
A Semantic-aware Representation Framework for

Online Log Analysis

Weibin Meng†¶, Ying Liu‡¶, Yuheng Huang‖, Shenglin Zhang∗�

Federico Zaiter†¶,Bingjin Chen§, Dan Pei†¶

†Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
‡Institute for Network Sciences and Cyberspace, Tsinghua University, Beijing 100084, China

‖School of computer science, Beijing University of Posts and Telecommunications, Beijing 100084, China
∗College of Software, Nankai University, Tianjin 300071, China

§School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510275, China
¶Beijing National Research Center for Information Science and Technology (BNRist), Beijing 100084, China

mwb16@mails.tsinghua.edu.cn, liuying@cernet.edu.cn, huangyuheng@bupt.edu.cn, zhangsl@nankai.edu.cn

zaitertf10@mails.tsinghua.edu.cn, chenbjin@gmail.com, peidan@tsinghua.edu.cn

Abstract—Logs are one of the most valuable data sources
for large-scale service management. Log representation, which
converts unstructured texts to structured vectors or matrices,
serves as the the first step towards automated log analysis. How-
ever, the current log representation methods neither represent
domain-specific semantic information of logs, nor handle the out-
of-vocabulary (OOV) words of new types of logs at runtime. We
propose Log2Vec, a semantic-aware representation framework
for log analysis. Log2Vec combines a log-specific word embedding
method to accurately extract the semantic information of logs,
with an OOV word processor to embed OOV words into vectors
at runtime. We present an analysis on the impact of OOV words
and evaluate the performance of the OOV word processor. The
evaluation experiments on four public production log datasets
demonstrate that Log2Vec not only fixes the issue presented by
OOV words, but also significantly improves the performance of
two popular log-based service management tasks, including log
classification and anomaly detection. We have packaged Log2Vec
into an open-source toolkit and hope that it can be used for future
research.

Index Terms—Log analysis, OOV words, AIOps

I. INTRODUCTION

Large-scale services usually generate logs (see the top half

of Fig. 1), which describe a vast range of events observed

by them and record service runtime information. Therefore,

they are crucial for service management [1]. A log message

is a line of text printed by logging statements (e.g., printf())

defined by developers. However, a large-scale service is often

implemented/maintained by hundreds of developers/operators.

Usually, a developer/operator has incomplete information on

the overall service, and none of them is familiar with all

logs generated by services. Moreover, the volume of logs is

growing rapidly, for instance, at a rate of about 50 gigabytes

(around 120∼200 million lines) per hour [2]. Therefore, the

traditional way of log analysis that largely relies on manual

inspection has become a labor-intensive and error-prone task.

Automatic log analysis approaches, which are employed

for services management, have been widely studied. These

� Shenglin Zhang is the corresponding author.

Historical logs:

L1. Interface ae3, changed state to down

L2. Interface ae3, changed state to up

L3. Interface ae1, changed status to down

L4. Interface ae1, changed status to up

Real-time logs:

L5. Vlan-interface vlan22, changed state to down

L6. Vlan-interface vlan22, changed state to up

Out-of-vocabulary Vlan-interface

Relation triples (Interface, changed, state)

Antonym pairs (down, up)

Synonym pairs (state, status)

Fig. 1: Examples of logs and domain-specific information

methods are designed for monitoring status [3], understanding

events [4], detecting anomalies [1], and predicting failures [5].

Most of the above methods require structured input (e.g., a

vector or a matrix) [6]. However, service logs are usually

unstructured texts, which require to be properly represented

before they can be effectively employed [2]. Therefore, log

representation usually serves as the first step towards auto-

mated log analysis, and thus it is vitally important to the

above methods. Take Figure 1 as a example, in L1, “ae3” is

a variable word, whereas the rest, i.e., “Interface ..., changed

state to down”, is the constant field (template). A traditional

way to applying logs to management is learning templates

from logs, maps logs to templates, the indices or embedding

of which are put into those log analysis approaches (e.g.,

Deeplog [1], PreFix [5], LogAnomaly [7]).

In the literature, many log representation approaches have

been proposed [2], [8]. Template2Vec, a state-of-the-art log

representation work, presents the first step towards extracting

semantic information from logs by embedding the words of a

template into a vector, which has been demonstrated to achieve

a better performance than using template indices [7]. However,

extract semantic information from logs for log representation

faces two challenges that have not yet been addressed: (1) ac-

curate extraction of domain-specific semantic information and

(2) embedding out-of-vocabulary (OOV) words into vectors.

For the first challenge, the current semantic information

extraction methods (e.g., template2Vec [7]) embed words and

templates into vectors based on the distributional hypothesis,

which assumes that the words with a similar context tend

to have a similar meaning [9]. However, they usually fail

to capture the precise meanings of many words in logs,

because some pairs of opposites may have similar contexts.

For example, “down” and “up” in Figure 1 are antonyms but

they have similar contexts.

For the second challenge, operators continuously conduct

software/firmware upgrades on services to introduce new fea-

tures, fix bugs, or improve performance [10]. These upgrades

usually generate new types of logs with OOV words (e.g.,

“Vlan-interface” in Figure 1). The current word embedding

methods cannot embed these OOV words because they are

usually offline trained based on the vocabulary of historical

logs, which cannot be updated at runtime.

To address the above two challenges, we propose Log2Vec,

a semantic-aware representation framework for online log

analysis. The original goal of service logs, “logs are for

users to read”, inspires our work. That is, logs are designed

by developers and “printf”-ed by services. Moreover, the

intuitions and methods in natural language processing can

be applied or improved for log representation. Specifically,

Log2Vec integrates a log-specific word embedding method,

LSWE, to extract log specific semantic information, with an

OOV word processor to embed OOV words into vectors at

runtime.

The contributions of this paper are as follows.

1) We propose Log2Vec, a framework to convert unstruc-

tured logs to distributed representation with log-specific

information.

2) Since Log2Vec has a mechanism for generating OOV

word embeddings, operators do not need to do redundant

retraining on original word embedding corpus when new

types of logs appear.

3) Experiments on two popular log-based service manage-

ment tasks, including log classification and anomaly

detection, have both demonstrated that Log2Vec can

extract the critical features of logs and significantly im-

prove the performance of log-based service management

tasks.

4) We have open-sourced1 Log2Vec, and hope that it can

be used for future research.

The rest of the paper is organized as follows: We discuss

related log representation works in Section II and propose our

approach in Section III. The evaluation is shown in Section IV.

1Log2Vec is available on Github: https://github.com/WeibinMeng/Log2Vec

10% 20% 30% 40% 50% 60% 70% 80% 90%

Percentage of training set

0.2

0.4

0.6

0.8

1.0

P
e
rc

e
n
ta

g
e
 o

f
lo

g
s
 w

it
h
 O

O
V

w
o
rd

s
 i
n
 t

e
s
ti

n
g
 s

e
t

Fig. 2: Analysis of logs with OOV words on four datasets

In Section V, we introduce a case study of Log2Vec. Finally,

we conclude our work in Section VII.

II. RELATED WORK

Service logs play an important role in service management.

Most of the log-based service management tasks require struc-

tured input (e.g., event/template index or matirx). Therefore,

log representation usually serves as the the first step towards

automated log analysis.

The most popular log representation approach is automatic

template extraction. It extracts constant fields (templates)

from logs and puts template index into machine learning

approaches. There are many categories of template extraction

approaches [2], such as LogSig (a cluster-based method)

[11], FT-tree (based on frequent items mining) [12], IPLoM

(Iterative partitioning) [13] and Spell (longest common sub-

sequence) [8]. However, valuable information could be lost

when only log template indexes are used, because they cannot

reveal the semantic relations of logs [7].

To be applicable for machine learning algorithms, bag-of-

words models are used to convert logs to vectors when de-

tecting anomalous logs [14]. Template2Vec [7] combines tem-

plates and Word2vec [15] to represent templates by vectors.

Nevertheless, corpus-based methods (e.g., word2Vec) usually

fail to capture the domain-specific meanings for many words.

For instance, some semantically related but dissimilar words

may have similar contexts (e.g., synonyms and antonyms).

Besides, services can generate new types of logs at run-

time [7], however, existing log representation approaches

cannot handle out-of-vocabulary (OOV) words in new logs,

which also lose semantic information. For example, Figure 2

shows percentages of logs containing OOV words as the per-

centage of training data increases from 10% to 90% (detailed

information is shown in Section IV-B). We observe that OOV

words has a big percentage when trained on a smaller sample

of the logs.

III. DESIGN OF LOG2VEC

A. Observation

We design Log2Vec to represent words in logs based on the

following observations:

https://github.com/WeibinMeng/Log2Vec

Fig. 3: Log2Vec framework

1) A log is predefined by developers using the “printf”

function. It typically characterizes the event that occurs

on the system. The text of logs represents the semantic

information of the event.

2) The vocabulary across logs is growing continuously be-

cause the software/firmware can be upgraded on services

due to changes introduced to add new features, to fix

bugs or to improve the system’s performance.

3) Logs contain lots of domain-specific words. Extracting

the semantic information of these domain-specific words

can be difficult yet critical for log analysis.

B. Overview of Log2Vec

Motivated by these observations, we propose Log2Vec (as

shown in Figure 3), a novel representation framework for ser-

vice log analysis. Specifically, we propose a log-specific word

embedding method, LSWE, to extract log specific semantic

information (Section III-C), and adopt an OOV word processor

to embed OOV words at runtime (Section III-D). We further

introduce the online and offline stages of Log2Vec in this

Section.

The framework of Log2Vec consists of two components: the

offline stage and the online stage. In the offline stage, Log2Vec

constructs the domain-specific information set (e.g., antonyms

and triples in this paper) by combining the information ex-

tracted from logs or offered by operators. Next, Log2Vec

represents words distributedly with domain-specific semantic.

Since services will generate OOV words in new types of

logs at runtime, Log2Vec trains an OOV word processor for

OOV words in the online stage. In the online stage, we first

determine whether each word in logs is in vocabulary. If yes,

we then convert existing words to word vectors based on

offline learning. Otherwise, we will assign a new embedding

vector to the OOV word by the OOV word processor. In the

end, Log2Vec converts all words in logs into word embedding

vectors and calculates the log vector, which is the weighted

average of its words vectors.

Fig. 4: Architecture of LSWE

C. Log-specific Word Embedding

Logs are designed to facilitate user readability; hence con-

stant parts of logs are defined in natural languages by service

designers. Previous methods use natural language process

(NLP) methods (e.g., word2vec [15]) to represent the words in

text. However, these methods are not designed specifically to

deal with the words in logs, which results in several shortcom-

ings. (1) For instance, word2vec [15] uses context words to

predict target words, where only local contextual information

is considered. As a result, it fails to represent synonyms and

antonyms. (2) Word2vec does not take relation information in

to consideration, which is also important information of logs.

To resolve these problems, we propose LSWE (Log-specific

Word Embedding), a novel word vector representation for

logs’ words that integrates lexical contrast into distributional

vectors and strengthens domain-specific semantic and relation

information for determining degrees of word similarity. The

architecture of LSWE is shown in Figure 4. LSWE adopts two

word embedding methods, Lexical Information Word Embed-

ding (LWE) [16] and Semantic Word Embedding (SWE) [17].

Given the set of synonyms and antonyms corresponding to

the target word, we use LWE to predict the target word so that

the distance of its vector representation is as close as possible

to its synonyms and as far away as possible from its antonyms.

Formally, the objective function as follows:

Llwe = β(
∑

u∈SY Nwi

log p(wi|u)−
∑

u∈ANTwi

log p(wi|u))

+

|C|∑

k=1

(log p(wi|w
i+c

i−c
))

(1)

Where wi is the target word, u is the antonym. SY Nwi

and ANTwi
represent the synonyms and antonyms set of

wi, respectively. p(wi|u) is the probability of wi when the

antonym is u. The second part is the objective function of

CBOW [18] (a model of Word2vec), C is the training corpus

(logs). Note that CBOW and LWE share the same word

vectors.

Generally, the information in the knowledge graph is or-

ganized in the form of relation triples (h, r, t). As used in

SWE [17], we construct a sample (h, r, wi), where r represents

a variety of different wi association relationship. After getting

triples, it is necessary to establish a representation of the

relationship of words. TransE model [19] is the most effective

representation method for triples. For triples (h, r, t), if the

triples are factual information, then (h + r ≈ t). That is,

the corresponding vector of h + r should be closer to t.

SWE [17], which combines relation information and CBOW,

with objective function as

Lswe =

|C|∑

k=1

(log p(wi|w
i+c

i−c
)) + γ

∑

r∈Rwi

log p(wi|h+ r) (2)

Then we obtain the objective function of LSWE as follows:

Llswe = Llwe + Lswe

=

|C|∑

k=1

(log p(wi|w
i+c

i−c
)) + γ

∑

r∈Rwi

log p(wi|h+ r)

+β(
∑

u∈SY Nwi

log p(wi|u)−
∑

u∈ANTwi

log p(wi|u))

(3)

LSWE learns the context word based on the co-occurrence

information. Furthermore, it also learns the correspond-

ing semantic and relationship information. LSWE combines

antonyms set and relation triples to improve the quality of

the word vector. Universal antonyms can be found in Word-

Net [20], which is a lexical database for English. Relation

triples can be extracted from processed logs using dependence

trees [21], which is a prevalent semantic parsing method. Some

domain-specific antonyms and relations, however, have to be

added by operators based on domain knowledge.

The significant advantage of LSWE is that it enables

generalization to words, which is achieved by integrating

the embedding of lexical and relation features into a low-

dimensional Euclidean space. These low-dimensional embed-

dings can capture distributional similarity, so that information

can be shared among words that tend to appear in similar

contexts. However, it is not possible to enumerate the entire

vocabulary of all logs and will miss words that appear in later

services (OOV words). In the next section, we will introduce

a new technique to handle OOV words.

D. Out-of-vocabulary Word Processor

To handle OOV words at runtime, we adopt MIMICK [22],

an approach to generate OOV word embeddings by learning

a function from spellings to distributional embeddings.

MIMICK [22] regards the problem of out-of-vocabulary

(OOV) embeddings as a generation problem: Regardless of

how the original embeddings are created, MIMICK assumes

that there is a generative wordform-based protocol to create

these embeddings. By training a model over the existing

vocabulary, MIMICK can later use that model to predict

the embedding of an unseen word. Here we introduce the

principle of MIMICK briefly: given a language L, a vocab-

ulary V ⊆ L of size V , and a pre-trained embeddings table

Datasets Description # of logs

Spark Spark job log 33,236,604

HDFS Hadoop distributed file system 11,175,629

Windows Windows event log 114,608,388

Hadoop Hadoop MapReduce job 394,308

TABLE I: Detail of the service log datasets

L ∈ R
V×d where each word {wk}

V

k=1
is assigned a vector

ek of dimension d. MIMICK is trained to find the function

f : L → R
d such that the projected function f |v approximates

the assignments f(wk) ≈ ek. Given such a model, a new word

wk∗ ∈ L\V can now be assigned an embedding ek∗ = f(wk∗)
As shown in Figure 3, we train an OOV processor in the

offline stage with MIMICK [22] and assign a new embedding

vector for unseen words when new words appear in the online

stage.

IV. EXPERIMENTS

In this section, we report all experiments conducted to

evaluate the effectiveness of the proposed Log2Vec. Firstly,

we describe the experimental setup. Next, we present a mea-

surement study to highlight the challenge of OOV words and

show the performance of Log2Vec’s OOV processor. Finally,

in order to prove the effectiveness of Log2Vec, we compare the

performance of three popular log-based service management

tasks (with/without Log2Vec), including log classification and

anomaly detection.

A. Experimental Setting

1) Datasets: We conduct experiments over four public log

datasets from several services, which are Spark logs [2], HDFS

logs [2], Windows logs [23], and Hadoop logs [24]. The

detailed information of these datasets are listed in Table I.

2) Experimental Setup: We conduct all experiments on a

Linux server with Intel Xeon 2.40 GHz CPU. We implement

Log2Vec with Python 3.6 and will open source it. As for

MIMICK, we use a popular open-source toolkit in [22].

B. OOV Words

1) Measurements of OOV: In this section, we present a

large-scale measurement study to highlight the challenge in

processing OOV words. We generate training sets with the

percentage of original datasets ranging from 10% to 90% and

regard the remaining logs as the testing set.

Firstly, we evaluate the number of OOV words in service

logs. Figure 5 shows percentages of words on four log datasets,

as the percentage of training data increases from 10% to

90%. The results show that, with the growth of training data,

the proportion of OOV words in the test set is gradually

decreasing, especially in Spark logs. When we use 90% Spark

logs to train the model, we find only 2.48% of OOV words in

the testing set.

Next, we evaluate the number of logs that contain OOV

words. Figure 2 shows percentages of logs containing OOV

10% 20% 30% 40% 50% 60% 70% 80% 90%

Percentage of training set

0.0

0.1

0.2

0.3

0.4

0.5

P
e
rc

e
n
ta

g
e
 o

f
O

O
V

 w
o
rd

s

in
 t

e
s
ti

n
g
 s

e
t

Fig. 5: Measurements of OOV words

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Similarity

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

Fig. 6: Distribution of Logs’ Similarity in Section IV-B2

words on four log datasets, as the percentage of training data

increases from 10% to 90%, respectively. We observe that all

test sets have logs with OOV words even when they are trained

with 90% of the data, specially Windows and HDFS logs.

No matter what proportion of data is used for training, there

are always more than 90% logs generated by service online

that contain OOV words. Besides, when we train a model

based on a 10% training set, more than 70% logs generated by

services will contain OOV words, which means that current

log analysis models cannot train a model based on a small

amount of data (as shown in Fig. 2). The results also show

that it’s essential to handle OOV words when analyzing logs.

2) Evaluation of the OOV Word Processor: As described

in Section III-D, Log2Vec contains a OOV processor to

handle OOV words at runtime. In this section, we evaluate

the performance of the OOV processor. We randomly select

10,000 logs from each of the four datasets as the ground truth.

Then we randomly select a word in each log and changed one

of the letters to make the word an OOV word. Next, we test

the similarity (Cosine Similarity) between the changed log and

the original log.

Figure 6 is the CDF of the above experiment, we observe

that even when each piece of log contains OOV words,

Log2Vec achieves an excellent performance. For example,

99.8% of Windows logs have more than 0.9 similarity with

changed logs. Tabel II shows the average similarity when

Log2Vec processes the modified logs. All of them achieve

high similarity.

TABLE II: Average similarity when Log2Vec processes logs with
OOV words

Dataset Spark HDFS Windows Hadoop

Similarity 0.964 0.984 0.993 0.996

Fig. 7: Comparison of log classification when use 50% training logs

C. Task 1: Log Classification

1) Task description: Generally, operators classify individ-

ual logs and focus on the categories of logs they are interested

in to monitor the status of services. However, the increasing

scale and complexity of modern services make the volume of

logs explode, and tens of millions of logs are generated in

a large-scale service. Classifying logs manually suffers from

inflexibility and labor intensiveness. For this reason, automatic

log classification is also an important task in Log Analysis. To

evaluate the performance of online log classification, we divide

each dataset to 50% training set and 50% testing set in this

task.

2) Baselines: The most popular automatic log classification

methods are rule-based (e.g., extracting templates automati-

cally). They regard each template as a category and match

online logs to extracted templates. Besides, template2Vec [7]

also achieves excellent performance on log analysis, they

can represent each log as a vector and cluster logs to some

categories. In this task, we choose LogSig [11], FT-tree [12],

Spell [8], template2Vec [7] as baselines. [2] manually labelled

each log’s category (in Table I), which serves as the ground

truth for classification.

3) Experimental results: Figure 7 shows the experimental

results of log classification. We observe that classification

with template extraction methods (LogSig, FT-tree, Spell)

performs badly because there are many new type of logs in

the testing set which cannot be matched to existing templates.

Template2Vec performs better than template methods because

template2Vec represents the semantic of templates. However,

the input of template2Vec are templates, they also cannot

handle OOV words. The performance of Log2Vec is stable

on four datasets and the average Fscore of Log2Vec is 0.944,

which demonstrates that Log2Vec can represent logs more

accurately than baselines (average Fscore of 0.745).

D. Task 2: Anomaly Detection

1) Task description: Anomaly detection is a critical step

towards building a secure and trustworthy service. The primary

TABLE III: Results of anomaly detection

Methods Precision Recall Fscore

Deeplog 0.898 0.964 0.930

Deeplog w/ Log2Vec 0.941 0.937 0.939

purpose of a service log is to record service states and

significant events at various critical points to help debug

service failures and perform root cause analysis. Therefore,

many methods utilize the various service logs to do anomaly

detection. Service anomalies can be inferred based on their

log sequences which contain multiple logs violating regular

rules. We conduct this experiment on BGL logs [25], where

each log was manually labeled as either normal or anomalous.

2) Baselines: Deeplog [1] is the start-of-the-art among log-

based sequential anomaly detection methods. However, the

input of Deeplog are log template indexes, which already

mean a loss of semantic information. To demonstrate the

performance of Log2Vec, we change template indexes, the

input of Deeplog, to a distributed representation. We compare

Deeplog to itself when trained with Log2Vec. The parameters

of these methods are all set best for accuracy.

3) Experimental results: As shown in Table III, Deeplog

has a much lower precision on the BGL dataset (0.898)

compared to Deeplog with (w/) Log2Vec (0.941). Generally,

large services produce tens of millions of logs everyday. If a

log anomaly detection method generates too many false alarms

everyday, it will add a large amount of unnecessary work to

operators. Therefore, Log2Vec could improve the performance

of current log-based anomaly detection methods. Log2Vec

achieves better performance, because Log2Vec is able to

represent semantic information and handle OOV problems

when analyzing logs.

V. CASE STUDY

To further evaluate the performance of Log2Vec, we show a

case study on online log clustering, where logs are generated

by switches deployed in a top cloud service provider during a

month. Log clustering aims to make similar logs come closer

together with logs representing the same events in a given

space, where logs in the same category have similar semantics.

Log2Vec, template2Vec [7] and FT-tree [12] are deployed

to do logs clustering. Log2Vec generates 775 categories,

Template2Vec generates 862 categories, FT-tree generates

3212 categories. Confirmed by operators, the clustering results

of Log2Vec are the best for management. Most categories

generated by FT-tree are too fine-grained. Logs belonging to

the same event are divided into several categories because

FT-tree [12] (and other template methods) cannot bring two

logs containing different words together, even they have the

same semantics. Although Template2Vec can represent the

semantics of logs, it cannot handle OOV words, which will

generate more categories with similar semantics.

For example, Figure 8 shows four logs from above case

study. Log2Vec classifies them to two categories ({L1, L2},

L3. IFNET/2/ linkDown_clear(l):alarmID=0x0852003; The interface
status changes. Physical link is up,mainName =Eth- Trunk104

L4. IFNET/2/ linkDown_clear(l):alarmID=0x0852003; The interface

status changes. Physical link is up,mainIfname =Eth- Trunk104

L1. IFNET/2/ linkDown_active(l):CID=0x807a0406,
alarmID=0x0852007; The interface statuschanged.

L2. IFNET/2/ linkDown_active(l):CID=0x807a0405,

alarmID=0x0852003; The interface changed state.

Fig. 8: Case study on log clustering

{L3, L4}), Template2Vec generates three categories ({L1,

L2}, {L3}, {L4}), while FT-tree generates four categories

({L1}, {L2}, {L3}, {L4}). In L1 and L2, “status” and “state”

are synonyms. In L4, “mainIfname” is a OOV word, but it is

similar to “mainName” in L3. Log2Vec recognized them and

classified them into the same categories.

VI. DISCUSSION AND FUTURE WORK

The aim of this paper is to highlight the promise of NLP-

powered methods for logs, and discuss the challenges (e.g.,

log-specific information and OOV words) in the online log

analysis scenario that must be overcome to realize this vision.

Log2Vec is a framework, operators can replace any model or

add new models for log analysis.

Log2Vec can serve further downstream purposes, which we

consider for future work. We will use Log2Vec to improve

log-based service management tasks (e.g., failure prediction,

root cause analysis) in the future.

VII. CONCLUSION

Log representation is the first step of automated log anal-

ysis. We propose a semantic-aware representation framework,

Log2Vec, to improve the performance of online log analysis.

We present a measurement on OOV words and evaluate the

performance of OOV word processor in Log2Vec. In addition,

we apply Log2Vec to two popular log-based service manage-

ment tasks, including log classification and anomaly detection,

both demonstrating that Log2Vec can extract the crucial fea-

tures of logs and significantly improve the performance of

them. Traditional log representation methods limit many log

analysis applications, which require to have a representation

for any log. Log2Vec is able to assign a “soft” representation

to every log at runtime, in order to avoid false alarms induced

by new types of logs.

VIII. ACKNOWLEDGMENT

The work was supported by National Key R&D Program

of China (Grant No. 2019YFB1802504, 2018YFB1800405),

the National Natural Science Foundation of China (Grant

Nos. 61772307, 61902200 and 61402257), the China Post-

doctoral Science Foundation (2019M651015) and the Bei-

jing National Research Center for Information Science and

Technology (BNRist). We thank the anonymous reviewers

for their valuable feedback. We thank Yuzhe Zhang, Yichen

Zhu, Yixuan Zhang, Ya Su, Tianke Zhang for their helpful

suggestions.

REFERENCES

[1] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. Deeplog:
Anomaly detection and diagnosis from system logs through deep learn-
ing. In Proceedings of the 2017 ACM SIGSAC Conference on Computer

and Communications Security, pages 1285–1298, 2017.

[2] Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He, Qi Xie, Zibin Zheng,
and Michael R Lyu. Tools and benchmarks for automated log parsing.
In 2019 IEEE/ACM 41st International Conference on Software Engi-

neering: Software Engineering in Practice (ICSE-SEIP), pages 121–130.
IEEE, 2019.

[3] Subhendu Khatuya, Niloy Ganguly, Jayanta Basak, Madhumita Bharde,
and Bivas Mitra. Adele: Anomaly detection from event log empiricism.
In IEEE INFOCOM 2018-IEEE Conference on Computer Communica-

tions, pages 2114–2122. IEEE, 2018.

[4] Shilin He, Qingwei Lin, et al. Identifying impactful service system
problems via log analysis. In Proceedings of the 2018 26th ACM Joint

Meeting on European Software Engineering Conference and Symposium

on the Foundations of Software Engineering, pages 60–70. ACM, 2018.

[5] Shenglin Zhang, Ying Liu, Weibin Meng, Zhiling Luo, Jiahao Bu, Sen
Yang, Peixian Liang, Dan Pei, Jun Xu, Yuzhi Zhang, et al. Prefix: Switch
failure prediction in datacenter networks. Proceedings of the ACM on

Measurement and Analysis of Computing Systems, 2(1):1–29, 2018.

[6] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R Lyu. Drain:
An online log parsing approach with fixed depth tree. In 2017 IEEE

International Conference on Web Services (ICWS), pages 33–40. IEEE,
2017.

[7] Weibin Meng, Ying Liu, Yichen Zhu, Shenglin Zhang, Dan Pei, Yuqing
Liu, Yihao Chen, Ruizhi Zhang, Shimin Tao, Pei Sun, et al. Loganomaly:
Unsupervised detection of sequential and quantitative anomalies in
unstructured logs. In Proceedings of the Twenty-Eighth International

Joint Conference on Artificial Intelligence, IJCAI-19. International Joint

Conferences on Artificial Intelligence Organization, volume 7, pages
4739–4745, 2019.

[8] Min Du and Feifei Li. Spell: Streaming parsing of system event logs.
In 2016 IEEE 16th International Conference on Data Mining (ICDM),
pages 859–864. IEEE, 2016.

[9] Michael Roth. Combining word patterns and discourse markers for
paradigmatic relation classification. In Proceedings of the 52nd Annual

Meeting of the Association for Computational Linguistics(ACL), pages
524–530, June 2014.

[10] Shenglin Zhang, Ying Liu, Dan Pei, Yu Chen, Xianping Qu, Shimin
Tao, Zhi Zang, Xiaowei Jing, and Mei Feng. Funnel: Assessing
software changes in web-based services. IEEE Transactions on Services

Computing, 11(1):34–48, 2016.

[11] Liang Tang, Tao Li, and Chang-Shing Perng. Logsig: Generating
system events from raw textual logs. In Proceedings of the 20th ACM

international conference on Information and knowledge management,
pages 785–794. ACM, 2011.

[12] Shenglin Zhang, Weibin Meng, Jiahao Bu, Sen Yang, Ying Liu, Dan
Pei, Jun Xu, Yu Chen, Hui Dong, Xianping Qu, et al. Syslog processing
for switch failure diagnosis and prediction in datacenter networks. In
2017 IEEE/ACM 25th International Symposium on Quality of Service

(IWQoS), pages 1–10. IEEE, 2017.

[13] Adetokunbo AO Makanju, A Nur Zincir-Heywood, and Evangelos E
Milios. Clustering event logs using iterative partitioning. In Proceedings

of the 15th ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 1255–1264, 2009.

[14] Weibin Meng, Ying Liu, Shenglin Zhang, Dan Pei, Hui Dong, Lei Song,
and Xulong Luo. Device-agnostic log anomaly classification with partial
labels. In 2018 IEEE/ACM 26th International Symposium on Quality of

Service (IWQoS), pages 1–6. IEEE, 2018.

[15] Kim Anh Nguyen, Sabine Schulte im Walde, and Ngoc Thang Vu.
Integrating distributional lexical contrast into word embeddings for
antonym-synonym distinction. arXiv preprint arXiv:1605.07766, 2016.

[16] Luchen Tan, Haotian Zhang, Charles Clarke, and Mark Smucker.
Lexical comparison between wikipedia and twitter corpora by using
word embeddings. In Proceedings of the 53rd Annual Meeting of the

Association for Computational Linguistics and the 7th International

Joint Conference on Natural Language Processing (Volume 2: Short

Papers), pages 657–661, 2015.

[17] Quan Liu, Hui Jiang, Si Wei, Zhen-Hua Ling, and Yu Hu. Learning
semantic word embeddings based on ordinal knowledge constraints.
In Proceedings of the 53rd Annual Meeting of the Association for

Computational Linguistics and the 7th International Joint Conference

on Natural Language Processing (Volume 1: Long Papers), pages 1501–
1511, 2015.

[18] Tomas Mikolov, Quoc V Le, and Ilya Sutskever. Exploiting similarities
among languages for machine translation. arXiv:1309.4168, 2013.

[19] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge
graph and text jointly embedding. In Proceedings of the 2014 conference

on empirical methods in natural language processing (EMNLP), pages
1591–1601, 2014.

[20] George A Miller. Wordnet: a lexical database for english. Communica-

tions of the ACM, 38(11):39–41, 1995.
[21] Katrin Fundel, Robert Küffner, and Ralf Zimmer. Relex—relation

extraction using dependency parse trees. Bioinformatics, 23(3):365–371,
2007.

[22] Yuval Pinter, Robert Guthrie, and Jacob Eisenstein. Mimicking word
embeddings using subword rnns. In Proceedings of the 2017 Conference

on Empirical Methods in Natural Language Processing (EMNLP), pages
102–112, 2017.

[23] Shilin He, Jieming Zhu, et al. Experience report: System log analysis
for anomaly detection. In 2016 IEEE 27th International Symposium on

Software Reliability Engineering (ISSRE), pages 207–218. IEEE, 2016.
[24] Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and Xuewei

Chen. Log clustering based problem identification for online service
systems. In Proceedings of the 38th International Conference on

Software Engineering Companion (ICSE), pages 102–111. ACM, 2016.
[25] Adam J. Oliner and Jon Stearley. What supercomputers say: A study of

five system logs. IEEE International Conference on Dependable Systems

and Networks (DSN’07), pages 575–584, 2007.

	Introduction
	Related Work
	Design of Log2Vec
	Observation
	Overview of Log2Vec
	Log-specific Word Embedding
	Out-of-vocabulary Word Processor

	Experiments
	Experimental Setting
	Datasets
	Experimental Setup

	OOV Words
	Measurements of OOV
	Evaluation of the OOV Word Processor

	Task 1: Log Classification
	Task description
	Baselines
	Experimental results

	Task 2: Anomaly Detection
	Task description
	Baselines
	Experimental results

	Case Study
	Discussion and Future Work
	Conclusion
	Acknowledgment
	References

