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Abstract—Zero-day Web attacks are arguably the most serious
threats to Web security, but are very challenging to detect because
they are not seen or known previously and thus cannot be
detected by widely-deployed signature-based Web Application
Firewalls (WAFs). This paper proposes ZeroWall, an unsupervised
approach, which works with an existing WAF in pipeline, to
effectively detecting zero-day Web attacks. Using historical Web
requests allowed by an existing signature-based WAF, a vast
majority of which are assumed to be benign, ZeroWall trains
a self-translation machine using an encoder-decoder recurrent
neural network to capture the syntax and semantic patterns of
benign requests. In real-time detection, a zero-day attack request
(which the WAF fails to detect), not understood well by self-
translation machine, cannot be translated back to its original
request by the machine, thus is declared as an attack. In our
evaluation using 8 real-world traces of 1.4 billion Web requests,
ZeroWall successfully detects real zero-day attacks missed by
existing WAFs and achieves high F1-scores over 0.98, which
significantly outperforms all baseline approaches.

I. INTRODUCTION

To defend against Web attacks, various defenses have been
proposed [1]–[14] and adopted [15]–[17]. However, most
of these approaches cannot effectively detect zero-day Web
attacks [18], [19]. Zero-day attacks in general are hard to de-
tect [20] and zero-day Web attacks are particularly challenging
to detect for the following reasons.

First, since zero-day Web attacks have not been previously
seen, most supervised approaches are inappropriate since these
methods always require labeled data for training [9], regardless
of signature-based Web Application Firewalls (WAFs) [15],
[16] wildly deployed in industry [17] (e.g., AWS WAF by
Amazon [21], Yundun WAF by Alibaba [22] and Silverline
by F5 Networks [23]) or machine-learning models [6], [7],
[24], [25]. In other words, unsupervised approaches are more
suitable for zero-day attack detection. Second, a Web attack
can be carried out by a single malicious HTTP request. That
is, those approaches [10], [11] utilizing contextual information
between requests are not really helpful to detect such attacks.
Thus we should focus on utilizing the syntax and semantics
in individual requests for Web request detection. Third, zero-
day Web attacks are very rare within a large number of Web
requests [20]. Thus those unsupervised approaches based on
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collective and statistical information [1], [9], [13], [14] are not
effective in detecting zero-day Web attacks.

This paper proposes ZeroWall, an unsupervised approach,
which can work with an existing WAF in pipeline, to effec-
tively detecting a zero-day Web attack hidden in an individual
Web request. The key observation behind ZeroWall is that a
benign Web request is a string following the HTTP protocol,
which can be treated as one sentence in the “HTTP request
language”, while a malicious Web request does not have
consistent syntax and semantic patterns with the benign one.
Our approach is inspired by the unsupervised self-translation
machine [26] based on encoder-decoder recurrent neural net-
works: when trained with enough sentences in one language A,
the neural network “understands” this language well enough
such that it can translate an input sentence in A into a latent
representation which is in turn translated back into an output
sentence in A. Intuitively, such a trained network can tell if
a new sentence s in unknown language belongs to language
A or not. Thus, if the translation quality is high, s belongs to
language A; otherwise, s does not belong to language A.

ZeroWall can effectively detect zero-day Web attacks by
mapping the zero-day Web attack detection problem to ma-
chine translation quality assessment problem. In ZeroWall,
historical Web requests allowed by an existing WAF, a vast
majority of which are benign, are used to train an encoder-
decoder recurrent neural network that captures the syntax and
semantics patterns of benign requests. The network “trans-
lates” a benign input Web request to latent representation (by
the encoder) and then “translates” the representation back to
an output Web request (by the decoder) which is close to
the original request. In real-time detection, a zero-day attack
request (which the WAF fails to detect), not understood well
by the self-translation machine, cannot be translated back to
its original request, thus is treated as an attack.

The contributions of this paper are the following.
• This paper advocates a general framework of augmenting

existing signature-based WAFs with unsupervised ma-
chine learning based zero-day Web detection approach.
This approach is immediately deployable and widely-
applicable in real-world.

• To the best of our knowledge, this paper is the first to
formulate the zero-day Web attack detection problem into



a neural machine translation quality assessment problem,
a direction along which we believe more sophisticated
solutions can be invented.

• We prototype ZeroWall by adopting the state-of-art neu-
ral machine translation algorithms, i.e., encoder-decoder
recurrent neural networks. In our evaluation based on
8 real-world traces over 1.4 billion requests together,
ZeroWall achieves high F1-scores (over 0.98) on all
traces, significantly outperforming existing approaches.

The rest of this paper is organized as follows. §II introduces
the related work. §III describes our core idea and system
overview. §IV presents the implementation details of each
components. §V evaluates ZeroWall. §VI discusses our design
choices and limitations. §VII concludes our work.

II. RELATED WORK

Anomaly-based Web attack detection methods [1], [2]
are becoming more and more popular recently, because in
theory, they can detect both known or zero-day attacks.
These approaches have the potential to detect zero-day Web
attacks since malicious requests (typically assumed to be
rare thus exhibit different patterns from benign ones’) can
appear “anomalous” during realtime detection. Based on the
types of anomalies these methods focus on, they can be
divided into three categories [9]: Single packet based point
anomaly detection (ZeroWall belongs to this category) [9],
[27], context based contextual anomaly detection [9]–[12]
and statistic based collective anomaly detection [1], [9], [13],
[14]. Normally, the later two approaches are unable to detect
zero-day attacks because zero-day Web attack packets are not
reflected in contexts and statistics. Thus, in this paper, we
focus on point anomaly detection.

Point anomaly refers to a particular data instance different
from normal ones [9]. That is, a single HTTP request in
our case. One naive method is to split one HTTP request
“sentence” into words. Intuitively, the collection of words used
in malicious requests should be somehow different from that
those word collections in benign requests. Such differences
could be one indicator to detect the attacks [27]. However,
more experienced attackers will use more covert ways to
bypass such simple detection mechanism. For instance, the
word collection of an attack request can be close to that of
a benign request, if the attack request has a large amount of
benign content in its request message.

Wang et al. presented PAYL using n-gram to inspect
the simple histograms of payloads [3]. Ingham et al. pre-
sented a DFA-based approach to learn representations from
requests [28]. Both approaches work well on simple requests,
but cannot handle the various types of requests nowadays.
Song et al. presented a hidden Markov model (HMM) called
Spectrogram [4] to reconstruct content flows and extract
features from packets. Ariu et al. presented Hmmpayl [5], an
HMM-based IDS to detect attacks from payloads. However,
HMM models work relatively worse when the length of the
sequence is not suitable [5], which results in bad performance
when processing complex requests. In contrast with above
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Fig. 1: The workflow of ZeroWall.

HMM-based approaches, our solution uses a neural network
based method, which generally has better model capacity and
better performance on complex requests.

Deep learning-based methods were proposed to learn on
complex HTTP request logs [6], [7], [24]. Naoum et al.
presented an optimization to the back propagation in a neural
network for IDS [24]. Srivastav et al. presented multiple
Deep Learning-based methods for different types of attacks,
respectively [6]. Zhang et al. proposed a convolutional neural
network model to train on the words in the requests [7]. These
works are all supervised, thus are not suitable for detecting
zero-day attacks as mentioned in §I.

Vartouni et al. presented an unsupervised method using n-
gram and stacked auto-encoder [29] to learn on HTTP re-
quests [8]. However, this work directly uses the encoder output
(dimension reduction) results for anomaly detection. Such
outputs from anomalous samples may be indistinguishable
from normal ones, which results in limited performance [30].
Our solution uses encoder-decoder network to reconstruct the
sequences from the encoder output, i.e., utilizing the decoder
output, which performs better in practice (see §V).

III. CORE IDEA AND SYSTEM OVERVIEW

In this section, we present the design goals, core idea and
architecture of ZeroWall. Details will be presented later in §IV.

A. Design Goals

As mentioned in §I, given the popular deployment of
signature-based WAFs, it is better that the zero-day Web attack
detection mechanism can work together with the existing
WAFs, rather than entirely replacing WAFs. This is our first
design goal. As shown in Fig. 1, ZeroWall is used as a bypass
system behind WAF, which does not cause additional overhead
to the Web services. Arriving requests matching some WAF
rules will be dropped by the WAF, effectively detecting those
known attacks; those unmatched rules are then passed along
to servers, and the traffic is mirrored and passed to ZeroWall,
which focuses on detecting zero-day attacks. Since commonly
seen malicious samples are not friendly to unsupervised al-
gorithms, it is another benefit from working together with
WAFs. The existing WAFs will filter out known attacks, which
will improve the performance of the unsupervised algorithm.
This is also a good solution to defend evasions like poisoning
attacks, which will inject large numbers of attacks in the traffic.
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Fig. 2: The overview of components in ZeroWall.

Our second design goal is to detect zero-day Web attacks
in HTTP requests through analyzing each single request.We
chose to use an unsupervised method, for two reasons. First,
an unsupervised approach does not have to know beforehand
the exact patterns of attacks, thus it has much more potential
to detect zero-day attacks than supervised ones. Second, in the
HTTP requests arriving at the WAF, the benign to malicious ra-
tio is typically very high, and this ratio gets even much higher
(2811:1∼88863:1 in our traces) after the WAF drops those
known attacks based on rules (See Fig. 1). Such an extreme
class imbalance is very challenging to supervised approaches,
but is naturally beneficial to unsupervised approaches.

We advocate the above general framework of augmenting
existing signature-based WAFs with unsupervised machine
learning based zero-day Web attack detection approach. This
detection approach is immediately deployable and widely-
applicable in real-world.

B. Core Idea of Unsupervised Detection

Our unsupervised zero-day Web attack detection approach is
based on anomaly detection (as mentioned in §II). The training
data of ZeroWall are those historical Web requests that do not
match any WAF signature rules (see the top left of Fig. 2).
We use encoder-decoder recurrent neural networks as our
base training algorithm, which are widely used in modeling
sequential data [31], including machine translation, speech
recognition, questions answering, etc. The key observation be-
hind ZeroWall is that an HTTP request is a string following the
HTTP protocol, and we can consider an HTTP request as one
sentence in the “HTTP request language”. Our actual solution
is inspired by the unsupervised self-translation machine [26]
based on encoder-decoder recurrent neural networks: when
trained with enough sentences in one language A, the neural
network “understands” this language well enough such that it
can translate an input sentence in A into a latent representation,
which is in turn translated back into an output sentence in A.
The goal of the neural network training is to make the output
sentence close to the input sentence enough. Such a trained

TABLE I: One Example of Benign Request.

Original
Request

POST http://A.Example.COM/URL_1/URL_2/JSP_NAME_A.jsp
modo=entrar&login=HASHED_NAME&pwd=HASHED_PWD&r
emember=off&B1=Entrar

Token
Sequence

_url_1_ _url_2_ JSP_NAME_A jsp modo entrar login _OTHER_ 
pwd _OTHER_ remember off b1 entrar

Recovered
Token
Sequence

_url_1_ _url_2_ JSP_NAME_A jsp modo entrar login _OTHER_ 
pwd _OTHER_ remember on b1 entrar

BLEU 0.8091 Malicious Score 0.1909

TABLE II: One Example of Malicious Request.

Original
Request

POST http://B.Example.COM/URL_3
/images/image/ASP_NAME_B.asp/FILENAME_B.jpg
0=M&z0=GB2312&z1=/ccmd&z2=echo 'phpinfo'

Token
Sequence

_other_ images image ASP_NAME_B asp _other_  jpg  _pnum_ 
_onechr_ z_pnum gb2312 z_pnum _other_ z_pnum echo phpinfo

Recovered
Token
Sequence

_other_ images images images images images _other_ images 
_hostname_ com callback pfk cqdbyy pfk com jpg

BLEU 0.147342 Malicious Score 0.852658

network can be used to tell whether a new sentence s belongs
to language A or not. If the translation quality of s is high,
s belongs to language A; otherwise, s does not belong to
language A. In other words, the translation quality of zero-
day Web attacks (which are very rare) should be much worse
than that of benign requests, thus we can use a translation
quality threshold to declare the attacks.

To the best of our knowledge, we are the first to formulate
the zero-day Web attack detection problem into a neural
machine translation quality assessment problem, a direction
along which we believe more solutions can be invented.

C. System Overview

As shown in Fig. 2. ZeroWall can be divided into two
phases: offline periodic retraining and online detection.

1) Offline Periodic Retraining: The offline training is con-
ducted periodically (e.g., daily) or triggered manually to utilize
the latest request data filtered by the latest WAF rules (e.g.,
new deployed APIs cause unseen requests). Each round of
offline retraining phase utilizes the historical dataset of HTTP



request logs (allowed by the latest WAF rules) collected so far
by the time of this round of retraining (called the retraining
dataset hereinafter in the paper), and has three steps:

1) Building Vocabulary: ZeroWall uses tokenization tech-
niques to extract words from the retraining dataset, filters
unnecessary words (e.g., stop words), and then applies
word embedding technique to represent words.

2) Then the Token Parser component of ZeroWall uses
the vocabulary to convert each HTTP request in the
retraining dataset into a token sequence (Table I and II
show two examples, see the second rows).

3) Training Model: ZeroWall trains the Encoder-Decoder
neural network using previously generated sequences.

When the training is complete, the vocabulary and model
will be used as two components in online detection phase.

2) Online Detection: During online detection, ZeroWall
will detect in real-time whether an HTTP request is benign
or malicious (a.k.a, zero-day attacks in our dataset behind the
WAF). In this phase, ZeroWall has four major components:
Token Parser, Encoder-Decoder Network, Anomaly Detection,
and Manual Investigation.

The first two components are the results of offline training
phase. Given one HTTP request as input, ZeroWall will first
tokenize the request into one token sequence (see the second
rows of Tables I and II for examples) using the vocabulary
built offline. One recurrent neural network (encoder) is used
to read the token sequence and build the corresponding
sequence vector, a sequence of numbers that represent the
token sequence meaning. Then we use another recurrent neural
network (decoder) in order to reconstruct the recovered token
sequence (see the third rows of Tables I and II for examples)
according to the sequence vector. This is often referred as the
encoder-decoder architecture [32]–[34].

The third component is the Anomaly Detection. Our idea
for anomaly detection is inspired by the quality assessment
method in machine translation. That is, if the recovered token
sequence is similar to origin token sequence, then the request
is considered benign. Otherwise, it is malicious and ZeroWall
will mark it and report to security engineers. In this paper,
we choose BLEU metric [35] (out of several alternatives, as
will be shown in Fig. 6) as the indicator of the similarity
between original and recovered token sequences (see the last
rows of Tables I and II for examples). BLEU is a metric used to
determine the similarity between sentences, and is widely used
in machine-translation problems [36], [37] for comparing the
machine translation results to manually translated sentences.

The fourth component is the Manual Investigation. Unsu-
pervised anomaly detection cannot entirely avoid false posi-
tives. For example, some new requests with some patterns very
different from all previously seen patterns might be perfectly
benign. Thus, the requests declared as “malicious” will be
investigated manually by security engineers (see the bottom
of Fig. 1 and the top right of Fig.2). False alarms confirmed
by security engineers are incorporated into a whitelist, which is
used to avoid future false positives caused by the requests with
same patterns. Such whitelist can improve the performance

of ZeroWall, which will be discussed in §V-G. True zero-
day attacks confirmed by the security engineers are used to
compose new signature-based rules which are incorporated
into the WAF (see the left of Fig. 1 and Fig. 2). The overhead
of manual investigation is acceptable given the small number
of true zero-day attacks (because they are rare in practice) and
false positives (see §V).

In summary, the online detection phase has the following
steps to process one HTTP request:

1) Token Parser: Convert one original HTTP request into
a token sequence using the vocabulary built offline.

2) Encoder-Decoder Network: Reconstruct the recovered
token sequence by the neural network trained offline.

3) Anomaly Detection: Calculate the BLEU score of two
sequences and compare it to a threshold to decide
whether the request is benign or malicious, and then
report the output to security engineers.

4) Manual Investigation: Incorporate manual confirmed
false alarms and true zero-day attacks into whitelist and
WAF, respectively.

Note that, since the volume of incoming traffic is extremely
large, machine learning based Web attack detection approaches
may not be able to process all the traffic. In order to address
this issue, we leverage hash tables to speed up the process-
ing of pre-parsing. For each incoming token sequence, we
calculate its hash value to efficiently verify if it is already
been processed previously. Also, we build a table to store
all processed information to avoid repeated calculation. This
method significantly reduces the process overhead so that it
can process all traffic. Actually, we can use multiple front-
end servers to do the pre-parsing tasks concurrently while
collecting the data, which will be our future work.

IV. DESIGN DETAILS

A. Token Parser
As mentioned before, the very first step of ZeroWall is to

convert these strings into token sequences. In this paper, we
consider one HTTP request as a string consisting of words. We
first need to extract all the useful words (a.k.a, tokens) out of
each given request. Then, we use the entire set of tokens (a.k.a,
vocabulary) to parse each string into a token sequence.

1) Vocabulary: ZeroWall first splits the entire set of request
strings with punctuation and space. After that, we will get
multiple “words” from the strings. However, not all of words
will be included in the vocabulary, and we need to filter useless
and meaningless ones. One kind of these useless words are
variables. Their values do not count much in the training and
should be replaced by placeholders (e.g., uid ). The other
kind of these useless candidates are stop words (e.g., the, and).
In spite of their high frequencies, these candidates provide
little information for the requests. As a result, these words are
also replaced by placeholders when building the vocabulary.
Formally, we filter the words according to their frequencies.
Words with too low or too high frequencies will be ignored,
and the set of the remaining words is called vocabulary. In
the vocabulary, each word is associated with a token-ID.



2) Token Sequence: When vocabulary building is done, we
can convert a request into a token sequence. This step is done
by Token Parser. Simply, it only keeps the words which are in
the vocabulary and filters other words. The examples of token
sequence are shown in the second row in Table I and II. We
can see some variables are replaced by placeholders.

After the steps above, we are able to convert an original
HTTP request string into a sequence of tokens, called Token
Sequence or Original Token Sequence in this paper.

3) Token Embedding: Note that each token is represented
by its ID in the vocabulary, and the token-ID neglects the
meanings of the token. Therefore, we add an embedding
layer to map these token-IDs into latent vectors, using vector
distances between tokens to represent their logic relationships.
This is also well known as word embedding or word2vec [38].

B. Encoder-Decoder Network

The core function of encoder-decoder network is to map
one sequence to another sequence. In this paper, we use
token sequences obtained from above steps (called original
token sequence) as inputs. The outputs (called recovery token
sequence) are the sequences reconstructed by the encoder-
decoder network after learning on data.

remember on entrar <eos> remember off b1 entrar

off b1 entrar <eos>remember

Encoder Decoder

b1

Fig. 3: Encoder-decoder network. The example sequences used
here are parts of the sequences shown in Table I.

Fig. 3 shows the typical structure of encoder-decoder net-
work described in [33] and one example. Given one input
sequence “remember on b1 entrar EOF”, the network will
output another sequence “remember off b1 entrar EOF”.
Please note that these sequences here are just examples and
the results may be different in the wild, and the lengths of the
two sequences may not be the same.

In ZeroWall, the encoder will read the token sequences
as inputs. Fig. 4 shows how the encoder-decoder works. The
token sequence (the first column in Fig. 4, also represented as
[33, 0, 79, 0, 4, 66, 52, 33], these numbers are token-IDs in the
vocabulary) is sent to an embedding layer, which further con-
verts the tokens into latent vectors, moving them to the encoder
network. The encoder network is one LSTM network [39], it
computes the representation (a fixed-dimensional vector) of
the original sequence.

The decoder is another LSTM network which uses the
representation to compute the probability of output sequences.
The output of the decoder is several 1×N vectors (where N is
the number of tokens in vocabulary) (see the third last column
in Fig. 4), each element in a vector represents the probability
of a token. For each output vector, the decoder will choose the
token with the highest probability. After these we can get the
recovered token sequences using the same vocabulary (see the

last column in Fig. 4). The overall processing can be described
as reconstruction of the original token sequence based on the
learning of the network. That is, the neural network is trying
to reconstruct the token sequence with tokens in the same
vocabulary which represents the same information.

In the example presented in Fig. 4, we could get the
recovered sequence “onechr OTHER do OTHER userid
pnum 0 pbas 0 pnum 1 ”. We can see clearly that the

original token sequence and the recovered token sequence
are different (especially the last halves). This example is
one malicious request from our dataset. This is because the
encoder-decoder network has not seen this request preciously,
and thus it cannot reconstruct it well. Meanwhile, in the benign
request example in Table I, the recovered token sequence (third
row) is obviously similar to the original one (second row).

Here we reiterate our observation: in practice, proportions
of benign and malicious requests are extremely imbalanced in
the HTTP logs allowed by the WAF (our training set), i.e.,
a vast majority of Web logs are benign requests. As a result,
malicious requests should have little impact on the learning of
encoder-decoder network in our system, as confirmed later in
our evaluation in §V.

C. Anomaly Detection

As mentioned before, the core idea of encoder-decoder net-
work is mapping one sequence to another sequence based on
the “understanding” of these sequences. The encoder-decoder
network is able to reconstruct the benign token sequences with
higher accuracy. On the other hand, when the network takes
a zero-day Web attack request as input (which is rare in the
dataset), the output will be much more different from the input.

To do the anomaly detection, if the input is commonly seen
in the learning data, the result will be good; if the input is an
outlier, the result is probably bad. To judge the result of this
mapping, i.e., the learning of HTTP requests, we can compare
the similarity between the token sequence and the recovered
token sequence. Then we use it as an anomaly indicator in the
detection. The workflow of these steps are shown in Fig. 5. We
use BLEU [35] metric (we justify the selection of the BLEU
metric later in §VI) to calculate the similarity in this paper.

The examples given above in Table I and II show different
outputs of the encoder-decoder network. Given some inputs,
the recovery token sequences are similar to the input ones,
while sometimes the recovered sequences are much more
different from the original ones. To access the quality of the
sequence to sequence mapping, we use BLEU metric here.
Simply, BLEU metric ranges from 0 to 1, a higher value
indicates more similarity between source sequence and target
sequence [35]. For our purpose, we define malicious score,
1−BLEU , as our estimator. A large malicious score means
the encoder-decoder network is unable to reconstruct the given
sequence, indicating that the input sequence may be malicious.
As shown in Fig. 5, the malicious scores will be used to
compare with a certain threshold, to tell whether the requests
are malicious or benign for further operation.
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Fig. 4: An example of the encoder-decoder network. The input and output sequences are those shown in Table III, respectively.

YesToken 
Sequence

BLEU 
Metric

Malicious 
Score

Larger
than

Threshold

Zero-day
Benign

Encoder-
Decoder 
Network

Recovered 
Token 

Sequence

Yes

No

Whitelist

Not 
in

Whitelist

No

Update whitelist 
if false alarms

True 
Attacks

Manual 
Investigation

Real-time HTTP 
Requests

Update WAF rules

Does not 
match rules 

Web 
Application 

Firewall

Fig. 5: The workflow of anomaly detection and manual investigation in ZeroWall.

TABLE III: An example of malicious requests through the
encoder-decoder network and detection step. (TS: token se-
quence; RTS: recovered token sequence)

TS onechr _OTHER_ action _OTHER_ print eval _post onechr
RTS onechr _OTHER_ do _OTHER_ userid _pnum_0_ _pbas_0_ _pnum_1_
BLEU 0.4258 Malicious Score 0.5741

The examples we used in Table I and II also present the
BLEU values and malicious scores of the two requests. We
can see in Table I that the recovered token sequence is almost
the same as original token sequence. This leads to a high value
of BLEU metric (0.81) and small malicious score (0.19). In
Table II, a malicious request ends up with more differences
in the recovered token sequences, leading to a BLEU value of
0.15 and a malicious score of 0.85.

Table III represents another example. The first half of
original token sequence is normal and harmless, while the
rest is clearly probing attempt. Comparing the original and
recovered token sequences, we could find that first halves of
the two sequences still share some similarity. However, the
rest parts are obviously different. Since the trained model is
unable to rebuild the “original” token based on its knowledge
of benign requests, this result in relative smaller BLEU value,
i.e., larger malicious score. The result will be fed into the
component of Manual Investigation for verification and used
to update the whitelist and WAF, respectively (see §III-C).

V. EVALUATION USING REAL-WORLD TRACES

In this section, we evaluate ZeroWall’s zero-day Web attack
detection performance using 8 real-world traces consisting of

large scale of HTTP requests, and compare its performance
with those of representative baseline approaches from §II.

A. Baseline Approaches

As mentioned in §II, the approaches focusing on contextual
and collective anomaly detection are inappropriate in our
scenario, thus are not compared. We picked the following
representative approaches from point attack detection category
(which ZeroWall falls into). These approaches can be further
classified into two types. Stacked auto-encoder approach [8]
(named as SAE), HMM-based approach [5] (named as Hmm-
payl) and DFA-based approach [28] (named as DFA) are un-
supervised approaches. CNN-based CNN-Token approach [7],
and RNN-based RNN-Token approach [25] are supervised ap-
proaches. We also implemented another supervised approach,
DT-Token, based on a simple but popular supervised classifier
decision tree. DT-Token takes all tokens in a Web request as
features and outputs the prediction results.

B. Real-World Traces

We obtained real-world traces from a WAF W operated
by a top global Internet company I which offers signature-
based WAF service to hundreds of its enterprise customers.
We collected 8 seven-day traces during the first week in June,
2019. Each trace (denoted by D-n) collected the full set
of requests of a specific enterprise customer, whose diverse
statistics are shown in the first column in Table IV. Further-
more, the types of requests (APIs of different services) in the
traces are over 8, 000, and the parameters vary in numbers and
types. Therefore, overall these traces offer a good diversity for
evaluating ZeroWall’ s robustness across different customers.



C. Labels, Training, and Testing

1) Obtaining Labels: The traces we used are collected be-
hind the WAF. The requests matching WAF rules are dropped
by WAF (called WAF-malicious requests in this section),
others are allowed by WAF. Note that a WAF with imperfect
rules in practice cannot guarantee to drop all known Web
attacks. For a request allowed the WAF, if it is detected as
a zero-day attack by at least one of the ZeroWall or baseline
approaches and confirmed by the security engineers, it is
called a “zero-day Web attack”; otherwise a “benign request”.
The first column of Table IV shows the counts of these
requests, while B2M and B2Z mean the benign to WAF-
malicious ratio and the benign to zero-day ratio, respectively.

2) Training and Testing: We split each 7-day trace into
two parts according to time: the first day is used for training
(training set), and rest is used as real-time traffic in online
detection (testing set). These datasets vary in volumes and
ratios. Based on these, we can determine the performance of
ZeroWall in different real-world situations.

During training, unsupervised approaches (including Ze-
roWall) use all requests allowed by the WAF, without us-
ing any labels; while supervised approaches use all requests
(allowed and dropped) and use the WAF’s detection results
(allowed/dropped) as labels. The inputs to all approaches are
the token sequences generated by the Token Parser component
of ZeroWall, instead of the original HTTP requests.

During testing, we focus on only zero-day Web attacks, and
do not consider known attacks (which are already dropped by
WAF). Thus in testing, the positive samples refer to the zero-
day attack requests in the traces, defined in §V-C1, while the
negative samples are benign requests.

D. Ground Truth and Evaluation Metrics

We evaluate different approaches’ performance using three
metrics: precision, recall, and F1-score. For each approach,
we first calculate true positives (TP), true negatives (TN), false
positives (FP) and false negatives (FN). True positives are
those zero-day attack requests in the dataset that are correctly
detected as zero-day attacks, while true negatives are those
benign requests that are correctly detected as benign. False
positives are those benign requests that are detected as zero-
day attacks, while false negatives are those zero-day attack
requests that are detected as benign. We then calculate metrics
as follows: Precision = TP

TP+FP , Recall = TP
TP+FN , and

F1-score = 2×Precision×Recall
Precision+Recall .

The primary challenge of the evaluation using real-world
traces is the vast number of requests that need to be labeled
(at least partially) manually by security engineers to obtain the
ground truth. Thus, the ground truth can be only approximately
obtained: the requests detected as zero-day attacks by ZeroWall
and all baseline approaches are checked and rectified (if
necessary) manually by the security engineers. Note that it
is possible that some zero-day attacks are still missed by all
above approaches, but it is infeasible for the engineers to
manually check all requests. Therefore we settled with the
above approximate ground truth in our evaluation, with the

TABLE IV: Statistics and evaluation results on 8 traces.

Trace Approach Precision Recall F1-Score

D-1 ZeroWall 0.9855 1.0000 0.9889
#WAF-Malicious: 51,839 DT-Token 0.0010 1.0000 0.0019
#Zero-Day Attacks: 25 CNN-Token 0.0010 1.0000 0.0019
#Benign: 1,576,235 RNN-Token 0.0000 1.0000 0.0000
#Total: 1,628,099 SAE 0.0001 1.0000 0.0002
B2M: 30.4 Hmmpayl 0.0000 0.0000 0.0000
B2Z: 63049.4 DFA 0.0000 1.0000 0.0000

D-2 ZeroWall 1.0000 1.0000 1.0000
#WAF-Malicious:186,066 DT-Token 0.0547 0.3712 0.0931
#Zero-Day: 1,118 CNN-Token 0.3300 0.7784 0.4593
#Benign: 3,142,793 RNN-Token 0.0005 0.9760 0.0010
#Total: 3,329,977 SAE 0.0005 0.9820 0.0010
B2M: 16.9 Hmmpayl 0.0000 0.0000 0.0000
B2Z: 2811.1 DFA 0.0004 1.0000 0.0008

D-3 ZeroWall 0.9925 0.9687 0.9805
#WAF-Malicious: 19,515 DT-Token 0.7388 0.2463 0.3658
#Zero-Day: 283 CNN-Token 0.4230 0.6376 0.5039
#Benign: 13,572,827 RNN-Token 0.0000 0.9999 0.0001
#Total: 13,592,625 SAE 0.0015 0.9130 0.0030
B2M: 695.5 Hmmpayl 0.0000 0.0000 0.0000
B2Z: 47960.5 DFA 0.0000 1.0000 0.0001

D-4 ZeroWall 0.9879 1.0000 0.9939
#WAF-Malicious: 53,394 DT-Token 0.0001 1.0000 0.0002
#Zero-Day: 4,209 CNN-Token 0.0001 1.0000 0.0002
#Benign: 15,618,518 RNN-Token 0.0008 1.0000 0.0016
#Total: 15,676,121 SAE 1.0000 0.0000 0.0000
B2M: 292.5 Hmmpayl 0.0000 0.0000 0.0000
B2Z: 3710.7 DFA 0.0001 1.0000 0.0002

D-5 ZeroWall 0.9928 1.0000 0.9964
#WAF-Malicious: 33,724 DT-Token 0.2497 0.0082 0.0153
#Zero-Day: 1,188 CNN-Token 0.6567 0.5410 0.5883
#Benign: 31,718,124 RNN-Token 0.9988 0.0328 0.0629
#Total: 31,753,036 SAE 0.0000 0.0492 0.0000
B2M: 940.5 Hmmpayl − − −
B2Z: 26698.8 DFA 0.0001 1.0000 0.0001

D-6 ZeroWall 1.0000 0.9897 0.9948
#WAF-Malicious:2,136K DT-Token 0.1733 0.0365 0.0576
#Zero-Day: 2,003 CNN-Token 0.0204 0.0590 0.0269
#Benign: 177,993,528 RNN-Token 0.0000 1.0000 0.0000
#Total: 180,132,342 SAE 0.0001 0.1461 0.0001
B2M: 83.3 Hmmpayl - - -
B2Z: 88863.5 DFA 0.0000 1.0000 0.0000

D-7 ZeroWall 0.9943 1.0000 0.9971
#WAF-Malicious:42,088K DT-Token 0.0874 0.0267 0.0377
#Zero-Day: 49,011 CNN-Token 0.8094 0.3027 0.4366
#Benign: 528,158,912 RNN-Token 0.6857 0.5608 0.6120
#Total: 570,296,546 SAE 0.0001 0.5691 0.0002
B2M: 12.5 Hmmpayl - - -
B2Z: 10776.3 DFA 0.0001 1.0000 0.0002

D-8 ZeroWall 0.9966 0.9983 0.9974
#WAF-Malicious:90,982K DT-Token 0.2036 0.3054 0.2396
#Zero-Day: 83,746 CNN-Token 0.2525 0.0275 0.0479
#Benign: 534,048,878 RNN-Token 0.5237 0.0718 0.1242
#Total: 625,115,143 SAE 0.0008 0.3476 0.0017
B2M: 5.9 Hmmpayl - - -
B2Z: 6377.0 DFA 0.0000 1.0000 0.0005

understanding that the resulting recall might be artificially
higher than the truth (should there be any zero-day attacks
missed by all approaches, which are then FNs). But the
resulting precision will not change, because all TPs and FPs
are manually checked. Note that these zero-day attack ground
truth labels are for evaluation purpose only. Unsupervised



approaches do not use labels for training, and supervised
approaches directly use the WAF output as labels (as opposed
to using ground truth labels) for training.

Hyper-parameters (such as the anomaly detection threshold
in ZeroWall) affect system’s performance, we thus obtain and
present the best F1-scores (across the hyper-parameter space)
and its corresponding precisions and recalls.

E. Experiments Results

The best F1-scores with its corresponding precisions and
recalls are shown in Table IV. All these results are for
zero-day attacks only. We observe that ZeroWall significantly
outperforms all existing approaches, achieving the best F1-
scores over 0.98 on all 8 traces. The precision and recall values
are also very high (almost 0.99 and 1).

These 8 traces are different in volumes, numbers of types
of requests and data distributions. Among all approaches,
ZeroWall’s variances across different traces are most stable
(i.e., has the smallest gaps between maximum and minimum).

Supervised approaches DT-Token, CNN-Token and RNN-
Token can detect some zero-day attacks (e.g., D-3 and D-
7), but the performances are very unstable. The bad detection
performance of these supervised approaches is mainly because
of the training set. Since these approaches use WAF labels
for training, the positive samples in the training set are those
WAF-malicious requests which are dropped by WAF, which
are likely to be quite different from the actual zero-day attacks.

Unsupervised baseline approaches SAE, Hmmpayl and DFA
also perform badly. They achieve low precisions, recalls and
F1-scores. In SAE, the dimensionality reduction of encoder
misses important features from the token sequences, and
makes it unsuitable to deal with long requests with complex
patterns. Hmmpayl performs badly because it only works well
when the number of states is equal to the length of sequences.
However, it cannot process the requests well if it has many
states [5]. Note that, we only have Hmmpayl’s results in some
traces since they ran out of memory in others. Hmmpayl
extracts sliding windows from sequences. It uses (l−n+1)×n
for an l-length sequence (n denotes window size), consuming
almost n times memory than the original sequence. DFA also
performs badly. The various types of HTTP requests made
the automata built too complex and the generalizing of the
modeling reduces its detection accuracy since our data volume
is far beyond the scenario in our its original design.

Above observations can be best explained by the zero-day
attack example in Table V, which was detected by ZeroWall,
CNN-Token, and RNN-Token, but not by other approaches.
The attack hidden in the message body (in bold font) is an
injection attack against PHP servers. This attack aims to collect
more information from the server by forcing the server-side
programs to execute malicious codes from the attacker. The
injection detection rules used in WAF are usually based on
keywords and regular expressions, e.g., eval, request, select
and execute. However, the attack in Table V contains none
of these keywords, thus successfully cheated the WAF. On
the other hand, ZeroWall is based on the “understanding”

of benign requests without worrying exactly how the attacks
deviate from benign patterns. The structure of above zero-day
attack request is more like a programming language, which
is obviously different from a normal request which usually
transmits data, thus ZeroWall was able to successfully detect
this attack. CNN-Token and RNN-Token were able to detect this
specific zero-day attack because this attacks’ tokens happen to
overlap with some tokens in the training set, a snippet of which
is shown in Table VI. However, not all zero-day attacks have
overlapping tokens with known attacks, which explains the
CNN-Token and RNN-Token worse performance than ZeroWall.

TABLE V: A Real Case of Zero-Day Attack

...
searchword=d&order=}{end if}{if:1)print r($ POST[func]
($ POST[cmd]));//}{end if}&func=assert&cmd=phpinfo();
Token Sequence: search php searchtype pnum 0 OTHER onechr
order end if if pnum 1 OTHER post OTHER post cmd end if
OTHER assert cmd phpinfo

TABLE VI: Training set’s token sequences overlapping with
those of the zero-day attack in Table V. Highlighted in bold.

1 plus ad_js php aid _pnum_0_ onechr assert _pnum_1_ execute execute 
function bd byval onechr for onechr _pnum_2_ to len onechr step 
_pnum_3+_ onechr mid onechr _pnum_3+_ if isnumeric mid onechr
_pnum_3+_ then execute bd bd chr onechr else execute bd bd chr
onechr mid onechr _pnum_3+_ onechr _pnum_3+_ end if chr
_pnum_3+_ next end function response write execute on error resume 
next bd _phex_0_ response write response end

2 preview php _OTHER_ php assert _OTHER_ onechr
3 lib _OTHER_ module inc php _OTHER_ eval _OTHER_ onechr class 

_OTHER_ onechr phpinfo
4 cms _OTHER_ uploads _OTHER_ php id assert _OTHER_ eval 

base64_decode _post z0 z0 _pbas_0_
5 myship php cmd eval base64_decode _post z0 z0 _pbas_0_

F. True Positives and WAF Rules
Besides the example in Table V, ZeroWall detects many

other zero-day Web attacks. Security engineers from company
I manually checked the results of ZeroWall and found 141583
true zero-day attacks. These zero-day attacks can be divided
into 28 categories, including webshell, SQL injection, probing,
trojan and other exploiting against particular applications. For
each category, the security engineers have already composed
a new WAF rule to detect these attacks in the future.

G. False Positives and Whitelist
Table VII uses trace D-7’s statistics to show the effect

of ZeroWall’s whitelist mechanism. In this experiment the
whitelist is updated daily. The numbers of whitelist rules refer
to how many whitelist rules are added each day, based on
the FPs labeled on that day. For example, 16 FPs were found
during manual investigation on 0602’s results. Based on these
FPs, security engineers composed 5 whitelist rules and added
them. These 5 rules were applied to the 0603’s data and
reduced 0603’s FPs by 70 (222-152). The results shows that
the whitelist reduces the number of FPs with low overhead
(numbers of rules are very small). Based on these results, we
believe ZeroWall is practical in real-world deployment.



TABLE VII: Results of whitelist. No WL and WL means the
results without and with whitelist, respectively. No whitelist
is applied on 0602 because it is the first day during testing.

Date Precision # of FP # of white-
No WL WL No WL WL list rules

0602 0.9972 - 16 - 5
0603 0.9643 0.9753 222 152 3
0604 0.9580 0.9999 310 1 1
0605 0.9731 0.9944 320 65 6
0606 0.9845 0.9993 121 5 1
0607 0.9672 1.0000 194 0 0

TABLE VIII: Training and testing speed with and without hash
table (requests/s). The incoming requests refer to the average
number of requests received by the customer per second.

Trace Incoming Training Testing
Requests No Hash Hash No Hash Hash

D-1 2.60 1.09 256.89 229.24 39634.40
D-2 5.19 3.72 202.13 785.75 65556.80
D-3 22.44 7.09 835.43 514.33 50420.17
D-4 25.83 5.42 1014.67 305.42 50913.24
D-5 52.45 12.48 1046.55 414.86 38132.88
D-6 294.30 1.47 4001.95 70.04 176255.90
D-7 873.36 3.23 4262.48 53.77 88989.06
D-8 883.16 6.67 6389.23 142.29 106692.90

H. ZeroWall’s Training and Testing Overhead

We evaluate the training and detection speed using the
number of requests processed per second, on one server with
the following configuration: Intel(R) Xeon(R) Gold 6148 CPU
2.40GHz ∗ 2, 512GB RAM. Note that in reality more servers
can be used. The results in Table VIII show that the overhead
of ZeroWall is low and our proposed hash table mechanism
can reduce the overhead by 2 to 3 orders of magnitude.

VI. DISCUSSIONS

Similarity Metrics: We now justify BLEU as our similarity
metric and demonstrate how to empirically determine the
anomaly detection thresholds. Fig. 6 plots the CDFs for
distributions of malicious scores of benign requests and zero-
day attacks, where X-axis denotes the value of malicious score
and Y-axis represents the cumulative distribution. Obvious
differences can be noticed between BLEU BENIGN and
BLEU ZERODAY curves: over 90% of the benign requests
have malicious scores smaller than 0.3, while the malicious
scores of the BLEU ZERODAY are mostly distributed larger
than 0.95, evidenced by the sharp increase in the CDF of
BLEU ZERODAY 0.95. One empirical method for setting the
threshold is to automatically scan the thresholds and find the
one with most dividing power (e.g., red vertical line in Fig. 6).

Fig. 6 also justifies our selection of BLEU as the similarity
metrics out of several popular metrics (BLEU, GLEU [31],
NIST [40], CHRF [41], [42]) in neural machine translation
field, because the differences between the benign and zero-
day BLEU curves is stably (across different D-n’s) larger
than those alternative metrics. GLEU has slightly worse per-
formance, followed by NIST, while CHRF is the worst.
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Fig. 6: CDF curves for malicious score distribution of benign
requests and zero-day attacks with different similarity metrics.

Limitations: One limitation of our unsupervised approach is
that too small volume of data penalizes the performance. As a
neural network based approach, the volume of the training data
is very important. And a small dataset may contain very rare
(or none) zero-day attacks, which makes it hard to evaluate our
approach. Fortunately, we have shown that D-1, with weekly
trace size of 1.6 million requests, works pretty well already.
Evasions: A fundamental assumption of this approach is that
most of the historical logs are benign. Intuitively, this approach
may look like a good target for poisoning attacks. During
poisoning attacks, the attacker would inject large amount of
malicious samples in the normal traffic, hoping the system
would learn from the wrong dataset. However, poisoning
attacks have few impact on ZeroWall because: ZeroWall is
deployed behind WAF, which means the poisoning samples
are filtered by the WAF first before read by ZeroWall. It is
unrealistic for an attacker to inject enough malicious samples.

VII. CONCLUSION

This paper advocates the general framework of augmenting
existing signature-based WAFs with unsupervised machine
learning based zero-day Web detection approach. We believe
this approach is immediately deployable and widely-applicable
in real-world. To the best of our knowledge, this paper is the
first to formulate the zero-day Web attack detection problem
into a neural machine translation quality assessment problem,
a direction along which we believe more solutions can be
invented. We implements the above idea by adopting a state-
of-art neural machine translation algorithms, i.e., encoder-
decoder recurrent neural networks. In our evaluation using
large-scale real-world traces, ZeroWall achieves high F1-scores
over 0.98, significantly outperforming existing approaches.
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[42] Maja Popović. chrf deconstructed: beta parameters and n-gram weights.
In Proceedings of the First Conference on Machine Translation: Volume
2, Shared Task Papers, volume 2, pages 499–504, 2016.


