
Diagnosing Root Causes of Intermittent Slow Queries
in Cloud Databases

Minghua Ma∗1,2, Zheng Yin2, Shenglin Zhang†3, Sheng Wang2, Christopher Zheng1, Xinhao Jiang1,

Hanwen Hu1, Cheng Luo1, Yilin Li1, Nengjun Qiu2, Feifei Li2, Changcheng Chen2 and Dan Pei1

1Tsinghua University, {mmh16, luo-c18, liyilin16}@mails.tsinghua.edu.cn, peidan@tsinghua.edu.cn
2Alibaba Group, {yinzheng.yz, sh.wang, nengjun.qnj, lifeifei}@alibaba-inc.com

3Nankai University, zhangsl@nankai.edu.cn

ABSTRACT
With the growing market of cloud databases, careful detection and
elimination of slow queries are of great importance to service sta-
bility. Previous studies focus on optimizing the slow queries that
result from internal reasons (e.g., poorly-written SQLs). In this
work, we discover a different set of slow queries which might be
more hazardous to database users than other slow queries. We name
such queries Intermittent Slow Queries (iSQs), because they usu-
ally result from intermittent performance issues that are external
(e.g., at database or machine levels). Diagnosing root causes of
iSQs is a tough but very valuable task.

This paper presents iSQUAD, Intermittent Slow QUery Anomaly
Diagnoser, a framework that can diagnose the root causes of iSQs
with a loose requirement for human intervention. Due to the com-
plexity of this issue, a machine learning approach comes to light
naturally to draw the interconnection between iSQs and root causes,
but it faces challenges in terms of versatility, labeling overhead and
interpretability. To tackle these challenges, we design four com-
ponents, i.e., Anomaly Extraction, Dependency Cleansing, Type-
Oriented Pattern Integration Clustering (TOPIC) and Bayesian Case
Model. iSQUAD consists of an offline clustering & explanation
stage and an online root cause diagnosis & update stage. DBAs
need to label each iSQ cluster only once at the offline stage un-
less a new type of iSQs emerges at the online stage. Our evalu-
ations on real-world datasets from Alibaba OLTP Database show
that iSQUAD achieves an iSQ root cause diagnosis average F1-
score of 80.4%, and outperforms existing diagnostic tools in terms
of accuracy and efficiency.

PVLDB Reference Format:
M. Ma, Z. Yin, S. Zhang, S. Wang, C. Zheng, X Jiang, H. Hu, C. Luo, Y. Li,
N. Qiu, F. Li, C. Chen and D. Pei. Diagnosing Root Causes of Intermittent
Slow Queries in Cloud Databases. PVLDB, 13(8): 1176-1189, 2020.
DOI: https://doi.org/10.14778/3389133.3389136

*Work was done while the author was interning at Alibaba Group.
†Work was done while the author was a visiting scholar at Alibaba
Group.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 8
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3389133.3389136

1. INTRODUCTION
The growing cloud database services, such as Amazon Rela-

tional Database Service, Azure SQL Database, Google Cloud SQL
and Alibaba OLTP Database, are critical infrastructures that sup-
port daily operations and businesses of enterprises. Service inter-
ruptions or performance hiccups in databases can lead to severe rev-
enue loss and brand damage. Therefore, databases are always under
constant monitoring, where the detection and elimination of slow
queries are of great importance to service stability. Most database
systems, such as MySQL, Oracle, SQL Server, automatically log
detailed information of those queries whose completion time is
over a user-defined threshold [7, 37, 43], i.e., slow queries. Some
slow queries result from internal reasons, such as nature of com-
plexity, lack of indexes and poorly-written SQL statements, which
can be automatically analyzed and optimized [13,32,34,42]. Many
other slow queries, however, result from intermittent performance
issues that are external (e.g., at database or machine levels), and we
name them Intermittent Slow Queries (iSQs).

Usually, iSQs are the cardinal symptom of performance issues or
even failures in cloud databases. As iSQs are intermittent, service
developers and customers expect them to be responsive as normal,
where sudden increases of latency have huge impacts. For exam-
ple, during web browsing, an iSQ may lead to unexpected web page
loading delay. It has been reported that every 0.1s of loading de-
lay would cost Amazon 1% in sales, and every 0.5s of additional
load delay for Google search results would led to a 20% drop in
traffic [30]. We obtain several performance issue records carefully
noted by DBAs of Alibaba OLTP Database in a year span: when a
performance issue occurs, a burst of iSQs lasts for minutes. As a
matter of fact, manually diagnosing root causes of iSQs takes tens
of minutes, which is both time consuming and error-prone.

Diagnosing root causes of iSQs gets crucial and challenging in
cloud. First, iSQ occurrences become increasingly common. Mul-
tiple database instances may reside on the same physical machines
for better utilization, which in turn can cause inter-database re-
source contentions. Second, root causes of iSQs vary greatly. In-
frastructures of cloud databases are more complex than those of
on-premise databases [29], making it harder for DBAs to diagnose
root causes. Precisely, this complexity can be triggered by instance
migrations, expansions, storage decoupling, etc. Third, massive
database instances in cloud make iSQs great in population. For ex-
ample, tens of thousands of iSQs are generated in Alibaba OLTP
Database per day. In addition, roughly 83% of enterprise work-
loads are forecasted to be in the cloud by 2020 [12]. This trend
makes it critical to efficiently diagnose the root causes of iSQs.

In this work, we aim to diagnose root causes of iSQs in cloud
databases with minimal human intervention. We learn about symp-

toms and root causes from failure records noted by DBAs of Al-
ibaba OLTP Database, and we underscore four observations:

1) DBAs need to scan hundreds of Key Performance Indicators
(KPIs) to find out performance issue symptoms. These KPIs are
classified by DBAs to eight types corresponding to different root
causes (as summarized in Table 1). Traditional root cause analysis
(RCA) [2,6,9,18], however, does not have the capability of specif-
ically distinguishing multiple types of KPI symptoms to diagnose
the root causes of iSQs. For instance, by using system monitoring
data, i.e., single KPI alone (or a single type of KPIs), we usually
cannot pinpoint iSQs’ root causes [10].

2) Performance issue symptoms mainly include different patterns
of KPIs. We summarize three sets of symmetric KPI patterns, i.e.,
spike up or down, level shift up or down, and void. We observe
that even if two iSQs have the identical set of anomalous KPIs (but
with distinct anomaly behaviors), their root causes can differ. Thus,
purely based on detecting KPI anomalies as normal or abnormal we
cannot precisely diagnose iSQs’ root causes [6, 45].

3) One anomalous KPI is usually accompanied by another one
or more anomalous KPIs. Certain KPIs are highly correlated [24],
and rapid fault propagation in databases renders them anomalous
almost simultaneously. We observe that the way in which a KPI
anomaly propagates can be either unidirectional or bidirectional.

4) Similar symptoms are correlated to the same root cause. In
each category of root causes, KPI symptoms of performance issues
are similar to each other’s. For instance, KPIs in the same type can
substitute each other, but their anomaly categories remain constant.
Nevertheless, it is infeasible to enumerate and verify all possible
causalities between anomalous KPIs and root causes [36].

As a result, iSQs with various KPI fluctuation patterns appear to
have complex relationships with diverse root causes. To discover
and untangle such relationships, we have made efforts to explore
machine learning (ML) based approaches, but have encountered
many challenges during this process. First, anomalous KPIs need
to be properly detected when an iSQ occurs. Traditional anomaly
detection methods recognize only anomalies themselves, but not
anomaly types (i.e., KPI fluctuation changes such as spike up or
down, level shift up or down). The availability of such information
is vital to ensure high accuracy of subsequent diagnoses. Second,
based on detected KPI fluctuation patterns, the root cause of that
iSQ has to be identified from numbers of candidates. Standard su-
pervised learning methods are not suitable for such diagnoses be-
cause the case-by-case labeling of root causes is prohibitive. An
iSQ can trigger many anomalous KPIs and lead to tremendous in-
vestigation, taking hours of DBAs’ labor. Third, though unsuper-
vised learning (e.g., clustering) is an eligible approach to easing
the labeling task for DBAs, it only retains limited efficacy to in-
spect every cluster. It is known to be hard to make clusters that are
both intuitive (or interpretable) to DBAs and accurate [26].

To address the aforementioned challenges, we design iSQUAD
(Intermittent Slow QUery Anomaly Diagnoser), a comprehensive
framework for iSQ root cause diagnoses with a loose requirement
for human intervention. In detail, we adopt Anomaly Extraction
and Dependency Cleansing in place of traditional anomaly detec-
tion approaches to tackle the first challenge of anomaly diversity.
For labeling overhead reduction, Type-Oriented Pattern Integra-
tion Clustering (TOPIC) is proposed to cluster iSQs of the same
root causes together, considering both KPIs and anomaly types.
In this way, DBAs only need to explore one representative root
cause in each cluster rather than label numbers of them individu-
ally. For clustering interpretability, we take advantage of Bayesian
Case Model to extract a case-based representation for each cluster,
which is easier for DBAs to investigate. In a nutshell, iSQUAD

consists of two stages: an offline clustering & explanation stage
and an online root cause diagnosis & update stage. The offline
stage is run first to obtain the clusters and root causes, which are
then used by the online stage for future diagnoses. DBAs only need
to label each iSQ cluster once, unless a new type of iSQs emerges.
By using iSQUAD, we significantly reduce the burden of iSQ root
cause diagnoses for DBAs on cloud database platforms.

The key contributions of our work are as follows:

• We identify the problem of Intermittent Slow Queries in cloud
databases, and design a scalable framework called iSQUAD that
provides accurate and efficient root cause diagnosis of iSQs. It
adopts machine learning techniques, while overcomes the inher-
ent obstacles in terms of versatility, labeling overhead and inter-
pretability.
• We apply Anomaly Extraction of KPIs in place of anomaly de-

tection to distinguish anomaly types. A novel clustering algo-
rithm TOPIC is proposed to reduce the labeling overheads.
• To the best of our knowledge, we are the first to apply and inte-

grate case-based reasoning via the Bayesian Case Model [23] in
database domain and to introduce the case-subspace representa-
tions to DBAs for labeling.
• We conduct extensive experiments for iSQUAD’s evaluation and

demonstrate that our method achieves an average F1-score of
80.4%, i.e., 49.2% higher than that of the previous technique.
Furthermore, we have deployed a prototype of iSQUAD in a
real-world cloud database service. iSQUAD helps DBAs diag-
nose all ten root causes of several hundred iSQs in 80 minutes,
which is approximately thirty times faster than traditional case-
by-case diagnosis.

The rest of this paper is organized as follows: §2 describes iSQs,
the motivation and challenges of their root cause diagnoses. §3
overviews our framework, iSQUAD. §4 discusses detailed ML tech-
niques in iSQUAD that build comprehensive clustering models. §5
shows our experimental results. §6 presents a case study in a real-
world cloud database and our future work. §7 reviews the related
work, and §8 concludes the paper.

2. BACKGROUND AND MOTIVATION
In this section, we first introduce background on iSQs. Then,

we conduct an empirical study from database performance issue
records to gain some insights. Finally, we present three key chal-
lenges in diagnosing the root causes of iSQs.

2.1 Background
Alibaba OLTP Database. Alibaba OLTP Database (in short as Al-
ibaba Database) is a multi-tenant DBPaaS supporting a number of
first-party services including Taobao (customer-to-customer online
retail service), Tmall (business-to-consumer online retail service),
DingTalk (enterprise collaboration service), Cainiao (logistics ser-
vice), etc. This database houses over one hundred thousand ac-
tively running instances across tens of geographical regions. To
monitor the compliance with SLAs (Service-Level Agreements),
the database is equipped with a measurement system [9] that con-
tinuously collects logs and KPIs (Key Performance Indicators).

Intermittent Slow Queries (iSQs). Most database systems, such
as MySQL, Oracle, SQL Server, automatically record query time
of each query execution [7, 37, 43]. The query time is the time be-
tween when an SQL query is submitted to, and when its results are
returned by, the database. We formally define Intermittent Slow
Queries (iSQs) as follows. For a SQL query Q, its tth occurrence
Qt (whose observed execution time is Xt) is an iSQ if and only if
Xt > z and P (Xi > z) < ε, where 1 ≤ t, i ≤ T (T is the total

Message Queue

Queries Log Intermittent Slow
Queries

KPIs

Servers
Instances

Shared Storage

Data Warehouse

Cloud Database

Figure 1: The architecture of the data collection system for Al-
ibaba OLTP Database.

number of Q’s recent occurrences), z is slow query threshold, and
ε is iSQ probability threshold. For interactive transactional work-
loads on Alibaba Database, DBAs empirically set z = 1s, ε =
0.01, and T = 104. Note that these thresholds can be dynamically
tuned (e.g., using percentiles and standard deviations) as workload
changes, which however is not the focus of this work. The iSQs
occur intermittently, which is guaranteed by the probability thresh-
old ε. For example, Fig. 2(a) shows the query time probability
distribution of one SQL. In this plot, those queries whose query
time is over one second take up 0.0028. These iSQs are resulted
from intermittent external performance issues (e.g., at database or
machine levels). On the contrary, Fig. 2(b) shows another SQL that
is a typical slow query, because it is slow for each execution.

The iSQs account for 1% of the slow queries, but they have a
huge impact. Other type of slow queries are mostly caused by the
nature of complexity of tasks and are usually non-interactive and
tolerable (which takes up about 79%). We already have methods to
handle the remaining slow queries (20%) by, e.g., adding indexes or
re-writing SQL statements. Though iSQs are small in population,
they are still tens of thousands in number every day. Dealing with
iSQs is of great importance, since, when they occur unexpectedly,
the experience of end users is severely impacted. Therefore, it is
critical to design a solution to diagnosing the root causes of iSQs.

2.2 Observations
We obtain several performance issue records from Alibaba OLTP

Database in a year span. These records, containing performance
issue symptoms and root causes, are recorded by DBAs once per-
formance issues happen. We observe that all records share a com-
mon symptom, i.e., a burst of iSQs which last for minutes. When
a performance issue occurs, a number of normal queries of online
services are affected and become much slower than usual. Thus,
understanding the root cause of iSQs is important to mitigate them.
Studying the records offers insights to design a root cause analysis
framework. In this work, we only consider records that have been
resolved. For confidential reasons, we have to hide details of these
records and report relatively rough data instead.

KPIs are important to locate iSQs’ root causes. When a per-
formance issue arises, DBAs need to scan hundreds of Key Perfor-
mance Indicators (KPIs) to find its symptoms. A KPI captures a
system unit’s real-time performance or behavior in a database sys-
tem. KPIs are one of the most important and useful monitoring
data for DBAs to diagnose performance issues. For example, TCP
Response Time (tcp-rt) is used in [9] to detect performance anoma-
lies. Any single KPI alone, however, cannot capture all types of
performance issues [35]. Indeed, diverse types of KPIs are track-
ing various aspects of system status. For instance, usually hundreds
of KPIs are monitored for MySQL [3].

In this work, we focus on iSQs’ root causes that can be explained
or reflected by KPIs. These KPIs are not only collected from phys-
ical machines and docker instances, but also from MySQL config-
urations. For each iSQ, we obtain the exact time and the location

0 1 2 3 4 5
Query Time (s)

0.1

1.0

10.0

De
ns

ity

Xt > 1
P(Xt > 1) < 0.01: iSQs

(a) PDF of iSQs

0 1 2 3 4 5
Query Time (s)

0.1

1.0

10.0

De
ns

ity

Xt > 1: Slow Queries

(b) PDF of slow queries

Figure 2: Query time probability distribution of two SQLs. (a)
The long tail part represents the iSQs. (b) Slow queries.

Table 1: KPI types w.r.t instances and physical machines
Type # KPIs Example

Instance
(45)

CPU 2 docker.cpu-usage
I/O 15 mysql.io-bytes
Workload 13 mysql.tps
TCP RT [9] 12 tcp.rt99
Memory 3 mysql.buffer-pool-reads

Physical
Machine
(14)

CPU 6 cpu.usage
I/O 4 io.wait-usage
Network 4 net.receive-usage

(the instance or physical machine) of the performance issue. With
the help of experienced DBAs, we choose 59 KPIs, classified into
eight types as shown in Table 1. They cover almost all conceivable
features of performance issues that may cause iSQs.

The anomaly types of KPIs should be paid attention to. Per-
formance issue symptoms can be represented by different types of
KPI patterns. From these records, KPI symptoms can be summa-
rized into four anomaly types, i.e., spike, level shift-up, level shift-
down (KPI witnesses a sudden increase / decrease or ramp-ups /
downs for a long time) and void (KPI value is zero or missing), as
shown in Fig. 3. Previous anomaly detection algorithms [31, 33]
focus on whether KPIs are anomalous or not. However, DBAs not
only check the presence of an anomaly, but also pay more attention
to the exact type of it.

We present two typical cases where iSQs can occur. Consider
the first case in Fig. 4, where two instances (usually without al-
locating fixed I/O resources in practice) are simultaneously run-
ning on the same physical machine. The first instance undertakes
a database backup that is unavoidably resource-demanding, and it
consequently triggers an I/O related anomaly (reflected in one or
more I/O-related KPIs). Since these two instances are sharing a
fixed amount of I/O resources, the queries inside Instance 2 are
heavily impacted and hence appear to be iSQs. This case sug-
gests that iSQs may occur due to the negative influence of their
surrounding environments, such as related or “neighboring” slow
queries. The second case involves a physical machine with only
one instance on it. If there is a sudden increase in the overall work-
load of this instance (e.g., caused by an online flash sale event),
one or more CPU-related KPIs can become alarmingly anomalous.
Hence, queries inside this only instance become iSQs. The second
case shows that abnormal workloads may lead to iSQs as well.

KPI anomalies are highly correlated. One anomalous KPI
may be most of the time accompanied by another one or more
anomalous KPIs. Since systems have complex relationships among
components, KPIs are highly correlated with each other [24]. We
find that fault propagation can be either unidirectional or bidirec-
tional and the relation between two KPIs is not necessarily mu-

18:50 18:55 19:00 19:05 19:10

m
ys

ql
.tp

s

(a) Spike Up
12:20 12:25 12:30 12:35

m
ys

ql
.q

ps

(b) Spike Down
23:15 23:20 23:25 23:30 23:35

m
ys

ql
.b

yt
es

-s
en

t

(c) Level Shift Up
09:05 09:10 09:15 09:20

do
ck

er
.io

-re
ad

(d) Level Shift Down

Figure 3: Four types of anomalies. A red dash line signals an occurrence of an iSQ. (The exact values of KPIs are hidden for
confidential reasons.)

Figure 4: An example – two typical cases of intermittent slow
queries (iSQs).

tual. For example, anomalies on instances (docker.cpu-usage) are
highly possible to incur their anomalous counterparts on physical
machines (cpu.usage), whereas problematic KPIs on physical ma-
chines (cpu.usage) may not always see corresponding problems on
their instances’ KPIs (docker.cpu-usage).

Similar KPI patterns are correlated with the same root cause.
DBAs summarize ten types of root causes in cloud database based
on performance issue records (Table 2). In each type of root causes,
KPI symptoms of failure records are similar. KPIs in the same type
can substitute each other, but their anomaly types are constant. For
example, “mysql.update-ps” and “mysql.delete-ps” are in the same
group of “mysql workload per second (ps)”. They both indicate the
same root cause – workload anomaly. As a result, when perform-
ing RCA, DBAs do not have to care about whether the anomaly is
caused by the SQL of “update” or “delete”.

A cloud database possesses features, such as instance migrations,
capacity expansions, host resource sharing, or storage decoupling,
that can cause iSQs. We explain how root causes are related to the
features of a cloud database: in a cloud database service, a physi-
cal machine can host several database instances, which may lead to
resource contentions, such as host CPU, I/O, network bottleneck.
Besides, intensive workload can occur more frequently. For exam-
ple, intensive workload is the root causes of many iSQs. Because of
storage decoupling, the low latency of data transmissions cannot al-
ways be guaranteed between computation and storage nodes [29].
Therefore, queries with large I/O demand may cause I/O bottle-
necks and accompanying slow SQLs.

2.3 Challenges
We encounter three challenges when applying machine learning

techniques to our diagnostic framework.
Anomaly Diversity. A large number of state-of-the-art anomaly
detectors are running, and scrutinizing KPI data all the time. Most
of them can quickly tell whether an anomaly occurs, but this type of
binary information is not sufficient in our scenario. This is because
iSQs tend to simultaneously lead to multiple anomalous KPIs, but
in fact the timelines of these KPIs can differ significantly.

Under this special circumstance, distinguishing only between the
normal and the abnormal might not produce satisfactory results,
again, taking Fig. 4 as an example. They both contain the same
seven KPIs but in different anomaly types. We may come to the in-
correct conclusion that the two groups of performance issue (iSQs)
have the same root causes (while they actually do not). Further-
more, it is preferable to have a method that can achieve high accu-
racy, low running time, and high scalability in detecting anomalies
in large datasets.

Limitation of existing solutions: combinations of anomaly types
may correspond to various root causes, so current anomaly detec-
tors generally overlook and over-generalize the types of anomalies.
Such detectors may erroneously filter out a considerable amount of
information in the (monitoring data) pre-processing phase, and thus
degrade the quality of the (monitoring) dataset.
Labeling Overheads. Suspecting there is strong correspondences
and correlations among KPIs’ anomalous performances and their
root causes [6, 45], we seek to ascertain such relationships by inte-
grating DBAs’ domain knowledge into our machine learning ap-
proaches. To this end, we ask experienced DBAs to label root
causes of iSQs. The amount of work, however, is massive if the
historical iSQs have to be manually diagnosed case by case.

Even though DBAs have domain knowledge, the labeling pro-
cess is still painful [31]. For each anomaly diagnosis, a DBA must
first locate and log onto a physical machine, and then inspect logs
and KPIs related to KPIs to reach a diagnostic conclusion. To suc-
cessfully do so, DBAs need to understand KPI functionalities &
categories, figure out the connections between the anomalous KPIs,
comprehend KPI combinations, locate multiple anomalous KPIs &
machines & instances, and anticipate possible results & impacts on
the quality of services. Typically, DBAs analyze anomalies case by
case, but this way of diagnosing them is both time-consuming and
labor-intensive. For example, one tricky anomaly diagnosis case
handled by an experienced DBA can take hours or even a whole
day. Thus, scrutinizing raw data is tedious and error-prone, whereas
the error tolerance level we can afford is very low.

Limitation of existing solutions: Previous works [45] reproduce
root causes in testbed experiments rather than label root causes.
In our case, however, simply reproducing known root causes in a
testbed experiment is not feasible because it is hard to mimic such
a large number of machines, instances, activities, interactions, etc.
Besides, datasets of custom workloads are usually not in good con-
ditions as for availability and maintenance. Aside of the complex-
ity of making a facsimile of the original scenario for the experi-
ment, even if we manage to reproduce the past scenarios, experi-
ment statistics are expected to be prohibitive to process.
Interpretable Models. Being able to explain or narrate what causes
the problem when it arises (which we call the interpretability) is
essential in our case. To be able to do so, DBAs need to be pre-
sented with concrete evidence of subpar machine and instance per-

Figure 5: Framework of iSQUAD.

formances, such as anomalous KPIs, so that they can take actions
accordingly. DBAs typically do not fully trust in machine learning
black-box models for drawing conclusions for them, because those
models tend to produce results that are hard to generalize, while
real-time analyses have to deal with continuously changing scenar-
ios with various possible inputs. Therefore, we need to design our
diagnostic framework for better interpretability.

Unfortunately, an inevitable trade-off exists between a model’s
accuracy and its interpretability to human [26]. This issue arises
because the increasing system complexity boosts its accuracy at the
cost of interpretability, i.e., human can hardly understand the result
and the intricacy within the model as it becomes too complicated.
Therefore, how to simultaneously achieve both good interpretabil-
ity and high accuracy in our analysis system and how to push the
trade-off frontier outwards are challenging research problems.

Limitation of existing solutions: Employing decision trees [15]
to explain models is quite common. For example, DBSherlock
[45] constructs predicate-based illustrations of anomalies with a
decision-tree-like implementation. The reliability, however, de-
pends heavily on feeding precise information at the onset, because
even a nuance in input can lead to large tree modifications, which
are detrimental to the accuracy. Further, decision trees may also
incur the problem of “paralysis of analysis”, where excessive infor-
mation instead of key elements is presented to decision makers. Ex-
cessive information could significantly slow down decision-making
processes and affect their efficiencies.

3. OVERVIEW
We design a framework – iSQUAD (Intermittent Slow QUery

Anomaly Diagnoser), as shown in Fig. 5. The iSQUAD framework
consists of two stages: an offline analysis & explanation and an
online root cause diagnosis & update. This design of separation
follows the common pattern of offline learning and online applying.

Typically, iSQs with the same or similar KPIs have the same
root causes. Thus, it is necessary that the model should draw con-
nections between iSQs and their root causes. DBAs may partici-
pate to investigate this connection with high accuracy because of
their domain knowledge. It is infeasible to directly assign root
causes to iSQ clusters without labeling. Hence, the offline stage
is primarily for clustering iSQs based on a standard and present-
ing them to DBAs who can more easily recognize and label root
causes. We feed datasets of past iSQs to the offline stage, and then

concentrate on certain intervals given specific timestamps. Things
become straightforward as we can focus on only selected time in-
tervals from KPIs’ timelines and undertake anomaly extraction on
KPIs within the intervals. Next, we have all anomalous KPIs dis-
cretized. Then, we apply the dependency cleansing on this partial
result. Namely, if we have two abnormal KPIs A and B, and we
have domain knowledge that A’s anomaly tends to trigger that of B,
we “cleanse” the anomaly alert on B. Hence, we can assume that all
the anomalies are independent after this step. We then perform the
Type-Oriented Pattern Integration Clustering (TOPIC) to obtain a
number of clusters. For each cluster, we apply the Bayesian Case
Model to get a prototypical iSQ and its fundamental KPI anoma-
lies as the feature space to represent this whole cluster. Finally,
we present these clusters with their representations to DBAs who
investigate and assign root causes to iSQ clusters.

In the online root cause diagnosis & update stage, iSQUAD au-
tomatically analyzes an incoming iSQ and its KPIs. We execute
the online anomaly extraction and dependency cleansing like in the
offline stage and gain its abnormal KPIs. Subsequently, we match
the query to a cluster. Specifically, we compare this query with ev-
ery cluster based on the similarity score, and then match this query
with the cluster whose pattern is the closest to this query’s. After
that, we use the root cause of this cluster noted by DBAs to help
explain what triggers this iSQ. If the query is not matched with any
existing clusters, a new cluster is generated and DBAs will investi-
gate and assign a root cause to it. New discovery in the online stage
can update the offline stage result.

4. iSQUAD DETAILED DESIGN
In this section, we introduce the details of iSQUAD, whose com-

ponents are linked with our observations in §2.2. Gaining insights
from the first and second observations, we need an Anomaly Ex-
traction approach to extract patterns from KPI statistics at the time
of iSQs’ occurrences in order to accurately capture the symptoms
(§4.1.1). According to the third observation, we must eliminate
the impact of fault propagation of KPIs. Thus, we design a De-
pendency Cleansing strategy to guarantee the independence among
KPI anomalies (§4.1.2). Based on the fourth observation, simi-
lar symptoms are correlated to the same root causes. Therefore,
we propose TOPIC, an approach to clustering queries based on
anomaly patterns as well as KPI types (§4.1.3). Since clustering
results are not interpretable enough to identify all root causes due

to the lack of case-specific information, the Bayesian Case Model
(BCM) is utilized to extract the “meanings” of clusters (§4.1.4).

4.1 Offline Analysis and Explanation

4.1.1 Anomaly Extraction
Given the occurrence timestamps of iSQs, we can collect the re-

lated KPI segments from the data warehouse (as shown in Fig. 1).
As previously discussed, we need to extract anomalies type from
the KPIs. For example, we determine whether a given anomaly is a
spike up or down, level shift up or down, even void, corresponding
to part (a), (b), (c) (d) in Fig. 3 respectively. We catch this precious
information as it can be exceptionally useful for query categoriza-
tion and interpretation.

To identify spikes, we apply Robust Threshold [9] that suits this
situation quite well. As an alternative to the combination of mean
and standard deviation to decide a distribution, we use the com-
bination of median and median absolute deviation, which works
much more stably because it is less prone to uncertainties like data
turbulence. To further offset the effect of data aberrations, the Ro-
bust Threshold utilizes a Cauchy distribution in place of the normal
distribution, as the former one functions better in case of many out-
liers. The observation interval is set to one hour by default and the
threshold is set empirically.

For level shifts, given a specific timestamp, we split the KPI
timeline at that point and generate two windows. Next, we exam-
ine whether the distributions of the two timelines are alike or not. If
a significant discrepancy is present and discovered by T-Test [39]
(an inferential statistic for testing two groups’ mean difference),
iSQUAD will determine that a level shift occurs. For level-shift de-
tection, the window is set to 30 minutes by default and the t-value
threshold is set empirically.

Note that there are various other excellent anomaly detectors and
algorithms, but comparing anomaly detectors is not a contribution
of this work. As far as we can tell from our observation, this set of
anomaly extraction methods is both accurate and practical.

4.1.2 Dependency Cleansing
To better understand the KPIs’ impacts on iSQs, we need to en-

sure that all the KPIs chosen for consideration are independent
from each other, so that no correlation or over-representation of
KPIs impacts our result. To cleanse all potential underlying de-
pendencies, a comparison for each pair of KPIs is necessary. As
aforementioned, two KPI anomalies do not necessarily have a mu-
tual correlation. Therefore, unlike some previous works that cal-
culate the mutual information for comparison (e.g., DBSherlock),
we apply the confidence [1] based on the association rule learn-
ing between two KPIs to determine whether the two KPIs have a
correlation. Confidence indicates the number of times the if-then
statements are found true.

confidence(A→ B) =
|A ∩B|
|A| (1)

where A and B represent two arbitrary KPIs. Specifically, the con-
fidence from A to B is the number of the co-occurrences of A’s
anomalies and B’s anomalies divided by the number of the occur-
rences of A’s anomalies.

The confidence value spans from 0 to 1, with the left extreme
suggesting complete independence of two KPIs and the right ex-
treme complete dependence. In this case, not only 1 denotes de-
pendence. Instead, within the interval, we set a threshold above
which two KPIs are considered dependent to reflect real-life scenar-
ios. We permute all KPIs and apply this strategy to each KPI pair.

Figure 6: Two queries with various KPIs and similar patterns.

For example, an anomaly in an instance’s CPU utilization usually
comes with an anomaly in that of the instance’s physical machine.
Therefore, these two KPIs are positively associated to a large ex-
tent. If we compute the confidence, we may get the result “1”,
which suggests that the two KPIs are dependent. Consequently, we
drop all anomalies of physical machine’s CPU utilization and keep
those of instance’s CPU utilization. In this part, we cleanse KPI
anomalies considering anomaly propagation and reserve the source
KPI anomalies. Our rules and results of Dependency Cleansing are
verified by experienced DBAs as demonstrated in §5.4.

4.1.3 Type-Oriented Pattern Integration Clustering
To begin with, we familiarize readers with some preliminaries

and terminologies used in this section. A pattern encapsulates the
specific combination of KPI states (normal or of one of the anomaly
categories) for an iSQ. To illustrate, two queries in Fig. 6 have two
similar but different patterns. As long as there is one or more dis-
crepancies in between, two patterns are considered different. A
KPI type (e.g., CPU-related KPIs, I/O-related KPIs) indicates the
type that this KPI belongs to. It comprises one or more KPIs while
a KPI falls into one KPI type only. We can roughly categorize KPIs
and their functionalities based on KPI types (Table 1).

Based on the observations in §2.2, we need to consider both the
patterns of iSQs and different types of KPIs to compute the simi-
larity. We define the similarity Sij of two iSQs i and j as follows:

Sij =

√√√√(

T∑
t=1

|kit, kjt|2)/T (2)

where t is the number of KPI types and T denotes the sum of all t’s.
kit and kjt are the KPI’s anomaly states in KPI type t of iSQ i and
j, respectively. The idea behind this definition is to calculate the
quadratic mean of the similarity scores with respect to each type of
KPIs. Since the quadratic mean is no smaller than the average, it
guarantees that minimal KPI changes could not result in grouping
the incident with another root cause. |kit, kjt| is the similarity of
each KPI type, shown in Equation 3:

|kit, kjt| =
#Matching Anomaly States

#Anomaly States
(3)

This is the Simple Matching Coefficient [44], which computes two
elements’ similarity in a bitwise way. We adopt Simple Matching
Coefficient because it reflects how many KPIs possess the same
anomaly types. The relatively large number of indicators in certain
types of KPIs, however, may dominate compared with other indi-
cators that are minor in population. For instance, imagine that the
KPI type “I/O” consists of 18 KPI states while its “CPU” counter-
part has only 2 (Table 1). Theoretically, a high score of similarity in
“CPU” is prone to be out-weighted by a weak similarity in “I/O”.
This “egalitarian” method is not what we expect. To solve this
problem, we decide to separate the KPIs based on their types and
calculate the individual simple matching coefficient for each KPI
type. By doing so, for each KPI type, every pair of iSQs would
have a “partial similarity” (opposed to the “complete similarity”

that we would obtain from taking the quadratic mean of the simi-
larities of all KPIs) with the value in the interval [0, 1].

We describe the details of the clustering procedure as shown in
Algorithm 1. The dataset S, converted into a dictionary, contains
iSQs and their patterns discretized by Anomaly Extraction and De-
pendency Cleansing. The required input (i.e., threshold σ) is used
to determine how similar two iSQs should be to become homoge-
neous. To start with, we reverse S into D: the indices and values of
D are respectively the values (patterns) and clustered indices (iSQs)
of S (Line 2 to 3 in Algorithm 1). For the all-zero pattern, i.e., KPI
states are all normal, we eliminate it and its corresponding iSQs
from D and put them into the cluster dictionary C (Line 4 to 6).
This prerequisite checking guarantees that the iSQs with all-zero
pattern can be reasonably clustered together. The all-zero pattern
does not mean flawless. On the contrary, it usually implies prob-
lems with the MySQL core, and it is out of the scope of this paper.
Another purpose of this checking is to differentiate the patterns of
“X 0 0 0 0” & “0 0 0 0 0”, where X denotes an arbitrary anomaly
that can be of any type. The former pattern denotes when one KPI
is somehow anomalous while the later one is fully safe and sound,
and apparently they are distinct patterns in our scenario. These two
patterns, however, tend to be clustered into the same group if we do
not eliminate the all-zero pattern from D before the iteration. “All-
zero-pattern” means there are no anomalies in KPIs. These issues
are almost infeasible to diagnose due to lack of anomaly symptoms
from KPIs. We focus on root causes that can be explained or re-
flected by KPIs, and leave all-zero-pattern issues as future work.

To cluster iSQs based on patterns, we first store D’s patterns into
a KD-tree [4], a very common approach to searching for the nearest
element in clustering (Line 9). For each pattern i in D, the function
finds its nearest pattern j (Line 11). If both i and j are still inside D
and their patterns are similar (how to choose a reasonable similarity
threshold is introduced in §5.5), the function merges two patterns
into a new one (Line 10 to 14). Specifically, when we merge two
anomaly patterns, we first check their numbers of corresponding
iSQs in the dictionary D. The pattern with the larger number is
reserved, while the one with the smaller number is dropped with its
corresponding iSQs added to the former pattern’s counterpart. As
the precondition for this merging is the similarity checking, the two
iSQs are already very similar. Therefore, the merging policy in fact
has quite limited impact on the final result, and this speculation is
confirmed by our observation. The iteration terminates when the
size of D no longer changes (Line 15 to 16).

Note that, to improve computational efficiency, we use a dictio-
nary D to gather all the patterns first and then combine identical
ones. Also, for each pattern, we use a KD-tree to select the pat-
tern that satisfies the similarity check with the highest similarity
score and continue adjusting, so that the results can be more accu-
rate than its greedy counterpart. The time complexity is bounded
by O(n logn), where n is the number of different patterns inside
the dictionary D and is always no larger than the number of iSQs.
Therefore, this algorithm’s running time is positively associated
with the number of initial patterns.

4.1.4 Bayesian Case Model
With results of TOPIC, we aim to extract useful and suggestive

information from each cluster. Based on interviews to eight experi-
enced DBAs, we conclude that cases and influential indicators are
much more intuitive for diagnosis than plain-text statements. More
specifically, we expect to spot and select significant and illustrative
indicators to represent clusters. To realize this, we take advantage
of the Bayesian Case Model (BCM) [23] that is quite suitable for
this scenario. BCM is an excellent framework for extracting proto-

Algorithm 1: TOPIC
Data: Intermittent slow queries under clustering

S← [iSQindex : pattern]
Input: Similarity threshold σ
Output: Clusters’ dictionary C

1 C,D← empty dictionary
/* Reverse S into D: the indices and values

of D are respectively the values and
clustered indices of S */

2 for iSQindex in S do
3 add iSQindex to D[S[iSQindex]]
4 if all-zero pattern exists in D then
5 C← D.pop(all-zero pattern)
6 C← C+ PatternCluster(D)
7
8 PatternCluster (D):
9 KDTree(D.patterns)

10 for i in D.patterns do
/* find the nearest pattern to i */

11 j← KDTree.query(i)
/* i or j may be merged (Line 14) */

12 if i & j in D and CalculateSimilarity(i, j) > σ then
/* k is either i or j whichever has

a larger number of corresponding
iSQs */

13 k← argmaxl∈{i,j} D[l].length

14 D[k]← D.pop(i) + D.pop(j)
/* recursively cluster unmerged patterns

*/
15 if D remains unchanged then
16 return D
17 return PatternCluster(D)
18
19 CalculateSimilarity (Pattern x, Pattern y):
20 s← 0, κ← the set of all KPI categories
21 for t in κ do
22 α is a segment of x w.r.t. t
23 β is a segment of y w.r.t. t
24 s += SimpleMatchingCoefficient(α, β)2

25 return sqrt(s / κ.length)

typical cases and generating corresponding feature subspace. With
high accuracy preserved, BCM’s case-subspace representation is
also straight-forward and human-interpretable. Therefore, it is ex-
pected to enhance our model’s interpretability by generating and
presenting iSQ cases and their patterns for each cluster.

BCM has some specifications that need to be strictly followed.
First, it allows only discrete numbers to be present in the feature
spaces. According to the original BCM experiment [23], it selects
a few concrete features that play an important role in identifying the
cluster and the prototypical case. By analogy, we need to use BCM
to select several KPIs to support a leading or representative iSQ for
each cluster. Originally, the KPI timelines are all continuous data
collected directly from the instances or machines, so we discretize
them to represent different anomaly types in order to meet this pre-
condition. The discretization is achieved by Anomaly Extraction
as discussed in §4.1.1. The second requirement is that labels, i.e.,
cluster IDs, need to be provided as input. Namely, we need to first
cluster the iSQs and then feed them to BCM. Fortunately, we solve
this problem with the TOPIC model as discussed in §4.1.3.

In a nutshell, we meet the application requirements of BCM so
can apply it to produce the cases and feature subspaces for clusters.
With the help of those pieces of information, we are more able
to understand the result of clusters, and we can thus deliver more
suggestive information to DBAs.

Table 2: Root causes and corresponding solutions of iSQs labeled by DBAs for the offline clustering (174 iSQs) and online testing
dataset (145 iSQs), ordered by the percentage of root causes in the offline dataset.

No. Root Cause Offline Online Solution

1 Instance CPU Intensive Workload 27.6% 34.5% Scale up instance CPU
2 Host I/O Bottleneck 17.2% 17.2% Scale out host I/O
3 Instance I/O Intensive Workload 0.9% 15.8% Scale up instance I/O
4 Accompanying Slow SQL 8.6% 9.0% Limit slow queries
5 Instance CPU & I/O Intensive Workload 8.1% 4.8% Scale up instance CPU and I/O
6 Host CPU Bottleneck 7.5% 4.1% Scale out host CPU
7 Host Network Bottleneck 6.9% 4.1% Optimize network bandwidth
8 External Operations 6.9% 3.5% Limit external operations
9 Database Internal Problem 3.4% 3.5% Optimize database

10 Unknown Problem 2.9% 3.5% Further diagnosis and optimization

4.2 Online Root Cause Diagnosis and Update
By analogy to the offline stage, we follow the same procedures

of the Anomaly Extraction and Dependency Cleansing to prepare
the data for clustering. After discretizing and cleansing pattern of a
new iSQ, iSQUAD can match this query with a cluster for diagno-
sis. It traverses existing clusters’ patterns to find one pattern that is
exactly the same as that of this incoming query, or one that shares
the highest similarity score (above the similarity score σ) with this
incoming pattern. If iSQUAD indeed finds one cluster that meets
the requirement above, then the root cause of that cluster naturally
explains this anomalous query. Otherwise, iSQUAD creates a new
cluster for this “founding” query and DBAs are requested to diag-
nose this query with its primary root cause(s). Finally, the new clus-
ter as well as the diagnosed root cause are added to refine iSQUAD.
When the framework is used to analyze future iSQs, the new clus-
ter, like other clusters, is open for ensuing homogeneous queries if
their patterns are similar enough to this cluster’s.

5. EVALUATION
In this section, we describe how we initialize and conduct our ex-

periments to assess iSQUAD and its major designs. We evaluate the
whole iSQUAD framework, as well as individual components, i.e.,
Anomaly Extraction, Dependency Cleansing, TOPIC and BCM.

5.1 Setup
Datasets of Intermittent Slow Queries. We use a large number of
real-life iSQs, collected from diverse service workloads of Alibaba
OLTP Database, as our datasets in this study. These services are
complex online service systems that have been used by millions of
users across the globe. All of these diverse services are in various
application areas such as online retail, enterprise collaboration and
logistics, developed by different groups. We first randomly select
a certain number of instances running on the physical machines
of Alibaba Database, which simultaneously host hundreds of thou-
sands of instances. Next, for each instance, we select one iSQ at
each timestamp. That is, we choose only one iSQ for each unique
instance-host-timestamp signature. This selection guarantees that
we can safely assume that choosing one for analysis is sufficient
to represent its group of homogeneous queries. In sum, we obtain
three datasets of iSQs, one for an arbitrary day and two for one
week each. These datasets are random. In this way, our analyzed
iSQs represent almost all the types and typical behaviors of iSQs
given the variety of the dataset size and time span.
KPIs. We obtain KPIs in a time period from the data warehouse,
i.e., the end part of the lower branch in Fig. 1. This time period
refers to one hour before and after the timestamp at which an iSQ
occurs. We sample KPIs every five seconds and the sampling inter-
val is sufficient to reflect almost all the KPI changes during the time

period. In particular, we use 59 KPIs in total, which are carefully
selected by DBAs from hundreds of KPIs as the representatives.
Ground Truth. We ask DBAs of Alibaba to label the ground truth
for evaluating each component of iSQUAD and the overall frame-
work of iSQUAD. For Anomaly Extraction, DBAs carefully label
each type of anomaly KPIs. For Dependency Cleansing, DBAs
analyze the aforementioned 59 KPIs and discover ten underlying
dependencies among them. For both TOPIC and BCM, DBAs care-
fully label iSQs’ ten root causes.

Considering the large number of iSQs and labeling overhead in
§2.3, DBAs select one day’s unique iSQs (319 in total) from the
datasets for labeling purpose. Recall that iSQUAD comprises un-
supervised learning with both offline analysis & explanation and
online root Cause diagnosis & update. We divide labeled iSQs and
use the first 55% for offline clustering, and the other 45% for online
testing. This division is similar to the setting of training and test in
supervised learning. For the iSQUAD framework, each one of the
root causes is shown in Table 2. This ground truth set is consider-
able in size because of labeling overhead and is comparable with
what was used in DBSherlock [45]. The details of manual labeling
are as follows: experienced DBAs spend one week analyzing 319
of iSQs one by one randomly chosen from three datasets. They la-
bel the root causes of iSQs as ten types as shown in Table 2. We
adopt these label as the ground truth for offline clustering part §5.5
and online diagnosis §5.2. This setting is comparable with that of
DBSherlock, and is unbiased towards iSQUAD.
Evaluation Metrics. To sufficiently evaluate the performance of
iSQUAD compared with other state-of-the-art tools, we utilize four
widely-used metrics in our study, including F1-score, Weighted
Average F1-score, Clustering Accuracy and NMI. More details of
these metrics are presented as follows.

F1-Score: the harmonic mean of precision and recall. It is used
to evaluate the performance of iSQUAD online diagnoses (§5.2),
Anomaly Extraction (§5.3) and Dependency Cleansing (§5.4).

Weighted Average F1-score [11]: commonly used in multi-label
evaluation. Each type of root causes is a label. We calculate metrics
(precision, recall, F1-score) for each label, and find their average
weighted by support (the number of true iSQs for each label).

Clustering Accuracy [47]: finds the bijective maps between clus-
ters and ground-truth classes, and then measures to what extent
each cluster contains the same data as its corresponding class. (§5.5)

Normalized Mutual Information (NMI) [8]: a good measure of
the clustering quality as it quantifies the “amount of information”
obtained about one cluster by observing another cluster. (§5.5)
Implementation Specifications. Our framework of iSQUAD is
implemented using Python 3.6 and our study is conducted on a Dell
R420 server with an Intel Xeon E5-2420 CPU and a 64GB memory.

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100
P

re
ci

si
on

 (%
)

DBSherlock iSQUAD

(a) Precision

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

R
ec

al
l (

%
)

DBSherlock iSQUAD

(b) Recall

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

F1
-s

co
re

 (%
)

DBSherlock iSQUAD

(c) F1-score

Figure 7: Performance of DBSherlock [45] and iSQUAD in online diagnoses of ten types of root causes.

Table 3: Statistics of the Weighted Average Precision, Recall,
F1-score and computation time of DBSherlock and iSQUAD.

Weighted Avg. Precision Recall F1-score Time

DBSherlock 42.5 29.7 31.2 0.46
iSQUAD 84.1 79.3 80.4 0.38
⇑ 41.6 49.6 49.2 17.4

5.2 iSQUAD Accuracy & Efficiency
We first evaluate the online root cause diagnosis & update stage.

The online stage depends on its offline counterpart. We utilize
iSQUAD to cluster 174 iSQs and obtain 10 clusters. How to tune
the similarity score to obtain 10 clusters is discussed in §5.5. Then,
using iSQUAD, we match 145 iSQs with 10 representative iSQs
from the 10 clusters extracted by BCM. DBSherlock [45] is used
as the comparison algorithm since it deals with database root cause
analysis as well.

Table 3 lists the statistical analysis for the average accuracy of
iSQUAD and DBSherlock. Weighted Average F1-score of iSQUAD
is 80.4%, which is 49.2% higher than that of DBSherlock. This
shows that the average precision and recall are both improved by
iSQUAD significantly. Further, the computation time of iSQUAD
is 0.38 second per cluster while that of DBSherlock is 0.46 second
per cluster, improved by 17.4%. This shows that iSQUAD outper-
forms DBSherlock in both accuracy and efficiency. Specifically,
Fig. 7 presents the precision, recall and f1-score of the two models
handling the ten types of root causes. We observe that the per-
formance of iSQUAD on different types of root causes is robust.
DBSherlock, however, poorly recognizes Root Cause #2 “Host I/O
Bottleneck”, #6 “Host CPU Bottleneck”, #8 “External Operations”
and #10 “Unknown Problem”. This is because these types of root
causes are not included in DBSherlock’s root cause types.

iSQUAD performs better than DBSherlock in four aspects. 1)
DBSherlock requires user-defined or auto-generated abnormal and
normal intervals of a KPI timeline. This requirement deviates from
that only exact timestamps are provided here. DBSherlock’s al-
gorithm may not produce satisfactory predicate combinations be-
cause it aims to explain KPIs in intervals, not at timestamps. Over-
generalizations from intervals are not necessarily applicable nor
accurate enough to timestamps. On the contrary, iSQUAD is de-
signed to work well with timestamps and appears to be more accu-
rate. Moreover, DBSherlock’s way of defining and separating the
intervals is problematic. It segregates two parts of an interval based
on whether the difference of means of the two is over a threshold.
This way is not effective when a KPI timeline fluctuates. Since such
KPI fluctuations are quite common, the practicality and accuracy of

Table 4: Performance of anomaly detectors.
Method F1-Score Running

(%) Time (s)

Spike Robust Threshold 98.7 0.19
dSPOT [41] 81 15.11

Level T-Test 92.6 0.23
Shift iSST [33, 46] 60.7 6.06

DBSherlock depreciate heavily. Again, iSQUAD is robust against
data turbulence because it is equipped with Anomaly Extraction
which makes use of different fluctuations. 2) As explained in §5.4,
DBSherlock cannot eliminate all dependencies among KPIs while
iSQUAD better eradicates dependencies because of the wise choice
of Confidence as the measure. 3) As we reiterate, DBSherlock fails
to take DBAs’ habits into consideration. Aside of concrete pred-
icates like CPU ≥ 40%, it overlooks that DBAs care about the
anomaly types and patterns, which are exactly what we focus on.
To achieve higher interpretability, unlike DBSherlock that utilizes
causal models to provide plain-text explanations, iSQUAD imple-
ments the Bayesian Case Model to display understandable case-
subspace representations to DBAs. To sum up, iSQUAD is inter-
pretable with high accuracy.

5.3 Anomaly Extraction Performance
Since Anomaly Extraction is the initial and fundamental process

of iSQUAD, we must guarantee that both the accuracy and effi-
ciency are sufficiently high so that our subsequent processes can
be meaningful. As previously discussed, we deploy the Robust
Threshold for spike detection and T-Test for level shift detection.
To evaluate the accuracy and efficiency of Anomaly Extraction,
we compare the Robust Threshold with dSPOT [41] and the T-Test
with iSST [33, 46], and the results are presented in Table 4. Both
dSPOT and iSST are representatives of state-of-the-art spike and
level-shift detectors, respectively. For our methods, we empirically
set the time interval size and use grid search to pick the thresh-
olds that generate the best F1-Scores. For the comparable methods,
parameter tuning strategies are presented in their corresponding pa-
pers. Parameter analysis is left for future work.

For distinguishing spikes, the Robust Threshold gains an impres-
sively high F1-score of around 99% whereas the result of dSPOT
does not even reach 90%. Aside of that, T-Test’s accuracy, 92.6%,
leads that of iSST by more than 30%. Besides, our methods are
strictly proved to be more efficient. For running time, the Ro-
bust Threshold finishes one iSQ in one fifth of a second in average
whereas dSPOT consumes more than 15 seconds per iSQ. Com-

Clustering ACC NMI
0

20

40

60

80

100
S

co
re

 (%
)

Hierarchical Clustering
K-means Clustering

DBSCAN
TOPIC

(a) TOPIC Accuracy

0.5 0.6 0.7 0.8 0.9 1.0
Similarity

0

20

40

60

80

100

Sc
or

e
(%

)

Clustering ACC NMI

0

50

100

150

Cl
us

te
r S

ize

100.67

(b) Parameter Sensitivity

Clustering ACC NMI
0

20

40

60

80

100

S
co

re
 (%

)

w/o Anomaly Extraction
w/o Dependency Cleansing

iSQUAD

(c) Previous Components

Figure 8: (a) Clustering ACC (accuracy) and NMI of four clustering algorithms. (b) Average clustering accuracy and NMI of
TOPIC under different similarity requirements. Cluster size in dotted blue line is shown in y2-axis. (c) W/o Anomaly Extraction:
replace Anomaly Extraction with traditional anomaly detection in the iSQUAD framework. W/o Dependency Cleansing: skip the
step of Dependency Cleansing and proceed directly from Anomaly Extraction to TOPIC. iSQUAD: the complete one we propose.

Table 5: Performance comparison of dependency measures.
Method Precision (%) Recall (%) F1-Score (%)

Confidence 90.91 100 95.24
MI [45] 100 40 57.14

Gain Ratio [20] 87.5 70 77.78

paratively, T-Test spends a quarter of a second processing one iSQ
while iSST needs more than 6 seconds. The main reason for this
out-performance is that most state-of-the-art methods are excellent
in considering a limited number of major KPIs (with seasonality)
while our methods are more inclusive and general when scrutiniz-
ing KPIs. In a nutshell, the methods embedded in the Anomaly
Extraction step are both accurate and efficient.

5.4 Dependency Cleansing Accuracy
We select the Confidence as the core measure to ensure that

all excessive dependencies among KPIs are fully eradicated. The
choice to go with the Confidence is validated in the following ex-
periment, in which we vary parameters to choose the combination
that yields the best F1-scores for all the measures. The experiment
result is shown in Table 5. By comparing the precision, recall, and
F1-score of the confidence and the mutual information used in DB-
Sherlock, we find that both of them quite remarkably achieve over
90% precision. The confidence, however, also obtains extremely
large percentages for the other two criteria while the mutual in-
formation performs poorly. The recall of the mutual information
is only 40% because it fails to spot or capture a large proportion
of the underlying dependencies, and the F1-score is dragged down
as a consequence. By comparing the scores of the confidence and
the gain ratio, we find that the confidence also significantly out-
performs the latter in terms of all the three scores. Therefore, it is
indeed an appropriate decision to detect and eliminate KPI depen-
dencies with the Confidence measure.

5.5 TOPIC Evaluation
TOPIC Accuracy. We compare and contrast the performance of
TOPIC and three widely-used clustering algorithms (hierarchical
clustering [19], K-means [16], and DBSCAN [14]) in our scenario.
For the parameters in these approaches, e.g., similarity threshold σ
of TOPIC, the number of clusters in hierarchical clustering and K-
means clustering, ε and the minimum number of points required to
form a dense region (minPts) in DBSCAN, we tune them through

Grid-Search in order to obtain the best accuracy [31]. We ob-
serve that all the clustering algorithms above obtain their best accu-
racy scores when the resulting numbers of clusters are equal to ten
(Fig. 8(b)), which is exactly the number of real-world root causes
noted by DBAs. The metrics that we used are the clustering accu-
racy and NMI, and the results are in Fig. 8(a). (The shown results
are the best scores generated by tuning parameters.) For the first
metric, both the hierarchical and K-means clustering obtain less
than half of the score of TOPIC. Also, TOPIC’s accuracy leads that
of DBSCAN by more than 30%. For the second metric, TOPIC’s
NMI outperforms those of hierarchical and K-means clustering by
around 35%, and outperforms that of DBSCAN by about 5%. In
sum, TOPIC is promising to cluster iSQs.

TOPIC is preferable because it considers both KPI types and
anomaly patterns. This mechanism is intuitive for clustering iSQs
with multiple KPIs. Here we analyze the reasons why the three
traditional clustering algorithms (hierarchical clustering, K-means,
and DBSCAN) are not as good as TOPIC in our settings. 1) Hierar-
chical clustering is very prone to outlier effect. When it encounters
a new iSQ’s pattern, the hierarchical clustering may categorize it
into an outlier if it is very different from existing ones instead of
constructing a new cluster for it like what TOPIC does. Besides,
the number of clusters needs to be preset. 2) K-means clustering
requires a pre-defined number of clusters as well. Plus, it is highly
dependent on initial iSQ patterns so it is unstable. 3) TOPIC is
to some extent similar to DBSCAN in the sense that they do not
require preset numbers of clusters and they cluster elements w.r.t.
key thresholds. Nonetheless, after scrutinizing the shapes of clus-
ters produced by DBSCAN, we notice that its resulting clusters are
heavily skewed and scattered, i.e., some cluster has far more iSQs
(most of which are of all-zero patterns) than its peers do and many
of other clusters may house only one or two iSQs. This result is
meaningless and cannot be used for further analysis. On the con-
trary, the clusters generated by TOPIC are to some extent reason-
ably distributed and are much better-shaped. Clusters like those are
more able to convey information of groups of iSQs.

Parameter Sensitivity. In our clustering method TOPIC, the
similarity σ is one crucial threshold that describes to what extent
two KPIs’ patterns can be considered similar enough to get in-
tegrated into one. This threshold influences directly the number
of clusters. We investigate the impact of this similarity threshold
and the results are shown in Fig. 8(b). In this figure, we use three
datasets’ Clustering Accuracy and NMI with error bar to analyze
the robustness of the threshold. Besides, we also plot the numbers

Table 6: Survey results of root cause diagnoses with and with-
out the Bayesian Case Model.

DBA # of # of Correct Answers (%)
Background DBAs w/ BCM w/o BCM

Beginner 14 51.4 34.3
Intermediate 14 65.7 48.8

Advanced 18 84.4 62.2

of clusters in the y2-axis. As we gradually increase the similarity
value from 0.5, both the accuracy and NMI witness a large boost
initially and then retain high and stable scores when the similarity
achieves 0.67. The number of clusters is ten when the similarity
is in the interval from 0.65 to 0.7. This interval marks a relatively
stable value of the number of clusters. Above the similarity score
of 0.7, both of the accuracy and NMI begin to diverge and the num-
ber of clusters grows significantly. The two measures drop together
while the accuracy plunges even more. This is because as the sim-
ilarity requirement becomes overly strict, some very similar iSQs
that are supposed to be together are forced to be segregated. There-
fore, as the similarity overly increases, the number of member iSQs
in each cluster is reduced and the clustering accuracy drops. DBAs
can tune this parameter to obtain a different number of clusters in
case of modifications, such as separating an existing cluster.
Positive Effects of Previous Components on TOPIC. We inves-
tigate the effects of the components of Anomaly Extraction and De-
pendency Cleansing on TOPIC whose results are shown in Fig. 8(c).
Different from traditional anomaly detection that tells us only there
is an anomaly or not, the Anomaly Extraction distinguishes differ-
ent types of anomalies and makes use of them. From Fig. 8(c),
iSQUAD with the Anomaly Extraction achieves around 90% in
terms of both metrics. However, iSQUAD using traditional anomaly
detection hurts the performance so much that both measure scores
drop drastically by about 50%. Therefore, the Anomaly Extraction
does boost iSQUAD to a very large extent. Also, iSQUAD outper-
forms the framework without the Dependency Cleansing by several
percent for the two metrics as shown in Fig. 8(c). In summary, both
Anomaly Extraction and Dependency Cleansing have positive ef-
fects on TOPIC, and the effect of the former is larger.

5.6 BCM Evaluation
BCM Effectiveness. We pay attention to both the reduction factor
of BCM on KPI numbers and the overall reduced time for diagno-
sis. The reduction factor is calculated by comparing the numbers
of KPIs before and after running iSQUAD’s offline BCM com-
ponent on our datasets’ clustering results. The average reduction
factor value is 35.5% which means that DBAs can take remark-
ably fewer KPIs for consideration. This is validated by the sig-
nificant reduced diagnosis time. Given the number of iSQs in our
datasets, DBAs spend about 80 min diagnosing ten cases produced
by iSQUAD. On the contrary, they need a whole week’s working
time (approximately 2,400 min) to label 319 iSQs (i.e., 7.5 min per
iSQ in average) in the traditional way, i.e., case-by-case diagnosis
without iSQUAD. Therefore, diagnosing root causes of iSQs using
iSQUAD can be fifteen times faster than the traditional diagnosis.
Visualization Platform. The Bayesian Case Model is embedded in
the visualization platform which displays case-subspace represen-
tations of iSQ clusters along with root causes to help DBAs better
understand the interconnections among iSQ clusters and their root
causes. Specifically, after a DBA selects a iSQ cluster, the platform
immediately shows the KPIs chosen by BCM, and it also outputs
the root cause of this iSQ cluster.

Figure 9: Time line of a database failure case.

User Study. We conduct a formal user study survey to quantita-
tively evaluate BCM. We randomly distribute surveys to DBAs with
various levels of database background (the beginner, intermediate,
and advanced). The survey contains a dozen of four-choice ques-
tions that present either KPIs selected with BCM or without BCM
(i.e., selected arbitrarily) and ask for corresponding root causes.
We calculate the percentage of correct responses w.r.t each group of
DBAs and observe that the accuracy with BCM surpasses that with-
out BCM by 18.7% in average for all DBAs as shown in Table 6.
In particular, this performance improvement is more significantly
shown by DBAs who have advanced database knowledge.

6. CASE STUDY AND DISCUSSION
Case Study. To study how iSQUAD speeds up the root cause

diagnosis of iSQs, we randomly pick a small fraction of iSQs,
of which iSQUAD does not directly deliver diagnostic results to
DBAs. In the following case, we compare iSQUAD’s result with
one experienced DBA’s manual diagnosis.

Fig. 9 shows the timeline of a database failure. At 11:50, the
KPI of mysql.qps drastically dropped and a large number of active
sessions started to accumulate. After approximately nine minutes
at 11:59, the service was completely down. An experienced DBA
turned to inspect this failure soon after the alert was flagged. Hav-
ing spent almost fifteen minutes of manual diagnosis, the DBA de-
cided that this was a database internal problem (may be a hang). At
12:17, the DB instance was recovered by the DBA.

At 11:50, a burst of iSQs emerged and caused iSQUAD to ini-
tiate the analysis. Forty seconds later on the side of our frame-
work, iSQUAD quickly recognized that mysql.qps appeared to be a
level shift-down and mysql.active-session a spike. (Please note that
the KPIs are not limited to these two and other KPIs also demon-
strated diverse patterns.) Then, based on these symptoms (to name
a few as example) to match with clusters, iSQUAD proposed that
the root cause in this case was “database internal problem” based
on analysing KPI behaviors. To summarize, the whole process of
manual diagnosis took eighteen minutes in total without iSQUAD,
while iSQUAD was proved much faster. Therefore, iSQUAD can
not only save the time of root cause analysis, but also accurately
pinpoint the correct root causes.

Multiple Root Causes. We may discuss both dependent root
causes and independent ones separately. For dependent root causes,
e.g., “instance CPU intensive workload” and “instance I/O inten-
sive workload” in Table 2, DBAs label them as one type of root
causes, because CPU and I/O resources are often closely related
and we do not bother to separate them. If two root causes always
occur together, more in-depth causes shall be explored. For inde-
pendent root causes, according to DBAs’ experience, the chance of
multiple root causes occurring simultaneously is very small since it
is a joint probability of multiple events with small probabilities.

Generality of iSQUAD. We discuss the generality of iSQUAD
in two aspects. First, we evaluate iSQs using various business ser-
vices of Alibaba Group, e.g., online retails, enterprise collabora-
tion and logistics, which guarantee the diversity of studied services.
Second, the input data used in iSQUAD, e.g., iSQs and KPIs, are

general and common so the framework of iSQUAD is applicable to
root cause analysis of iSQs for diverse types of databases.

Root Causes to Actions. To better facilitate the practical usage
of iSQUAD, we recommend problem-solving procedures of tack-
ling three main categories of iSQ root causes as shown in Table 2:
(1) Scaling (#1, #2, #3, #5, #6): For those problems of instances or
physical machines, we suggest that the resources of the anomalous
instances or physical machines can be scaled up or scaled out auto-
matically. Besides, the root causes of anomaly workloads are fur-
ther classified into different categories, i.e., CPU, I/O, memory and
network, based on which we can give more specific suggestions.
(2) Limiting (#4, #8): For the problems caused by accompanying
slow queries (that alter tables with considerable rows) or external
operations, such as dumping table or database backup, we can limit
their resources. For example, for insertions, deletions, or updates,
we recommend that DBAs apply rate-limiting thresholds onto these
slow queries. (3) Optimizing (#7, #9, #10): If a root cause belongs
to database internals or unknown problems, we suggest DBAs op-
timize the database accordingly. For example, a case shows two
tables joining with hundreds of billions of rows in the temporary
directory, which causes disk to be full and a burst of iSQs. In this
case, we suggest modifying the database kernel to limit temporary
directory resources. We believe that these actions are adequate for
most common scenarios. As a future work, we aim to develop,
on top of iSQUAD, a more versatile and capable framework that
automates fault fixes and system recoveries.

7. RELATED WORK
Slow Query Analysis. Slow query analysis and optimization have
been extensively studied. General approaches involve data-driven
automatic analyses and optimizations of databases and queries. For
databases, several previous studies [13, 28, 40] aim to automate in-
dexing modifications to achieve better performance, and one study
addresses the issue of tuning database parameters with machine
learning algorithms [42]. For query optimization, boosting queries
by deep learning is introduced in [25, 34]. Neither of the above
touches the field of iSQs. Our work is the first to reduce negative
effects of iSQs on database systems.
Anomaly Extraction. Past anomaly detection algorithms gener-
ally output binary results i.e., either “normal” or “anomalous”. In
the literature, there exist various anomaly detectors, such as Op-
prentice [31], dSPOT [41] and iSST [33, 46]. Also, some corpora-
tions develop anomaly detectors, e.g., Yahoo’s EGADS [27], Twit-
ter’s S-H-ESD [21], and Netflix’s RPCA [17]. Different from them,
our Anomaly Extraction returns KPI states, i.e., normal or one of
the discussed anomaly categories, rather than limited binary results.
Clustering Algorithm. Some query-related clustering algorithms
provide insights. K-Shape clustering [38], built on [5], clusters
queries based on KPI timelines’ shapes. This method is off from
our scenario since we focus on one timestamp across all KPIs while
K-Shape allows a time lag between two similar shapes. Such a la-
tency may render two irrelevant queries together and incur accuracy
loss. Next, the workload compression technique in [32] is similar to
our work. It computes the similarity of workload features based on
the cosine similarity. One drawback is that it loses the information
of KPI types, which are crucial for determining query behaviors.
By contrast, our TOPIC considers both KPI types and anomaly pat-
terns to cluster queries in a rigorous way. Further, TOPIC does not
modify the cluster centers, i.e., anomaly patterns, of existing clus-
ters like [32], because patterns, which are integrated when merged,
are stable unlike templates in [32] that vary with time, so the clus-
ters converge more quickly.

Root Cause Diagnosis. PerfXplain [22] helps explain abnormal
behaviors of MapReduce jobs but does not fit our scenario, be-
cause iSQUAD is designed for iSQ analyses while PerfXplain can-
not deal with iSQ. Our method utilizes clustering to help identify
case-related root causes rather than directly giving despite clauses
that require relevant identified task pairs. The predicate-based ex-
planations of PerfXplain are similar to those of DBSherlock [45],
which are less accurate than our method’s output. DBSherlock con-
centrates on the exact values of KPIs, but ignores real actions of
DBAs who also care about categories of anomalies. A concrete KPI
figure can imply only whether an indicator is anomalous, whereas
our Anomaly Extraction method can well inform DBAs of the def-
inite category of the anomaly, which is much more useful for real-
world root cause diagnoses as demonstrated in our experiments.
Moreover, DBSherlock resembles a more general OLTP tool while
iSQUAD is for iSQ root cause diagnoses only. Besides, iSQUAD
is trained with real-life datasets as opposed to DBSherlock’s gen-
erated datasets. Furthermore, probabilistic graphical models are
implemented in [18] for causal inference to analyze root causes,
but they require excessive user operation per execution, which is
not even feasible in our scenario considering our dataset size. A
concept of “fingerprints” [6] is introduced to help detect datacenter
crisis, by checking if KPIs are over a threshold and by compar-
ing distances between online fingerprints and existing ones. This
anomaly detector and similarity comparison standard are both too
simplistic compared to Anomaly Extraction and the CalculateSim-
ilarity function of TOPIC in iSQUAD. Moreover, it is applicable to
only huge datacenters, whereas ours is to diagnose iSQs running in
database instances and physical machines.

8. CONCLUSION
In this work, we identify the problem of intermittent slow queries

(iSQs) in real-world cloud databases. A large number of detri-
mental iSQs are generated in cloud databases, but DBAs cannot
diagnose them one by one, since this is very labor-intensive and
time-consuming. To deal with this dilemma, we present iSQUAD,
a framework for iSQ root cause diagnoses, which contains several
key components, i.e., Anomaly Extraction, Dependency Cleansing,
Type-Oriented Pattern Integration Clustering, and Bayesian Case
Model. To a very large extent, iSQUAD can help DBAs with on-
line root cause diagnoses by accurately and efficiently analyzing,
processing, classifying online iSQs and outputting highly precise
root cause diagnostic results. Extensively tested in experiments on
Alibaba’s real-world datasets, iSQUAD is strictly proved to across-
the-board outperform the state-of-the-art root cause diagnosers to
the best of our knowledge. A prototype of iSQUAD is now de-
ployed in Alibaba OLTP Database to surveil and handle iSQs.

9. ACKNOWLEDGEMENTS
We appreciate Jun (Jim) Xu from Georgia Tech, Junjie Chen

from Tianjin University and Kaixin Sui for their valuable feed-
back. We thank our shepherd and the anonymous reviewers for
their thorough comments and helpful suggestions. This work has
been supported by Alibaba Group through Alibaba Innovative Re-
search Program. Dan Pei and Minghua Ma have also been par-
tially supported by the National Key R&D Program of China un-
der Grant No. 2019YFB1802504 and the National Research Cen-
ter for Information Science and Technology (BNRist) key projects.
Shenglin Zhang has also been partially supported by the National
Natural Science Foundation of China under Grant No. 61902200
and the China Postdoctoral Science Foundation under Grant No.
2019M651015.

10. REFERENCES
[1] R. Agrawal, T. Imieliński, and A. Swami. Mining association

rules between sets of items in large databases. In Proceedings
of the 1993 ACM SIGMOD, volume 22, pages 207–216.

[2] B. Arzani, S. Ciraci, B. T. Loo, A. Schuster, and G. Outhred.
Taking the blame game out of data centers operations with
netpoirot. In Proceedings of the 2016 ACM SIGCOMM,
pages 440–453.

[3] C. Bell, M. Kindahl, and L. Thalmann. MySQL high
availability: tools for building robust data centers. ”
O’Reilly Media, Inc.”, 2010.

[4] J. L. Bentley. Multidimensional binary search trees used for
associative searching. Proceedings of the Communications of
the ACM, 18(9):509–517, 1975.

[5] D. J. Berndt and J. Clifford. Using dynamic time warping to
find patterns in time series. In Proceedings of the 1994 ACM
SIGKDD, volume 10, pages 359–370, 1994.

[6] P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and
H. Andersen. Fingerprinting the datacenter: automated
classification of performance crises. In Proceedings of the
2010 EUROSYS, pages 111–124.

[7] D. Burleson. Find slow oracle sql. http://www.dba-
oracle.com/t find slow oracle sql.htm, 2015.

[8] D. Cai, X. He, X. Wang, H. Bao, and J. Han. Locality
preserving nonnegative matrix factorization. In Twenty-First
International Joint Conference on Artificial Intelligence,
2009.

[9] W. Cao, Y. Gao, B. Lin, X. Feng, Y. Xie, X. Lou, and
P. Wang. Tcprt: Instrument and diagnostic analysis system
for service quality of cloud databases at massive scale in
real-time. In Proceedings of the 2018 ACM SIGMOD, pages
615–627.

[10] X. Chen, M. Zhang, Z. M. Mao, and P. Bahl. Automating
network application dependency discovery: Experiences,
limitations, and new solutions. In Proceedings of the 2008
OSDI, volume 8, pages 117–130.

[11] N. Chinchor. Muc-4 evaluation metrics. In Proceedings of
the 4th conference on Message understanding, pages 22–29.
Association for Computational Linguistics, 1992.

[12] L. Columbus. 83% of enterprise workloads will be in the
cloud by 2020. https://www.forbes.com/sites/
louiscolumbus/2018/01/07/83-of-
enterprise-workloads-will-be-in-the-
cloud-by-2020#70765a696261, 2019.

[13] S. Das, M. Grbic, and e. Ilic. Automatically indexing
millions of databases in microsoft azure sql database. In
Proceedings of the 2019 ACM SIGMOD.

[14] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. A
density-based algorithm for discovering clusters in large
spatial databases with noise. In Proceedings of the 1996
ACM SIGKDD, volume 96, pages 226–231.

[15] Y. Freund and L. Mason. The alternating decision tree
learning algorithm. In Proceedings of the 1999 ICML,
volume 99, pages 124–133.

[16] J. A. Hartigan and M. A. Wong. Algorithm as 136: A
k-means clustering algorithm. Journal of the Royal Statistical
Society. Series C (Applied Statistics), 28(1):100–108, 1979.

[17] W. J. Netflix surus github, online code repos.
https://github.com/Netflix/Surus, 2015.

[18] V. Jeyakumar, O. Madani, A. Parandeh, A. Kulshreshtha,
W. Zeng, and N. Yadav. Explainit!–a declarative root-cause

analysis engine for time series data. In Proceedings of the
2019 SIGMOD, pages 333–348.

[19] S. C. Johnson. Hierarchical clustering schemes.
Psychometrika, 32(3):241–254, 1967.

[20] A. G. Karegowda, A. Manjunath, and M. Jayaram.
Comparative study of attribute selection using gain ratio and
correlation based feature selection. volume 2, pages
271–277.

[21] A. Kejariwal. Twitter engineering: Introducing practical and
robust anomaly detection in a time series. https:
//blog.twitter.com/engineering/en us/a/
2015/introducing-practical-and-robust-
anomaly-detection-in-a-time-series.html,
2015.

[22] N. Khoussainova, M. Balazinska, and D. Suciu. Perfxplain:
debugging mapreduce job performance. PVLDB,
5(7):598–609, 2012.

[23] B. Kim, C. Rudin, and J. A. Shah. The bayesian case model:
A generative approach for case-based reasoning and
prototype classification. In Proceedings of the 2014 NeurIPS,
pages 1952–1960.

[24] M. Kim, R. Sumbaly, and S. Shah. Root cause detection in a
service-oriented architecture. ACM SIGMETRICS
Performance Evaluation Review, 41(1):93–104, 2013.

[25] T. Kraska, M. Alizadeh, A. Beutel, E. H. Chi, J. Ding,
A. Kristo, G. Leclerc, S. Madden, H. Mao, and V. Nathan.
Sagedb: A learned database system.

[26] M. Kuhn and K. Johnson. Applied predictive modeling,
volume 26. Springer, 2013.

[27] N. Laptev, S. Amizadeh, and I. Flint. Generic and scalable
framework for automated time-series anomaly detection. In
Proceedings of the 2015 ACM SIGKDD, pages 1939–1947.

[28] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and
T. Neumann. How good are query optimizers, really?
PVLDB, 9(3):204–215, 2015.

[29] F. Li. Cloud-native database systems at alibaba:
Opportunities and challenges. 12(12):2263–2272, 2019.

[30] G. Linden. Akamai online retail performance report:
Milliseconds are critical.
http://glinden.blogspot.com/2006/11/
marissa-mayer-at-web-20.html, 2006.

[31] D. Liu, Y. Zhao, H. Xu, Y. Sun, D. Pei, J. Luo, X. Jing, and
M. Feng. Opprentice: Towards practical and automatic
anomaly detection through machine learning. In Proceedings
of the 2015 IMC, pages 211–224.

[32] L. Ma, D. Van Aken, A. Hefny, G. Mezerhane, A. Pavlo, and
G. J. Gordon. Query-based workload forecasting for
self-driving database management systems. In Proceedings
of the 2018 SIGMOD, pages 631–645.

[33] M. Ma, S. Zhang, D. Pei, X. Huang, and H. Dai. Robust and
rapid adaption for concept drift in software system anomaly
detection. In Proceedings of the 2018 IEEE ISSRE, pages
13–24.

[34] R. Marcus and O. Papaemmanouil. Towards a hands-free
query optimizer through deep learning. arXiv preprint
arXiv:1809.10212, 2018.

[35] J. C. Mogul and J. Wilkes. Nines are not enough: Meaningful
metrics for clouds. In Proceedings of the Workshop on Hot
Topics in Operating Systems, pages 136–141. ACM, 2019.

[36] B. Mozafari, C. Curino, A. Jindal, and S. Madden.
Performance and resource modeling in highly-concurrent

http://www.dba-oracle.com/t_find_slow_oracle_sql.htm
http://www.dba-oracle.com/t_find_slow_oracle_sql.htm
https://www.forbes.com/sites/louiscolumbus/2018/01/07/83-of-enterprise-workloads-will-be-in-the-cloud-by-2020#70765a696261
https://www.forbes.com/sites/louiscolumbus/2018/01/07/83-of-enterprise-workloads-will-be-in-the-cloud-by-2020#70765a696261
https://www.forbes.com/sites/louiscolumbus/2018/01/07/83-of-enterprise-workloads-will-be-in-the-cloud-by-2020#70765a696261
https://www.forbes.com/sites/louiscolumbus/2018/01/07/83-of-enterprise-workloads-will-be-in-the-cloud-by-2020#70765a696261
https://github.com/Netflix/Surus
https://blog.twitter.com/engineering/en_us/a/2015/introducing-practical-and-robust-anomaly-detection-in-a-time-series.html
https://blog.twitter.com/engineering/en_us/a/2015/introducing-practical-and-robust-anomaly-detection-in-a-time-series.html
https://blog.twitter.com/engineering/en_us/a/2015/introducing-practical-and-robust-anomaly-detection-in-a-time-series.html
https://blog.twitter.com/engineering/en_us/a/2015/introducing-practical-and-robust-anomaly-detection-in-a-time-series.html
http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html
http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html

oltp workloads. In Proceedings of the 2013 ACM SIGMOD,
pages 301–312.

[37] MySQL. Mysql slow query log.
https://dev.mysql.com/doc/refman/8.0/en/
slow-query-log.html, 2019.

[38] J. Paparrizos and L. Gravano. k-shape: Efficient and accurate
clustering of time series. In Proceedings of the 2015 ACM
SIGMOD, pages 1855–1870.

[39] A. Pettitt. A non-parametric approach to the change-point
problem. Journal of the Royal Statistical Society: Series C
(Applied Statistics), 28(2):126–135, 1979.

[40] K. Schnaitter and N. Polyzotis. Semi-automatic index tuning:
Keeping dbas in the loop. PVLDB, 5(5):478–489, 2012.

[41] A. Siffer, P.-A. Fouque, A. Termier, and C. Largouet.
Anomaly detection in streams with extreme value theory. In
Proceedings of the 2017 ACM SIGKDD, pages 1067–1075.

[42] D. Van Aken, A. Pavlo, G. J. Gordon, and B. Zhang.
Automatic database management system tuning through
large-scale machine learning. In Proceedings of the 2017
ACM SIGMOD, pages 1009–1024.

[43] M. Watson. Performance tuning in sql server tutorial: Top 5
ways to find slow queries.
https://stackify.com/performance-tuning-
in-sql-server-find-slow-queries, 2017.

[44] Wikipedia. Simple matching coefficient.
https://en.wikipedia.org/wiki/
Simple matching coefficient, 2018.

[45] D. Y. Yoon, N. Niu, and B. Mozafari. Dbsherlock: A
performance diagnostic tool for transactional databases. In
Proceedings of the 2016 ACM SIGMOD, pages 1599–1614.

[46] S. Zhang, Y. Liu, D. Pei, and et.al. Rapid and robust impact
assessment of software changes in large internet-based
services. In Proceedings of the 2015 ACM CONEXT, page 2.

[47] N. Zhao, L. Zhang, B. Du, Q. Zhang, J. You, and D. Tao.
Robust dual clustering with adaptive manifold regularization.
Proceedings of the 2017 IEEE TKDE, 29(11):2498–2509.

https://dev.mysql.com/doc/refman/8.0/en/slow-query-log.html
https://dev.mysql.com/doc/refman/8.0/en/slow-query-log.html
https://stackify.com/performance-tuning-in-sql-server-find-slow-queries
https://stackify.com/performance-tuning-in-sql-server-find-slow-queries
https://en.wikipedia.org/wiki/Simple_matching_coefficient
https://en.wikipedia.org/wiki/Simple_matching_coefficient

