< Bl
r 1 — -| DGA Detector <:] ﬁ
Input med . e ! Y 4
|‘ ! Feedback y b= e Outlier Detector l<;j
Investigation L U =l g g v v 4 v
( — T T —— Malicious Samples Aggregation
! [ Visualization ]4—[ Invl\:;?gu:tllon ]4—[ Whitelist ]
.................................. T
Output (a) System overview (b) Workflow of Threats Detection Module

Fig. 3. The framework overview of D*>C?. Figure (a) shows the overview of three stages
in D?C. Figure (b) shows the detailed workflow of the Threats Detection module.
Dashed lines denote malicious samples detected and dotted denote benign ones.

face threats of all kinds, thus would need lots of efforts to assemble and tune the
above “piecemeal” solutions. Therefore, we hope to design a generic framework
that is directly deployable, detecting multiple types of covert communication
threats with high flexibility.

3 Framework Overview

In this section, we present the core idea for our design and the overview of D? C?.

3.1 Design Goal

Our design goal is to develop a practical framework to detect covert
communication in DNS traffic in enterprise environments. Such a framework
should be easy to deploy in real-world enterprise environments, and it should be
able to achieve high performance with low overhead.

DNS covert communication consists of data exfiltration, C&C communica-
tion and other kinds of threats. To detect these threats, a multi-class classifier
seems suitable. However, using one detection model for all the above threats
will be inflexible, and such a complex model makes it hard for parameter tun-
ing, which we want to avoid as much as we can, since data distribution changes
over time and over different enterprises. Therefore, we use multiple individual
detection models (each one is called a detector and focuses on certain types of
DNS covert communication threats) instead of one complex model. For each de-
tector, we can choose the most effective algorithm, based on their performance
and feedback. Such a modular detection module enables us to update or replace
models flexibly. For example, in case the data distribution changes (e.g., over
time or when new APIs deployed), the re-training or model tuning can be done
individually, without the need to adjust the overall system workflow. Such up-
dates can be triggered periodically or manually based on the feedback. As a
result, the workflow of D?C? stays the same, making it easy to be deployed in
practice. Meanwhile, our detection models are very flexible for modification to
achieve better performance in real-world detection.



Table 1. Alternative models for each detector.

Detector Alternative Models

Random Forest (RF)

Data Exfiltration|Support Vector Machine (SVM)
Multi-Layer Perceptron (MLP)

DGA RF, SVM & MLP
. Isolation Forest (iForest)
Outlier X-Means

The manual investigation is very necessary for a security system to con-
firm, analyze and mitigate reported threats. We hope that D?C? is able to learn
from these manual investigations. Thus we design D?(C? as a human-in-the-loop
(HITL) one with feedback from security engineers. All investigation results can
be further utilized for threshold adjusting, model tuning or re-training.

3.2 Overview

An system overview of D?C? is shown in Fig. 3(a), which can be divided into
three major stages: Processing Stage is used to read and parse raw data. Detec-
tion Stage is used to extract certain features and detect threats in DNS logs via
machine learning based algorithms. Investigation Stage is to confirm the results
from detection results and generate the overall reports to operators.

Processing Stage: This stage has only one Data Parsing module. First,
D? (C? parses the raw data, extracting user demographics, DNS packets and other
network information. The raw data consists of both DNS queries and DNS re-
sponses. As mentioned in §2.1, a DNS response already contains its correspond-
ing query, thus for a query which has a response, D?C? only parses the response
as the input. A query without response (due to time-out or other errors) will be
used directly as input with an added tag “no response”.

Detection Stage: The detection stage is composed of three modules: Black-
list, Feature Extraction and Threats Detection. Blacklist module first filters the
logs, to efficiently detect known malicious domains with low overhead. It is cre-
ated from the enterprise blacklist maintained by the operators and is updated by
manual investigation feedback and threat intelligence. Second, Feature Extrac-
tion module extracts features from the remaining logs. Last, we detect multiple
types of threats using Threats Detection module. The threats detection mod-
ule contains multiple chosen classifiers (detectors), each of which focuses on one
or more specific types of threats. Detectors can be modified according to the
change of data. Results combined from all detectors will be aggregated and then
sent for further investigation.

A more detailed architecture of Threats Detection is shown in Fig. 3(b), with
three detectors in series. Simply, a sample detected as malicious by one detector
will be stored, and a benign sample will be moved to the next detector. After
all detectors are done, the results will be aggregated and sent to the investiga-
tion module. For each detector, different models can be applied based on their



Table 2. Features extracted from the domain names.

# |Feature Type |D-Exfil|D-DGA
1 |Length of domain name. integer v v
2 |Length of subdomain. integer v

3 |No. of labels. integer v v
4 |Longest label length. integer v v
5 |Contains one-character label. boolean

6 |Contains IPv4. boolean

7 |Has “WWW?” prefix. boolean

8 |Alphabet size. integer v

9 |No. of uppercase characters. integer v

10|The ratio of digits. float v v
11|Ratio of hexadecimal parts. float v
12|Ratio of vowels. float v
13|Ratio of underscore. float

14|Ratio of repeat characters. float v
15|Ratio of consecutive consonants.| float v
16|Ratio of consecutive digits. float v v
17|Shannon entropy [16]. float v v
18|Gibberish score [26]. float v
19|Bigram of domain name. vector v

performance in practice. Table 1 lists the algorithms we used for these detectors
during deployment. The detector workflow will be described in §4.

Investigation Stage: The investigation stage is divided into three modules:
Whitelist, Manual Investigation and Visualization. When receiving the detection
results, Whitelist module is used to flag some certain samples before them
reaching the operators. This is because some queries generated by certain trusted
applications (usually security products from different vendors) whose behavior
is similar to that of the attackers, e.g., sending data through DNS channel,
which may result in unnecessary alerts. Similar to the blacklist module, the
whitelist is created and updated based on enterprise operators. The remaining
results are further reported to Manual Investigation module, where operators
and security engineers are involved. Operators and security engineers check the
detection results. The false alerts are used as feedback to our detectors, which
may trigger alterations of thresholds, feature weights or even re-training of the
machine learning algorithms. True threats confirmed are reported and visualized
for analysis and display in Visualization module.

4 Features and Detectors

In this section, we first present the features we extract from domain names.
Then we explain the detailed implementation workflow of threat detectors and
alternative algorithms used in these detectors.



4.1 Features Extraction

The performance of machine learning-based detection relies on feature engineer-
ing. Thus the feature extraction module must be carefully designed. Queried
domain names indicate whether the host is connecting to a dangerous target or
not. Therefore, if we can flag a suspicious domain, we are able to flag a suspi-
cious DNS query as well. Data exfiltration domains, which encode messages in
the subdomain names, are likely to contain more characters in their domains. On
the other hand, domain names generated by DGAs, as mentioned in §2.3, often
appear more random than normal domains. For example, the ratio of numerical
characters and the length of the longest meaningful substring (LMS) show DGA
domains’ disparities from others [17], which indicate the different construction
of suspicious domain names. In summary, we choose features widely used in data
exfiltration detection [7,8] and DGA detections [9, 25,29, 30] for our detectors.
Not all features from prior work are used, some of them are removed because
of their low feature importances via the evaluation feedback on small scale of
labeled data experiments. In addition, we added two features, feature #18 and
#19 in Table 2, where we list all the features used in D? C2. Note that we do not
claim the features in Table 2 as our contributions.

Structural Features: The differences in the construction of domains can be
indicated by structural features. Length (#1 & #2 in Table 2) is an important
feature since more characters mean more information, and many DGA families
generate domains in a certain range of length. #3 & #4 are structural features
of Labels (split by dot, e.g., “www.foo.com” has three labels: “www”, “foo”
and “com”), since certain patterns in labels can be observed in data exfiltration
traffic [7]. #5-7 check whether the domain names contain a certain pattern.

Linguistics Features: As domain names can be treated as strings, we also
extract linguistics features (#8-16) to capture the differences in types of charac-
ters, including uppercase character, digit, hex, vowel, consonant and underscore.
Most features are self-explanatory, and we discuss the rest. Alphabet size is the
number of unique characters in the domain name. Ratio of repeat characters
(#14) is defined as the number of unique characters (each of which is repeated)
divided by alphabet size. Ratio of consecutive consonants (#15) is defined as
the sum of all lengths of consequent consonants (which larger than 1), divided
by the domain name length. Ratio of consecutive digits (#16) is similar to #15.

Statistics Features: We choose three statistics features commonly used in
determining the information in a sequence, Shannon Entropy (#17), Gibberish
Score (#18) and N-Gram. The Gibberish Score we implemented is based on
Hidden Markov Chain [6,26]. It is used to determine the “meaningful” contents
from domains, and a string with more meaningful words will get a higher score.
Furthermore, we use bigram (#19) in feature extraction. We calculated the top-
200 bigrams on historical benign domains and Majestic Top Websites [5]. Then
we checked the presences of these 200 bigrams in each domain name to form a
N x 200 matrix (N denotes the number of all domains for feature extraction).
While not all of the bigrams have high feature importance, to lower the overhead,



we use Principal Component Analysis (PCA) to reduce the 200 dimensions to
15. Thus for each domain name, we get a 1 x 15 vector as its feature.

Different features are used for different detectors, based on feature impor-
tance. The features used for Data Exfiltration Detector (D-Exfil) and DGA De-
tector (D-DGA) are marked in Table 2. As Outlier Detector aims to catch any
threats missed by the two previous detectors, it uses all features in the list.

4.2 Anomaly Detection Methods

As mentioned before, in enterprise environments, two popular targets of covert
communication are Data Exfiltration and C&C Communication, and DGA do-
mains are most commonly seen in C&C scenarios while other manually forged
domain names are very rare. Therefore we design two specific detectors, the
Data Exfiltration Detector and the DGA Detector for these two main
threats, respectively. For other suspicious domains left in the DNS logs, we use
an extra Qutlier Detector in order to cover as many threats as possible.

The implementation of multiple standalone detectors grants D? C? with high
flexibility. For each individual detector, the algorithm can be updated or replaced
easily, according to the performance of different algorithms.

During our study, the chosen algorithms are listed in Table 1. To better
evaluate the flexibility and performance of our system, for each detector, we
picked several popular algorithms for these detectors based on the prior re-
search [8,19, 30, 32]. Detectors for Data Exfiltration and DGA Communication
use supervised algorithms, including random forest (RF), support vector
machine (SVM) and multi-layer perceptron (MLP). Outlier Detector uses
unsupervised algorithms, including isolation forest (iForest) and X-Means.
Note that X-Means is a clustering algorithm, thus we calculate the distances from
each sample to its clustering center as an indicator of anomaly in two ways: 1)
if the distance is larger than a given threshold, then the sample is labeled as
an outlier; 2) if the average of all samples in the same cluster is larger than
the threshold, then the whole cluster is marked as an outlier cluster. The other
algorithms are all binary classifiers and we directly use their predicted labels as
classified results. All these methods use features described in §4.1.

4.3 Workflow of All Detectors

The threat detection module is the primary module in D?C? and is also one
main contribution in this paper. It contains multiple detectors, including super-
vised and unsupervised approaches. Thus the workflow of all detectors should be
well designed to make them work together efficiently. The general idea of differ-
ent approaches’ cooperation is: supervised approaches focus on detecting known
threats, while unsupervised approaches trying to catch rare unknown threats.
All three detectors are to flag covert communication threats based on sus-
picious domains, which are mainly data exfiltration and C&C communication
cases. As mentioned before, supervised methods are more suitable in detecting
known threats, thus we implemented two supervised detectors (Data Exfiltration



Detector and DGA Detector) for these two primary types of threats. While there
will be other suspicious domains that do not fall into these two categories, we
use an unsupervised outlier detection model (Qutlier Detector) to capture these
domains with no specific types.

Fig. 3(b) shows the implementation of threats detection module in D?C?
framework, consisting of the three detectors running in series. During the detec-
tion, all malicious samples detected by a detector will be stored in a database,
and all benign samples remaining will be sent to the next detector for testing.
The first two supervised detectors will detect known threats which are majori-
ties of all the threats. Thus they will filter most of the threats in the data. The
remaining suspicious domains are very rare compared to the other normal do-
mains. Such distribution of data will be suitable for the unsupervised outlier
detection algorithm. After all detectors are applied, the results will be aggre-
gated and sent to the next stage for investigation and visualization. Besides, the
detected outliers could also be used to improve the supervised approaches, in
cases that some missed data exfiltration or DGA threats (which are false neg-
atives of the two detectors) are caught as outliers and then confirmed by the
manual investigation, thus are used as feedback.

5 Deployment in a Large Enterprise

In this section, we evaluate our design by a real-world deployment in a large
enterprise environment with substantial DNS traffic. Then we present insights
into the threats and security issues in the enterprise environments.

5.1 Data Trace

We have deployed D?C? in an enterprise environment with a large scale of In-
ternet traffic. In this enterprise, there are more than 25k hosts, including servers
in IDC and desktops/laptops in office networks. Some sensors were deployed in
the DNS servers controlled by this enterprise to collect DNS logs in its network
from all hosts. The average number of DNS logs per day is around 100 millions.

The detailed statistics for 1-month dataset with over 5 billion DNS logs are
shown in Table 3. The number of queries is ~ 5% more than that of responses.
This is because not all queries have responses due to time-out, packet loss or other
kinds of network errors. As mentioned before, all responses will be input into
D?(?, since each response contains its corresponding query. For queries without
responses, the queries will be input into D?C? directly. We also count different
types in DNS logs, and list the numbers in Table 3. Type A (IPv4 address) and
type AAAA (IPv6 address) dominate in all logs, take up 75.98% and 14.98%,
respectively. PTR (pointer) also accounts for 8.30% among all types. PTR query
is commonly used for reverse DNS lookups, which are the opposite of A or AAAA
queries. It is also used for DNS service discovery, replying with service names.
The ratios of other types, i.e., CNAME (canonical name), MX (mail exchange),
NS (name server), SOA (state of authority), SRV (service locator) and TXT



Table 3. Distribution of different DNS types in a one-month dataset.

Types |# of Queries (Responses) Total %
A 2,310,206,811 (2,175,715,764)|4,485,922,575|75.98%
AAAA | 443,000,848 (441,857,308) | 884,858,156 (14.98%
PTR 245,185,527 (244,886,490) | 490,072,017 | 8.30%
SOA 5,751,338 (5,722,695) 11,474,033 |0.19%
SRV 5,651,489 (5,611,368) 11,262,857 | 0.19%
NS 4,790,185 (4,788,276) 9,578,461 | 0.16%
TXT 3,392,785 (3,389,870) 6,782,655 |0.11%
CNAME 630,267 (630,246) 1,260,513 | 0.02%
MX 327,305 (320,792) 648,097 0.01%
Other 958,983 (963,691) 1,922,674 | 0.03%

Total |3,019,895,538 (2,883,886,500)|5,903,782,038| —

(descriptive text), are all very small. “Other” contains multiple types which are
very rare in our traffic, including TKEY (transaction key), SPF (sender policy
framework) and etc.

The operators and security engineers in the enterprise also maintain a black-
list and a whitelist. Both lists are parsed and all the entries are fed into D? C?
as the domain names in Blacklist module and Whitelist module. The blacklist
consists of known malicious domains found previously or reported in take-downs
and security databases including DGArchive [25], 360 Netlab Opendata [4] and
other threat intelligence services used by the enterprise. The whitelist contains
domains controlled by the studied enterprise, security vendors and several pop-
ular websites from Majestic Top Websites [5].

5.2 Evaluation Results
During the deployment, we used the following evaluation metrics:

— precision = |TP|/(|TP| + |FP|), recall = |TP|/(|TP| + |FN|)
— accuracy = (|[TP|+ |TN|)/(|TP|+ |FP|+ |TN|+ |FNJ)
— fl-measure = (2 x precision x recall)/(precision + recall)

TP, FP, TN and FN stand for true positives, false positives, true negatives
and false negatives, respectively.

Because in a large volume of real-world traffic, it is difficult to get all data
labeled. Thus we evaluate our models in two ways: on a labeled historical
data (an extra trace of over 764k labeled logs) and on the un-labeled real-
time traffic for a month (which is shown in Table 3). The labeled historical
data trace were collected in the enterprise before D? C? was deployed. It consists
of historical logs previously labeled and verified by operators. This data trace is
used to evaluate all the algorithms we chose in §4.2. However, during deployment,
it is very difficult to label all logs because of the large volume of traffic. In
this case, since all positives (alerts) will be checked by operators according to
the workflow of D?(C?, the precision is accurate. But the recall can only be



Table 4. Evaluation metrics on labeled dataset.

Detector Precision|Recall|Accuracy| F1
RF 1.0000 |1.0000| 1.0000 |1.0000
D-Exfil| MLP | 0.9999 (0.9995| 0.9995 |0.9993
SVM 0.9997 |0.9998 | 0.9998 |0.9997
RF 0.9580 (0.9787| 0.9945 |0.9682
D-DGA| MLP | 0.9290 (0.9660| 0.9910 |0.9471
SVM 0.8049 |0.9558 | 0.9765 |0.8793
D- iForest | 0.8495 |0.9190| 0.9988 |0.8829
Outlier [X-Means| 0.6708 |0.5371| 0.9981 |0.5965

Table 5. Processing speed of different models on labeled dataset.

Model Processing Speed (logs/s)
RF 49344.9
Supervised MLP 9210.2
SVM 24150.2
Unsupervised| iForest 9149.0
X-Means 4090.6

approximately obtained (since there may be unlabeled threats in the dataset).
So we only present precision for these detection results.

For a practical detection framework used in the real world, the false alert
rate is also a critical metric. This is because all alerts need to be investigated
by operators, and too many alerts will overwhelm the operators. On average, it
takes over 20 minutes for an operator to investigate one security alert [14]. Thus
we present number of true positives and false positives per day for our models
(#TP/day and #FP/day in Table 6).

Evaluation of Algorithms on Historical Labeled Data: Table 4 shows
the precision, recall, accuracy and F1-measure of all chosen models on the labeled
historical data set. From this table we can see that all models achieve high
accuracy in the evaluation experiments. This is because of the imbalance of
positives and negatives in the data, and the numbers of true negatives dominate
in the calculation of the accuracy. In this case, F1 Measure values (last column
in Table 4) show more disparities among these methods.

In general, all three binary classifier models used in the data exfiltration de-
tector (D-Ezfil) achieve high precision and recall, with an average Fl-measure
over 0.99.The results in DGA detector (D-DGA) show that random forest (RF)
and multi-layer perceptron (MLP) still achieve high performance. But the perfor-
mance of support vector machine (SVM) is worse, especially in precision, which
is only 0.80. This is because some DGA domains also have differences between
each other (due to DGA families), which influence SVM’s performance.

For the outlier detector (D-Outlier), isolation forest model (iForest) achieves
much higher performance than X-Means, with a precision of 0.85 and a recall of
0.92. This is mainly because that X-Means is basically a clustering method. The



Table 6. Deployment results of detectors.

Detector Precision|#TP/day |#FP /day
D-Exfil RF 0.9755 155.6 3.9
MLP 0.9934 1070.0 7.1
D-DGA RF 0.9986 3958.9 5.6
MLP 0.9764 3871.0 93.5
D-Outlier| iForest 0.9214 29.3 2.5
Total (RF + iForest)| 0.9971 4143.8 12.0

clustering results of X-Means are highly influenced by the distribution of different
patterns of samples, and the static thresholds used for anomaly detection may
not be suitable for all clusters.

The evaluation results on labeled data trace demonstrated which chosen algo-
rithms are efficient in our environment. That is, based on the above results, RF,
MLP and iForest (in bold in Table 4) could be more suitable in the enterprise
where we deployed D?C?, because of their higher precision and recall values in
both detection of exfiltration and DGA domains.

Another concern of a practical framework is the overhead. Since systems
with high overhead are not suitable to be deployed in practice, especially in
enterprise environments. Thus we also tested these models’ overheads on the
historical data, by calculating the processing speeds (using numbers of logs pro-
cessed per second). The tests were done on a server with two Intel(R) Xeon(R)
Gold 6148 CPU 2.40GHz and 512GB RAM, and the results are shown in Table 5.
For those three supervised models used in D-FEzfil and D-DGA, RF achieves the
fastest speed, with a processing speed of 49344.9 logs/second, following by SVM
(24150.2) and MLP (9210.2). Although SVM has a relatively high speed dur-
ing the evaluation on historical data, please note that the time complexity of
SVM is actually much higher than others, which is O(n?). Thus the processing
speed of SVM decreases rapidly as the data size increases. The two models in
D-OQutlier, iForest and X-Means, achieve speeds of 9149.0 logs/second and 4090.6
logs/second, respectively. As a reference, the average number of input DNS logs
during the deployment is 1165.1 logs/second.

Considering both detection performance and overhead, RF and MLP models
are more practical for D-FEzfil and D-DGA, and iForest is more suitable for
D-Outlier. Thus we picked these algorithms for the real-world deployment.

Results on Real-time Traffic during Deployment: Based on the per-
formance and overhead of different methods shown above, during real-world
deployment, we picked random forests (RF) and multi-layer perceptron (MLP)
for D-Ezfil and D-DGA, and isolation forest (iForest) for D-Outlier. SVM and
X-Means models are not used due to their lower precisions and higher overheads.

The results in Table 6 show that all chosen models achieve high precisions
during the deployment (over 0.97 on average) with low false positives. iForest
model has the least FPs, only 2.5 per day. RF models in two detectors both got
less FPs than MLP models (3.9 and 5.6 per day, respectively), which demon-



strates that RF models are more practical considering the investigation labor
cost (12.0 FPs in total per day).

Considering true positives, D-Outlier has 29.3 TPs/day on average. D-FEzfil
has more (155.6 if use RF, 1070.0 if use MLP), while D-DGA has much more.
This is due to the data distribution in our data trace: in which data exfiltration
related domains and DGA-domains are more common. For exfiltration, the hosts
often send multiple DNS queries for a large file or a series of multiple small files.
While DGA often generates a large number of AGDs in a certain time interval.

As a result, considering performance, overhead and false alerts altogether,
random forest model and isolation forest model appear more practical in the
studied enterprise (which are shown in bold in Table 6).

5.3 Detection Results on Different Types of Threats

On average, over 4k logs were detected as malicious per day. D*C? further ag-
gregates these results based on internal hosts and remote IPs to reduce the
investigation overhead for operators, and generate visualized results. Based on
the results of different detectors, we list several types of threats below.

Data Exfiltration: The data exfiltration samples detected (TPs in Table 6)
during our deployment are all conversations by security vendors (e.g., McAfee [3]
and Asiainfo [1]). They use DNS to transmit messages with their servers for
a fast connection (usually UDP) bypassing the firewalls. This situation is also
observed in other prior work [8]. These domain names were detected as malicious
by D?C?’s detectors, and then labeled as benign in the investigate phase, and
then added to D?(C?’s whitelist, so that these samples did not trigger alerts of
D? (2. Please note different enterprises might have different security vendors thus
would end up with different whitelists.

DGA-Domains: DGA-domains are usually used to establish a connection
with remote C&C servers. Persistent attempts of AGD querying indicate the
host is likely compromised. D?C? further aggregated them based on source and
destination IPs for visualization and analysis, as shown in Fig. 4. From these
results, we found that AGDs queries are mainly sent from 10 hosts. The top
2 of them are local DNS servers, but the remaining 8 hosts are desktop or
data servers, which are very likely to have been compromised. Many of those
domains are related to C&C and botnets. However, only 1 of these hosts was
reported as malicious by other security measures (e.g., Capsa Enterprise Edition
by Colasoft [2]). That is, D> C* detected at least 7 compromised internal
hosts previously unknown to the operators of the enterprise.

Outliers: The Qutlier Detector does not focus on one specific type, but tries
to catch all samples deviated from normal ones. The results are further divided
into the following categories:

F'Ns of Exfiltration and AGDs are those threats of data exfiltration or DGA-
domains missed by the first two detectors. This may be caused by the labels in
training data, which cannot cover all kinds of threats in the wild. Thus these
results were used as feedback during our periodic updating and re-training, to
improve the performance of the former two detectors.



Fig. 4. A snapshot of threat graph generated by D?*C?. Black dots denote hosts, red
dots denote remote IPs and others denote RCODE (pink for NOERROR, blue for
NXDOMAIN, green for SERVFAIL and yellow for REFUSED). An edge denotes a
query or a response.

Malware Related domains are related to some malicious activities, e.g., tro-
jans or worms, and are detected because of their abnormal strings hidden in
their domains, which indicate malicious resource files or other contents.

Illegal Formats are those queried “domains” which are not actually domain
names. Most of these domain-like strings contain illegal characters/substrings
which are uncommon in normal domain names. These queries are usually caused
by mistakes of employees, or configuration errors and bugs in hosts or other
services (e.g., a wrong hyperlink in an e-mail).

Typos are misspelling of popular websites. Some attackers register some do-
mains which are very similar to popular websites for phishing. We further check
the RCODE of the responses and find that they are actually harmless, mainly
caused by the manual misspelling of the enterprise’s name.

5.4 Visualization on Hosts

To better understand the causes of all these threats, and the impact on hosts in
the enterprise, we built a visualization tool to display the relationships between



hosts, remote IPs and threats. A snapshot of our visualized results on malicious
domains is shown in Fig. 4, which is a graph displaying the relationship between
hosts and remote IPs, with the different conditions in responses. Dots stand for
hosts, remote IPs and connection state (RCODE), edges stand for DNS logs.

The center cluster (highlighted due to its large number of related dots and
edges) in Fig. 4 show a same remote IP which is the query response of multiple
malicious domains (detected by D?C?), queried by dozens of hosts in the enter-
prise. We can see obviously that two of these hosts generated a large volume of
malicious DNS query logs to this remote IP. Actually, these are DGA-domains
(the types of detected anomalies are also labeled in the visualization, but are not
shown in Fig. 4 due to the limited size of this figure). Based on such figures, the
operators could further determine which of those threats are more urgent and
have more security impact. In our deployment, most of these threats are from
certain internal hosts, which are likely to be compromised. On the other hand,
many hosts only have one or two attempts of malicious domain query. Operators
can also tell which of those threats are from the same attackers, indicated by
the shared vertexes of the corresponding edges in the visualization graph.

One byproduct of D? C?’s visualization is that other suspicious activities (e.g.,
cache poisoning) could also be found. For example, some remote IPs are the query
responses not only for many malicious domains detected by D?(C? but also for
benign domains. These are likely to be cache poisoning. For example, in the
studied enterprise, one of such IPs we found is seen in the responses for 101k
different domain names.

6 Conclusion

In this paper, we present a practical machine learning based framework, D?C?,
to detect DNS covert communication threats. D?C? is an end-to-end framework,
which is easy to be deployed in enterprise environments and has high flexibility.
D?(? has been deployed in a large enterprise network with more than 25k hosts
and more than 100 million DNS logs per day. We extensively evaluated D?C?
based on over 5 billion real-world DNS logs during a month. D?C? achieved a
high precision over 0.97. Furthermore, D? C? successfully detected over 4k mali-
cious DNS logs per day on average with low overhead and captured real-world
security issues which are previously unknown to the operators, including seven
compromised hosts with multiple C&C communication attempts.
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