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Abstract—Syslogs on switches are a rich source of information
for both post-mortem diagnosis and proactive prediction of switch
failures in a datacenter network. However, such information
can be effectively extracted only through proper processing
of syslogs, e.g., using suitable machine learning techniques.
A common approach to syslog processing is to extract (i.e.,
build) templates from historical syslog messages and then match
syslog messages to these templates. However, existing template
extraction techniques either have low accuracies in learning the
“correct” set of templates, or does not support incremental
learning in the sense the entire set of templates has to be
rebuilt (from processing all historical syslog messages again)
when a new template is to be added, which is prohibitively
expensive computationally if used for a large datacenter network.
To address these two problems, we propose a frequent template
tree (FT-tree) model in which frequent combinations of (syslog)
words are identified and then used as message templates. FT-
tree empirically extracts message templates more accurately
than existing approaches, and naturally supports incremental
learning. To compare the performance of FT-tree and three
other template learning techniques, we experimented them on
two-years’ worth of failure tickets and syslogs collected from
switches deployed across 10+ datacenters of a tier-1 cloud service
provider. The experiments demonstrated that FT-tree improved
the estimation/prediction accuracy (as measured by F1) by 155%
to 188%, and the computational efficiency by 117 to 730 times.

I. INTRODUCTION

As nowadays cloud service providers employ a large num-

ber of switches in their datacenter networks, switch failures

have become a fact of life to be dealt with. For example,

tens of thousands of switches are deployed in Microsoft’s

datacenter network [1], in which 400+ switch failures occur

each year [2]. As a switch failure often has a significant

impact on the performance of a datacenter network, much

research efforts have been devoted to the diagnosis or proactive

detection of switch failures, resulting a host of diagnosis or

proactive failure detection techniques in recent years [3]–[6].
Syslog messages generated by these switches (and routers)

have long been recognized as a rich source of information

for (switch) failure diagnosis, detection, or prediction [6]–

[9]. However, since syslogs are usually unstructured texts,
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they have to be properly processed (e.g., using machine

learning techniques) before they can be effectively used for

such purposes [10], [11]. In this paper, we focus on syslog
processing techniques that can lead to more accurate and

efficient switch failure diagnosis, detection, or prediction. The

current approach to switch syslog processing is to extract

message templates from syslog messages and then match the

syslog messages to the templates [6]–[8]. For example, in the

syslog message Interface ae0, changed state to down, ae0
is a parameter (word) that varies from one message to another

and is not a part of a template, whereas the rest, i.e., Interface
..., changed state to up sketches out the event and hence

is a template that summarizes this and other similar syslog

messages.

Despite the crucial role that syslog processing plays in

switch failure diagnosis, detection, or prediction, existing

syslog processing techniques have low accuracies in learning

the “correct” set of templates (e.g., Statistical Template Ex-

traction (STE) [8] and LogSimilarity [6]), or do not support

incremental learning in the sense the entire set of templates has

to be rebuilt (from processing all historical syslog messages

again) when a new template is to be added (e.g., the signature

tree based method 1 [7] and STE [8]), or both (e.g., STE [8]).

For example (concerning the “low accuracies” case), with

STE, some syslog messages cannot match to any template, and

with LogSimilarity, two syslog messages could be matched to

the same template even when they represent very different

events and should be matched to different templates.

Syslog-based failure diagnosis or prediction usually em-

ploys machine learning techniques to discover patterns from

historical failures [6], [8], [12], [13]. The underlying diagnosis

or prediction model, consisting of the set of templates and

the associated statistics, needs to be kept up-to-date, through

retraining, every once in a while. It is highly desirable for the

set of templates to be incrementally retrainable for the fol-

lowing reason. Network operators frequently conduct software

or firmware upgrades on switches to introduce new features,

1Hereafter, we collectively refer to this method as Signature Tree
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or fix bugs in the previous version [14], [15]. These updates

can generate new subtypes of syslog messages that cannot

match to any existing template, thus requiring new templates

to be extracted from these new messages and added to the set.

If the template extraction model (i.e., the set of templates)

is incrementally retrainable, only the syslog messages that

arrive after the previous (retraining) update need to be matched

to the new set of templates (possibly with new templates

added as a result of software/firmware upgrades); otherwise,

all historical syslog messages have to be reprocessed (i.e.,
retrained) according to the new set of templates. The latter case

(not incrementally retrainable), which STE and Signature Tree

fall into, is prohibitively expensive computationally if used

for a large datacenter network that employs tens of thousands

of switches and “learns” from historical syslogs and failure

tickets accumulated over a long period of time (say two years).

We propose a novel frequent template tree (FT-tree) tech-

nique that both has high accuracy in identifying “correct” tem-

plates, and is incrementally retrainable. Based on the observa-

tion that a “correct” message template is usually a combination

of words that occur frequently in syslog messages, FT-tree

dynamically maintains a tree structure of such frequent words

that implicitly defines the set of message templates. Since this

implicitly-defined set of message templates dynamically and

“gradually” (i.e., incrementally) evolves with the arrival of new

syslog messages, which may be of the new message subtypes
(due to the aforementioned software/firmware upgrades), FT-

tree is naturally incrementally retrainable. Intuitively, FT-tree

also empirically guarantees that, with high probability, the

template extracted from a given syslog message accurately

characterizes the event that the message describes.

To compare the performance of FT-tree to those of Signature

Tree, STE, and LogSimilarity, we applied failure tickets and

syslogs collected from 2, 223 switches deployed across 10+
datacenters owned by a tier-1 cloud service provider over

a two-year period. We evaluated the accuracies of the four

techniques based not only on manual classifications of syslog

messages, but also on the failure prediction results. FT-tree

and Signature Tree achieve the same accuracy, and they both

improve the prediction accuracy by 155% to 188% compared

to STE and LogSimilarity. However, Signature Tree and STE

respectively consume 730 times and 117 times more compu-

tational resources than FT-tree, as they are not incrementally

retainable. The evaluation results clearly demonstrate the ben-

efits of FT-tree: highly accurate and incrementally retrainable.

The rest of the paper is organized as follows. We provide

an introduction to switch syslog, switch failure diagnosis and

prediction, and the intuition behind extracting templates in

Section II. The design of FT-tree is described in Section III.

The evaluation of FT-tree is presented in Section IV. The re-

lated works, including Signature Tree, STE and LogSimilarity,

are discussed in Section V. Finally, we conclude our paper in

Section VI.
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Fig. 1: Typical datacenter network architecture

II. BACKGROUND

In this section, we first describe switch syslogs in details in

Section II-A. Then in Sections II-B and II-C respectively, we

introduce syslog-based failure diagnosis and prediction, and

describe the intuitions behind extracting templates for such

purposes.

A. Switch Syslogs

Each switch reports, from time to time, the observed hard-

ware/software condition or (anomalous) event, in a syslog

message. Examples of such conditions or events include state

changes of interfaces, links, or neighbors (e.g., the state of

an interface changes from up to down), operational main-

tenance (e.g., operators log in/out), environmental condition

alerts (e.g., high temperature), etc. Although syslog messages

are designed mainly for debugging software and hardware

problems of the switches, they can also be used for root

cause analysis of a network incident. Hence, usually dedicated

servers are deployed in a datacenter network to collect syslog

messages from all its switches.

As can be seen from several example syslog messages

shown in Table I, a syslog message usually has a simple

structure consisting of several fields, including a timestamp

recording when the switch generated the syslog message, a

switch ID identifying the switch that generated the message,

a message type that describes the rough characteristics of the

message, and a message body depicting the details of the event.

The syntax and semantics of the message type field and the

detailed message field vary with switch vendors and models.

B. Failure Diagnosis and Prediction

A switch failure occurs when the service provided by

a switch (traffic forwarding) deviates from the norm [16],

[17]. Switch failures are known to significantly impact the

performance of datacenter networks. For example, the switch

failures in the datacenters of Colo4 [18], and Hosting.com [19]

all brought outages to their datacenters. Although switches in

datacenter networks have built-in failover technologies, such
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TABLE I: Examples of switch syslog messages

Vendor Time stamp Switch ID Message type Detailed message
Vendor 1 Jan 23 14:24:41 2016 Switch 1 SIF Interface te-1/1/8, changed state to up
Vendor 1 Mar 19 15:04:11 2016 Switch 4 OSPF A single neighbour should be configured

Vendor 1 Apr 16 08:07:19 2016 Switch 4 lacp
Attempt to send lacpdu on port(38)
from lag failed,Transport failed

Vendor 2 Apr 21 14:53:05 2016 Switch 11 10DEVM/2/POWER FAILED Power PowerSupply1 failed
Vendor 2 Sep 23 00:10:39 2015 Switch 13 10IFNET/3/LINK UPDOWN GigabitEthernet1/0/18 link status is DOWN

Vendor 2 Nov 8 07:29:06 2015 Switch 17
10CFM/5/CFM SAVE
CONFIG SUCCESSFULLY

Configuration is saved successfully
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Fig. 2: The model of switch failure prediction. For a given

switch failure occurred at τh, our mission is to predict the

failure during [τs, τe]. τe is Δτa before τh for network opera-

tors need at most Δτa to react to a positive failure prediction.

For any τx in [τs, τe], the syslog sequence in [τx −Δτm, τx]
is an ominous message sequence, while the syslog sequence

in [τy −Δτm, τy] is a non-ominous message sequence when

τy /∈ [τs, τh].

as replicating data for services and deploying a backup switch

for redundancy, they do not “mask” all switch failure scenar-

ios [16] (see Figure 1). Therefore, it is important to accurately

and quickly diagnose switch failures so that measures can

be taken to effectively and promptly mitigate the service

degradation brought by the failures. Furthermore, if we can

accurately predict switch failures, carefully reroute the traffic,

and replace the switches before failures actually happen, we

can keep the impact of switch failures on datacenter network

performance to a minimum.

In this paper, we focus on diagnosis or prediction of a

single switch failure, and do not consider the relationship

between two spatially and temporally related switch failures.

In addition, we do not explore the detailed network topology

of data center network in this work.

While syslog-based network device failure diagnosis has

been a well formulated problem [6], [7], [20], syslog-based

failure prediction has not been investigated before. Hence,

we derive the switch failure prediction problem formulation

from that of the failure prediction for computer systems [17].

More specifically, the objective of switch failure prediction is

to determine in real time whether a switch failure will happen

in the near future, based on the the switch and network status
information contained in the syslog messages.

Fig. 2 illustrates the task of switch failure prediction. For

this task, the (continuous) time is discretized into small time

bins of fixed duration (say 15 min) and numbered as integers.

Suppose a failure occurs at τh. The mission of switch failure

prediction is to predict the failure at any time bin τx within

[τs, τe]. Because network operators need at most Δτa time

to react to a positive failure prediction, such as to reroute the

traffic and to replace the failure-looming switch, τe is ahead of

τh by Δτa. While making the duration [τs, τe] longer always

leads to a higher precision of failure prediction (e.g., if we set

this duration to ∞, a positive failure prediction guarantees to

be correct), if the duration of [τs, τe] is too long, the (positive

failure) prediction is of little use as it does not provide a clear

guidance to operators as to whether the switch at issue needs

to be replaced and when. Hence, in this work, we try to make

this duration meaningfully small.

The failure prediction at any time τx in Fig. 2 is based on

the statistical analysis (i.e., machine learning) of the switch

syslog messages within the interval [τx − Δτm, τx] leading

up to τx. Hence, we refer to the syslog message sequence

within the interval [τx−Δτm, τx] simply as τx’s corresponding

message sequence. For any time τx, we call τ ′xs corresponding

message sequence or the time τx ominous if τx ∈ [τs, τe] –

because in this case τx is close enough to the failure time

τh and its corresponding message sequence should give some

cues about the imminent failure – and the number of messages

in the sequence is large enough (say at least θ) to allow for

meaningful statistical analysis. Similarly, for any τy /∈ [τs, τh],
τ ′ys corresponding message sequence or the time τy is called

non-ominous – because it is not close enough to the failure

time τh – as long as there are at least θ syslog messages in

the sequence. The time bins described later all contain enough

syslog messages (to exceed this threshold θ) so that it is either

ominous or non-ominous. Then the failure prediction problem

becomes that of classifying each time bin as either ominous

or non-ominous.

C. Syslog Processing for Failure Diagnosis and Prediction by
Extracting Templates

Since switch syslog messages are unstructured texts in many

different forms, and a certain pair of neighboring IP addresses

or interface IDs that appear in a syslog message may never

appear again, it is nearly infeasible to extract patterns from raw

syslog messages for failure diagnosis or prediction. Although

there is a message type field (see Table I) that describes

the schematic characteristics of the event in each syslog

message, each message type can include multiple subtypes. For

example, although there are 12 syslog messages in Table II that
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TABLE II: Example of syslog sequence before a switch failure

Time stamp Message type Detailed message
9:21:10 SIF Interface ae3, changed state to down
9:22:23 SIF Vlan-interface vlan22, changed state to down
9:23:45 SIF Interface ae3, changed state to up
9:25:28 SIF Vlan-interface vlan22, changed state to up
9:27:20 OSPF Neighbour(rid:10.231.0.42, addr:10.231.38.85) on vlan22, changed state from Full to Down
9:30:31 SIF Interface ae1, changed state to down
9:32:34 SIF Vlan-interface vlan20, changed state to down
9:35:25 SIF Interface ae1, changed state to up
9:39:21 OSPF Neighbour(rid:10.231.0.40, addr:10.231.36.85) on vlan20, changed state from Full to Down
9:41:29 SIF Vlan-interface vlan20, changed state to up
9:41:52 OSPF A single neighbour should be configured
9:42:50 SIF Interface ae1, changed state to down
9:44:38 SIF Vlan-interface vlan20, changed state to down
9:45:15 SIF Interface ae1, changed state to up
9:47:58 SIF Vlan-interface vlan20, changed state to up
9:49:25 OSPF A single neighbour should be configured

TABLE III: Syslog message subtypes of SIF

Subtype No. Subtype structure
N1 Interface *, changed state to down
N2 Interface *, changed state to up
N3 Vlan-interface *, changed state to down
N4 Vlan-interface *, changed state to up

belong to the message type “SIF” (system interconnect fabric)

and describe the switch status changes collected using SIF

technology, the detailed messages can be quite different. The

detailed message field of syslog messages is essentially free-

form text, and a switch’s OS usually generates this field using

the “printf” function with detailed information as variables,

such as the location (line card/port/interface), package loss

ratio, IP address, etc. For instance, the detailed message field

of the syslog message in the first line of Table II, i.e., Interface
ae3, changed state to down, means that the event impacted

on interface ae3, and, as a result, the state of the interface

changed to down. In other words, the ae3 part is the detailed

information variable, whereas the rest parts, i.e., Interface ...,
changed state to up, are predefined outputs by the switch’s

OS and can be used as a subtype for the syslog messages

that belong to this message type, i.e., SIF. When we mask

the variable for the detailed message field of the 12 syslog

messages, i.e., interface number or vlan-interface number

using the same symbol, e.g., an asterisk as shown in Table IV,

there are only four different syslog message structures, or

subtypes. However, manually obtaining all subtypes without

domain knowledge is almost impossible because not every part

that should be masked in the detailed message can be as easily

characterizable as the interface number. In addition, although

part of the syslog subtypes can be obtained with support from

vendors, these subtypes may change due to software upgrades.

Therefore, our objective is to automatically obtain message
templates in which the need-to-be-masked parts are removed

and the message subtypes are retained without relying on any

domain knowledge.

III. FREQUENT TEMPLATE TREE

Our objective in syslog processing is to automatically ex-

tract template and subtype information from syslog messages

without relying on any domain knowledge. Although three

techniques, namely Signature Tree, STE, and LogSimilarity,

were proposed for this purpose, they are not well suited for

our application scenario due either to their low accuracies

(in template or subtype extraction) or to their inability to be

incrementally trained. Inspired by the Frequent Pattern Tree

(FP-tree) [21], we propose FT-tree, an incrementally trainable

technique with high accuracy for template and subtype extrac-

tion. FT-tree is an extended prefix-tree structure for encoding

message templates. The basic idea behind FT-tree is that, a

syslog message subtype is usually the longest combination of

words with high frequencies, and hence extracting a template

is equivalent to identifying such longest combination of fre-

quent words from syslog messages.

In the following, we first introduce the design and construc-

tion of FT-tree in Section III-A, and then demonstrate how FT-

tree facilitates incremental template learning in Section III-B.

A. Design and Construction

Let I = a1, a2, ..., am be the set of distinct words that

occur in a message set DM = 〈M1,M2, ...,Mn〉, where each

Mi is a syslog message. The support (i.e., the frequency of

occurrence) of a word combination (i.e., a set of words) A, is

the number of distinct messages containing A in DM . A is

considered a template if A is occurring frequently (i.e., with

a large support).

The second column of Table IV shows an example syslog

message set DM = 〈M1,M2, ...,M8〉, in which every mes-

sage belongs to the message type “SIF” (see in the second

column of Table II). The FT-tree for this DM is constructed,

using the algorithm shown in Algorithm I, as follows.

First, our FT-tree construction algorithm scans DM once

(line 1 in Algorithm I), and derives a list L of words in the

descending order of their frequencies of occurrences (the num-

ber after each “:”). Clearly, L = 〈(“changed”:8), (“state”:8),
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TABLE IV: Different messages belonging to message type “SIF” in Table II, and the words ordered according to L

Message No. Detailed Message Words ordered according to L
M1 Interface ae3, changed state to down “changed”, “state”, “to”, “Interface”, “down”, “ae3”
M2 Vlan-interface vlan22, changed state to down “changed”, “state”, “to”, “Vlan-interface”, “down”, “vlan22”
M3 Interface ae3, changed state to up “changed”, “state”, “to”, “Interface”, “up”, “ae3”
M4 Vlan-interface vlan22, changed state to up “changed”, “state”, “to”, “Vlan-interface”, “up”, “vlan22”
M5 Interface ae1, changed state to down “changed”, “state”, “to”, “Interface”, “down”, “ae1”
M6 Vlan-interface vlan20, changed state to down “changed”, “state”, “to”, “Vlan-interface”, “down”, “vlan20”
M7 Interface ae1, changed state to up “changed”, “state”, “to”, “Interface”, “up”, “ae1”
M8 Vlan-interface vlan20, changed state to up “changed”, “state”, “to”, “Vlan-interface”, “up”, “vlan20”

(“to”:8), (“Interface”:4), (“Vlan-interface”:4), (“down”:4),

(“up”:4), (“ae3”:2), (“ae1”:2), (“vlan22”:2), (“vlan20”:2)〉.
Then, we create the root of a tree which is labeled with

the message type, which in this case is “SIF”. Our FT-tree

construction algorithm scans DM for a second time (lines 5

through 9 in Algorithm I). The processing of M1 leads to the

construction of the first path/branch of the tree: 〈“changed”,

“state”, “to”, “Interface”, “down”, “ae3”〉 (a word in an FT-tree

is called the word-name of the node containing the word).

Note these words are ordered according to the order of the

words in L. When M2 is processed, since its ordered word list

〈“changed”, “state”, “to”, “Vlan-interface”, “down”, “vlan22”〉
shares a common prefix 〈“changed”, “state”, “to”〉 with the

existing path/branch 〈“changed”, “state”, “to”, “Interface”,

“down”, “ae3”〉, a new branch 〈“Vlan-interface”, “down”,

“vlan22”〉 is created as a subtree of node 〈“to”〉. The rest six

messages in Table IV are processed similarly, resulting in the

final FT-tree shown in Fig. 3 (the rightmost tree).

Finally, we prune the tree until it satisfies the following

node degree constraint (lines 10 through 14 in Algorithm I).

Intuitively, there should be only a small number of subtypes
for each message type, and, for each subtype, there should be

many different messages that match to it. Therefore, if a node

has too many children (say exceeding a threshold k), all its

children (or subtrees) are deleted from the tree and the node

becomes leaf itself. In the pruned FT-tree, each root-to-leaf

path is a message template (i.e., type + subtype). For example,

〈“SIF”, “changed”, “state”, “to”, “Interface”, “down”〉 is a

message template, as shown in Figure 3.

Definition 1: As illustrated by the above example, given a

specific message type, its FT-tree is defined as follows:

1) Its root is labeled by the message type, and each root-

to-leaf path corresponds to a message template.

2) Each non-root node in the FT-tree has only one at-

tribute/field, namely word-name, which registers which

word this node represents.

It remains to describe the function insert tree([p|P ], T )
in Algorithm 1. It works as follows. If �N , N.word-name =
p.word-name, and N is a child of T , then create a new node

N , and make it a child of T . If P �= Φ, call insert tree(P,N)
recursively.

B. Incremental Template Learning

As mentioned earlier, for a given message type, new sub-
types of messages can emerge due to OS or firmware upgrades,

Algorithm 1 FT-tree construction

Input: A message set DM that contains all the different

messages of a specific message type, and a threshold k.

Output: A FT-tree, T
1: Scan the message set DM once.

2: Calculate the support for each word in I .

3: Let L be the list of words in the descending order of their

supports.

4: Create the root of T and label it as the message type.

5: for each message in DM do
6: Sort its words according to their order in L
7: Let the sorted word list be [p|P ], where p is the first

element and P is the remaining list

8: Call insert tree([p|P ], T )
9: end for

10: for Child C in T do
11: if C has more than k children then
12: Eliminate all the children of C
13: end if
14: end for
15: return T

and new templates need to be generated for these messages

to match to. As shown in Fig. 3 and Algorithm 1, this is

accomplished via inserting new nodes/branches to the FT-tree.

It is also clear from Algorithm 1 that such insertions can

be done incrementally, by scanning only the recently arrived
syslog messages (after the OS or firmware upgrade) twice.

More specifically, when a new message Mnew that does not
match any template arrives, a new branch is inserted into

the FT-tree by calling insert tree() (line 8) in Algorithm 1.

Please note that, if one or more words in Mnew do not exist

in L, we will add these words to the tail of L. When a switch

starts to generate new subtypes of messages, it is highly likely

that, in one day, these messages will contain enough number

(more than the pruning threshold k) of distinct parameter

words (such as “ae3”, “vlan22” in Figure 3) as the children

of a node, so that this node becomes a leaf itself after the

pruning.

We illustrate this incremental learning process by an exam-

ple shown in Fig. 3. Suppose that a new message Mnew =
“Interface ae1 changed state to RETURN” arrives, and that

right before this arrival, the FT-tree is the rightmost tree shown

in Figure 3, but with all leaf nodes (“ae3”, “ae1”, “vlan22”,

5
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Fig. 4: FT-tree after Mnew is added

etc.) pruned. Then the new message arrival Mnew results in the

insertion of the branch (“RETURN”→“ae1”) to the FT-tree,

and the new leaf “ae1” will eventually be pruned as explained

earlier.

After learning the templates from syslog messages, we can

match a historical syslog message or a recent syslog message

to a specific template, which is encoded as a numerical value.

More specifically, for a syslog sequence (s1, s2, ..., sn), if si
is matched to template tsi, we refer to (ts1, ts2, ..., tsn) as the

template sequence of (s1, s2, ..., sn).

IV. EVALUATION

In this section, we evaluate and compare the performance

of FT-tree to those of Signature Tree, STE and LogSimilarity

using syslogs and failure tickets collected from real-world

sources. We evaluated the accuracies of these four techniques

in both template learning (Section IV-B) and failure prediction

(Section IV-C), and compared their efficiency in Section IV-D.

A. Data Sets

In cooperation with a a tier-1 cloud service provider, we

collected all syslog messages over a 2-year period from all

switches of a specific (switch) model across more than 10
datacenters owned by this cloud service provider. Syslog-based

failure diagnosis and prediction was then performed over this

syslog data set and compared against the switch failure data,

which we will explain shortly, can, to a certain extent, be

considered the ground truth. We focus on this homogenous

subset of switches (of the same model) because they share

the same failure pattern (i.e., observable behaviors before,

during, and after a failure), and hence intuitively share the

same underlying statistical model for the machine-learning-

based failure diagnosis or prediction.

We also collected switch hardware failure data over the

same time period across the same data centers, which consist

of the following three types.

Failure tickets. When a service anomaly event is detected

(e.g., the average response time of the search engine deterio-

rates significantly for more than a minute or two) and a switch

failure is suspected as the root cause (e.g., the total amount of

traffic to all servers connected to a switch sees a significant

drop during the same time period), a failure ticket is generated

(by the data center performance monitoring system) and sent

to the network operators. The network operators will then look

into this ticket and determine whether the service deterioration

was indeed caused by the suspected switch failure, and record

this event in a failure ticket.
Proactive switch failure detection via SNMP polling. In

the tier-1 cloud service provider we are working with, the

real-time status of a switch, such as its CPU and memory

utilizations and the traffic rate at each interface, is constantly

monitored by the network operators via SNMP polling. If a

problem in packet forwarding occurs at one or more interfaces,

network operators will research the root cause of the failure

and record this event accordingly.

Proactive switch failure detection via syslogs. Vendors usu-

ally provide operational instructions for their switch products,

which include a list of syslog keywords that may indicate

a switch failure. A regular expression match, by a syslog

message, with any of these keywords will alert network

operators of a possible switch failure. When alerted, network

operators will verify whether the event is indeed a switch

failure and identify the root cause of the failure if the answer

is yes. However, such regular expression matching technique

can only detect a small portion of switch failures (i.e., high

false negative rates) in practice, and can also have false
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TABLE V: Detailed information for switches

#
failures

# failed
switches

# switches
in total

# Ominous
time bins

# Non-ominous
time bins

228 131 2223 1273 5,516,435

positives [16]. Therefore, in this work we employ a machine

learning technique based on HSMM (Hidden Semi-Markov

Model) – which uses a sequence of syslog messages rather

than a single syslog message – to predict switch failures.

Since every such switch hardware failure event (of any of

the above three types) was all manually verified by the network

operators, this failure data set can serve as the ground truth

for our evaluations.

Based on their experience, network operators believe that

the syslogs within 24 hours before a switch failure have high

predicative power; once a failure is so predicted, they need no

more than 30 minutes to react to a positive failure prediction

(e.g., by rerouting the traffic and replacing the switch). How-

ever, constantly maintaining and processing syslogs within a

sliding window of 24 hours for the online failure prediction is

too computationally expensive. Fortunately, after analyzing the

syslogs right before dozens of know switch failures, we found

that in most cases a 2-hour sliding window of syslog messages

within 24 hours before a given failure can capture the ominous

pattern. We also found that, if there are less than five syslog

messages in a time bin’s corresponding message sequence,

the extracted template sequence would be too short to capture

the ominous pattern and hence cannot be used for failure

prediction. Therefore, in our evaluation experiments, we set

Δτm = 2 h, Δτa = 30 min, [τs, τe] = 24 h, ξ = 15 min, and

θ = 5. Table V illustrates the number of hardware failures, the

number of failed switches, the number of switches in total, the

number of ominous time bins, and the number of non-ominous

time bins.

B. Evaluation of Template Learning Accuracy

As mentioned earlier, three techniques were proposed in

previous works for parsing syslog messages and learning

syslog templates for network devices, i.e., Signature Tree [7],

STE [8], and LogSimilarity [6]. In addition, we propose

a novel template extraction technique, i.e., FT-tree, for ac-

curately and incrementally learning templates from syslog

messages. After analyzing the four techniques, we believe

that FT-tree and Signature Tree are more accurate in template

extraction than STE and LogSimilarity in our scenario (see

Section V for more details). To demonstrate our analysis, we

here compare the performance of the four techniques using

real-world switch syslogs.

Learning templates from syslog messages is equivalent to

classifying syslog messages based on the events they describe.

Since the network operators analyze switch syslogs every

day, they are really familiar with the event that a given

syslog message represents. Therefore, we can use the network

operators’ manual classification results of syslog messages as

the ground truth. As described in Section IV-A, we picked

one switch model, and collected all the switches that belong

to this switch model, and analyzed all the syslogs of the

switches. That is, billions of syslog messages were analyzed

for the above switches and, thus, manually classifying all
the syslogs was prohibitive. Thereby, we randomly collected

a sample of syslog messages for the evaluation as follows.

We first randomly picked four message types (see Table I for

the definitions) from all switches. For each message type,

we randomly collected 500 syslog messages. The network

operators then manually classified the syslog messages based

on the event each message represents. Considering the large

number of the syslog messages that should be manually

classified (2000), this is a large amount of work. After that, we

ran FT-tree, Signature Tree, STE, and LogSimilarity to learn

the templates for the above syslog messages, respectively.

We applied the Rand index [22] technique to quantitatively

compare the accuracy of the four techniques. Rand index is

a popular technique for evaluating the similarity between two

data clustering techniques. We could evaluate the accuracy for

each technique by calculating the Rand index between the

manual classification results and the templates learned by the

technique. Specifically, among the template learning results of

a specific technique for a given message type, we randomly

selected two messages, i.e., x and y, and defined a, b, c, d as

follows:

• a: x and y are manually classified into the same cluster

and they have the same template;

• b: x and y are manually classified into different clusters

and they have different templates;

• c: x and y are manually classified into different clusters

and they have the same template;

• d: x and y are manually classified into the same cluster

and they have different templates;

Moreover, the Rand index can be calculated using the above

terms as follows:

Rand index =
a+ b

a+ b+ c+ d
(1)

Fig. 5 shows the Rand indexes for FT-tree, Signature

Tree, STE, and LogSimilarity among the four message types.

FT-tree and Signature Tree achieved averaged close-to-1

Rand indexes and performed excellent across all the four

message types. In contrast, STE and LogSimilarity achieved

relatively low averaged Rand indexes, i.e., 62.10% and

59.31%, respectively. This is because STE cannot match some

specific syslog messages to any template, and LogSimilarity

may match some specific syslog messages belonging to dif-

ferent subtypes to the same template (see Section V for more

details). FT-tree and Signature Tree are both word frequency

based techniques, i.e., both FT-tree and Signature Tree are

constructed based on the frequency of words in messages. As a

consequence, the templates extracted by FT-tree and Signature

Tree are almost identical. However, FT-tree can construct a

tree and learn templates incrementally, whereas Signature Tree

cannot.
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Fig. 5: Comparison of rand indexes for FT-tree, Signature

Tree, STE and LogSimilarity among four message types

C. Evaluation of Failure Prediction Accuracy

Since FT-tree, Signature Tree, STE and LogSimilarity are

all template extraction techniques for failure diagnosis or pre-

diction, we evaluated the four techniques directly on the basis

of not only the template learning results, but also the failure

prediction results following [10], [11]. HSMM (Hidden Semi-

Markov Model) is a popular failure prediction technique used

for predicting failures based on logs [12]. It was demonstrated

with high accuracy using data collected from commercial

cellular networks. Therefore, we here applied HSMM as

the failure prediction technique to demonstrate the template

learning performance of FT-tree, Signature Tree, STE, and

LogSimilarity.

A system’s capability to predict failure is usually assessed

by the following three intuitive metrics: Precision,Recall
and F1 measure [12], [17]. Hence we used these metrics to

evaluate the performance of each technique. For a time bin, ac-

cording to the ground truth provided by the network operators,

we knew the outcome as either an ominous time bin or a non-

ominous one. For each technique, we labeled its outcome as a

true positive (TP), true negative (TN), false positive (FP), and

false negative (FN). True positives were ominous time bins that

were accurately determined as such by the technique, and true

negatives were time bins that were accurately determined as

non-ominous. If the technique determined that a time bin was

an ominous one when, in fact, it was actually non-ominous, we

then labelled the outcome as a false positive. False negatives

were ominous time bins that were incorrectly missed by the

technique. We calculated the Precision, Recall and F1mesure
as follows: Precision = TP

TP+FP , Recall = TP
TP+FN ,

F1 mesure = 2∗Precision∗Recall
Precision+Recall .

We used the 10-fold cross validation model to evaluate the

four techniques [23]. 10-fold cross validation is a model vali-

dation technique that provides an insight on how a prediction

model will generalize to an independent dataset [24]. The

benefit of 10-fold cross-validation is that all time bins are used

for both training and validation, and each time bin is used for

validation exactly once.
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Fig. 6: Comparison of PRCs among FT-tree, Signature Tree,

STE, and LogSimilarity

TABLE VI: Precision,Recall and F1 measure of FT-tree,

Signature Tree, STE and LogSimilarity

technique Precision Recall F1 measure
FT-tree 32.27% 95.3% 48.21%

Signature Tree 32.27% 95.3% 48.21%
STE 9.14% 99.6% 16.75%

LogSimilarity 10.67% 83.5% 18.93%

Figure 6 shows the comparison of the precision recall curves

(PRCs) of the failure prediction results of FT-tree, Signature

Tree, STE, and LogSimilarity. Please note that, in a PRC, to

the upper right means a good accuracy, whereas to the left

bottom means a bad one. As mentioned earlier, the templates

extracted by FT-tree and Signature Tree are almost identical

and, thus, they had the same PRCs. Through the PRCs, we

can see that applying FT-tree or Signature Tree for learning

templates achieved a much better failure prediction accuracy

than applying STE and LogSimilarity.

To intuitively compare the best accuracy, we show in

Table VI the Precision,Recall and F1 measure when the

prediction system achieved the best F1 measure. Whereas

the four techniques achieved an approximate Recall, FT-tree

and Signature Tree improved the Precision for the failure

prediction system by 202% to 253% and the F1 measure by

155% to 188%.

D. Evaluation on Computational Efficiency

As mentioned earlier, network operators may frequently
conduct firmware or software upgrades on switches to intro-

duce new features or fix bugs in the previous versions [14],

[15]. New subtypes of syslog messages can be generated be-

cause of the said upgrades and, thus, new templates should be

extracted. Otherwise, these new subtypes of syslog messages

cannot be matched to any template. Since both FT-tree and

TABLE VII: Comparison of template matching time per day

for FT-tree, Signature Tree, STE and LogSimilarity

FT-tree Signature Tree STE LogSimilarity
51 min 628 h 100 h 80 min
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LogSimilarity learn templates in an incremental manner, when

new subtypes of syslog messages occur it is not necessary that

all the templates have to be retrained and all the historical

syslogs have to be matched to new templates. However, if

new subtypes of syslog messages occur, we have to retrain all

the templates and rematch all the historical syslog messages to

templates when Signature Tree or STE is applied for template

extraction. This is because neither Signature Tree nor STE can

learn templates incrementally.

Suppose that the failure prediction or diagnosis technique

(such as HSMM) is retrained every day. We here compare

the computational cost for FT-tree, Signature Tree, STE, and

LogSimilarity. Since it is often the case that new subtypes of

syslog messages can be generated everyday, all the historical

syslogs should be rematched to templates for Signature Tree

and STE, but not for FT-tree and LogSimilarity. We imple-

mented FT-tree, Signature Tree, STE and LogSimilarity in

C++, and deployed them on the same server (CPU information:

12 Intel(R) Xeon(R) CPU E5645 @ 2.40GHz) with a single

thread. The CPU utilization remained 100% while the process

of each technique was running so that we could use the total

time to evaluate the complexity [25].

Table VII shows the time consumed for matching templates

per day for FT-tree, Signature Tree, STE, and LogSimilarity.

FT-tree and LogSimilarity can incrementally learn templates

and, thus, they just had to match 1-day’s worth of syslog

messages to the templates. However, STE and Signature Tree

had to match all the historical syslogs, i.e., 2-year’s worth of

syslog messages to the templates. Hence FT-tree and LogSimi-

larity consume much less time compared to STE and Signature

Tree. More specifically, FT-tree improved the computational

efficiency by 730 times and 117 times compared to Signature

Tree and STE, respectively. Although LogSimilarity is also

capable of incremental template extraction and hence is also

more computationally efficient than Signature Tree and STE, it

generates very different templates and is less computationally

efficient than FT-tree.

V. RELATED WORKS

Using log files for failure diagnosis and prediction has been

widely applied in ISP networks [10], [12], computers [11],

[13], [26], [27], and online ad services [28]. Liang et al. inves-

tigated the RAS event logs and developed three simple failure

prediction techniques based on the characteristics of failure

events, as well as on the correlation between failure events and

non-failure events [26]. Realizing the the importance of the

sequential feature of log files to failure prediction, Fronza et
al. used random indexing (RI) to represent the sequence of

operations extracted from logs, and then applied weighted

support vector machine to associate sequences to a class of

failures or non-failures [27]. Salfner et al. applied HSMM to

recognize the patterns of logs that indicate an imminent failure

directly [12].

Syslog parsing techniques for network devices including
routers and switches have been well studied in [6]–[8].

Specifically, inspired by the signature abstraction applied in

spam detection, Qiu et al. proposed a template extraction

technique [7]. The idea behind this technique is that a syslog

message subtype is usually a combination of words with high

frequency. Therefore, for syslog messages that belong to a

given message type, the technique constructs a signature tree

whose root node is the message type and the child nodes are

arranged on the basis of the frequency of the combinations
of words in syslog messages. Using the frequency of the

combinations of words rather than that of words themselves

leads to that Signature Tree is not incrementally retrainable.

That is, we have to retrain the signature tree, learn the

templates, and match all the historical syslog messages when

new subtypes of syslog messages occur (probably due to

upgrades). Considering the large number of syslog messages

generated every day (tens of millions) and the long period

of historical syslog messages (two years), matching all the

historical syslog messages to templates does consume a huge

amount of computational resources. Therefore, Signature Tree

is not suitable for learning templates in our scenario.

In addition, Kimura et al. presented an STE approach that

extracts log message templates using a statistical clustering

algorithm [8]. The high level idea is that template words

appear more frequently than parameter words, and that sys-

log messages that belong to the same subtype usually have

similar structures with the positions of words. Specifically,

for a word w that appears in the x-th position of a syslog

message that contains L words, the word score for w is

Score(w, x, L) = Probability(w|x, L). Then using clustering

techniques, STE classifies words with high word scores into

template words. However, STE can miss some templates and,

thus, some subtypes of syslog messages cannot be matched to

any templates. For example, suppose that the syslog messages

that belong to subtypes U0, U1, ..., Un have the same number

of words. If the syslog messages that belong to U0 occur much

less often than those belonging to U1, U2, ..., Un, each of the

template words in U0 will have a relatively small word score
and, thus, will be classified into parameter words. That is,

syslog messages belonging to U0 cannot be matched into any

template. Therefore, as the evaluation experiments show in

Sections IV-B and IV-C, STE has a relatively low accuracy.

In addition, STE is not incremental either.

To learn templates in an incremental manner, Kimura et
al. [6] developed an online message template extraction

technique, named LogSimilarity. In this technique, they first

classified words into five classes on the basis of the tendency

to constitute a log template: only symbols, only letters, only

symbols and letters, only numbers and letters, and only num-

bers or numbers and symbols. When a new syslog message

arrives, according to the number of words in different classes

in the message, the technique will assign this message to

an existing template cluster or create a new template cluster

from this message. In this technique, message templates are

learned on the basis of the classes of words rather than of

the words themselves and, thus, syslog messages that belong

to different subtypes can be easily assigned to one template

cluster. For example, the syslog messages of message type
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“SIF” in Table II can be assigned to one or two template

clusters in this technique, rather than to four clusters as shown

in Table IV.

VI. CONCLUSION

In this paper, we proposed a novel template extraction tech-

nique, i.e., FT-tree, for accurately and incrementally learning

templates. We evaluated and compared the performance of FT-

tree to those of Signature Tree, STE and LogSimilarity using

real-world switch failure tickets and syslogs collected from

more than 10 datacenters over a 2-year period. Both FT-tree

and Signature Tree achieved much higher accuracy than STE

and LogSimilarity, not only on the template learning, but also

on the failure prediction. Our experiments also showed that

Signature Tree and STE consumed much more computational

resources than FT-tree and LogSimilarity, as they are not

incrementally retainable. In summary, the evaluation results

clearly demonstrate the benefits of FT-tree: highly accurate,

low computational cost and incrementally retrainable.
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