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ABSTRACT
Proactive failure detection of instances is vitally essential to mi-
croservice systems because an instance failure can propagate to
the whole system and degrade the system’s performance. Over the
years, many single-modal (i.e., metrics, logs, or traces) data-based
anomaly detection methods have been proposed. However, they
tend to miss a large number of failures and generate numerous
false alarms because they ignore the correlation of multimodal data.
In this work, we propose AnoFusion, an unsupervised failure de-
tection approach, to proactively detect instance failures through
multimodal data for microservice systems. It applies a Graph Trans-
former Network (GTN) to learn the correlation of the heteroge-
neous multimodal data and integrates a Graph Attention Network
(GAT) with Gated Recurrent Unit (GRU) to address the challenges
introduced by dynamically changing multimodal data. We evaluate
the performance of AnoFusion through two datasets, demonstrat-
ing that it achieves the 𝐹1-score of 0.857 and 0.922, respectively,
outperforming the state-of-the-art failure detection approaches.

CCS CONCEPTS
• Software and its engineering → Maintaining software; •
Computing methodologies → Failure Detection; Graph Neu-
ral Networks.
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1 INTRODUCTION
As an increasing number of Internet applications migrate to the
cloud, the microservice architecture, which allows each microser-
vice to be independently developed, deployed, upgraded, and scaled,
has attractedwidespread attention recently [47]. Amicroservice sys-
tem is typically a large-scale system with many instances (e.g., vir-
tual machines or containers). Correlations among instances, e.g., ser-
vice invocations and resource contention, are usually complex and
dynamic [42]. When an instance fails, it may degrade the perfor-
mance of the whole microservice system, impact user experience
and even lead to revenue loss. For example, some failed instances
resulted in a surge of connection activity that overwhelmed the net-
working devices between the internal network and the main AWS
network in December 2021 [2]. Therefore, it is crucial to proactively
detect instance failures to mitigate failures timely.

Operators continuously collect three types of monitoring data,
including metrics, logs, and traces for proactively detecting instance
failures [30]. The metrics include system-level metrics (e.g., CPU
utilization, memory utilization, and network throughput) and user-
perceived metrics (e.g., average response time, error rate, and page
view count). A log records the hardware or software runtime in-
formation, including state changes, debugging output, and system
alerts. For an API request, a trace records its invocation chain
through instances, where each service invocation is called a span.

We adopt failure and anomaly to characterize the faulty behav-
iors of instances and monitoring data: 1) an anomaly is a deviation
from the normal system state (often reflected in monitoring data),
and 2) a failure is an event where the service delivered by an in-
stance goes wrong, and user experience is degraded [23]. Table 1
lists some types of anomalies and failures. For example, when a
“login failure” occurs, users cannot log into the system successfully.
Anomalies in logs and traces can be detected when this failure hap-
pens: many “ERROR”s will be printed in logs, and some trace data
will have significantly larger Response Time (RT). It is common
to observe many anomalies during a service failure. However, an
(intermittent) anomaly does not necessarily lead to a failure.

Over the years, a significant number of methods have been pro-
posed for automatic metric/log/trace (from now on, we call them
single-modal) anomaly detection. They try to proactively detect the
single-modal data’s anomalous behaviors and determine that the
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Table 1: The anomalies of multimodal data during service
failures. “Mem” represents the memory utilization metric,
“ERR” is an error log, and 𝑅𝑇𝑆𝑥→𝑆𝑦 denotes the response time
when service instance 𝑆𝑥 calls 𝑆𝑦 . “–” means no anomaly is
found or data is lost in that data modality.

Failure Type Metric Log Trace # Failures

failed of QR code Mem ↑ – – 505
system stuck Mem ↓ – – 16
login failure – ERR 𝑅𝑇𝑆1→𝑆2=11s 527
file not found – – 𝑅𝑇𝑆2→𝑆3=1.5s 36
access denied – ERR 𝑅𝑇𝑆2→𝑆4=1.1s 15

instance fails when the monitoring data becomes anomalous. How-
ever, after investigating hundreds of instance failures (see § 5.1.1),
we conclude that previous methods do not work well for instance
failure detection in microservice systems. Correlating metrics, logs,
and traces (from now on, we call them multimodal) is crucial for
instance failure detection. On the one hand, the single-modal data
cannot reveal all types of failures, let alone itself can be missing or
collected too slowly [23]. For example, in Table 1, when the failure
“failed to generate QR code” happens, only the instance’s metrics,
i.e., memory utilization, increase dramatically and exhibit anoma-
lous behaviors. If only conducting log or trace anomaly detection,
this type of failure will be falsely ignored. On the other hand, sim-
ply combining the anomaly detection results of the single-modal
anomaly detection methods may generate false alarms, which have
been confirmed in our experiments (see Table 3). For instance, the
(transient) anomalies detected by single-modal anomaly detection
methods may not represent any instance failure. Suppose an in-
stance’s network throughput metric experiences an anomaly and an
alarm is reported because the metric increases suddenly and returns
to the normal level after a short period. However, the system still
delivers normal service, because no trace data becomes anomalous,
and user experience is not impacted. Hence, no instance failure
should be reported.

To this end, we aim to correlate the multimodal data to detect
instance failures for microservice systems, which face the following
two challenges. (1) Modeling the complex correlations among multi-
modal data. When a failure occurs, one, two, or three modalities
of data can become anomalous, and they are correlated with each
other. Neglecting the correlations can degrade the failure detection
accuracy. (2) Dealing with the heterogeneous and dynamically chang-
ing multimodal data. Specifically, metrics are usually in the form of
multivariate time series, and logs are typically semi-structured text.
Moreover, a trace consists of spans in a tree structure. Integrating
such heterogeneous multimodal data is quite challenging. Addition-
ally, an instance’s multimodal data usually changes dynamically
over time.

In this work, we propose AnoFusion, an unsupervised instance
failure detection approach for microservice systems. To address the
first challenge, we apply Graph Transformer Network (GTN) [16,
45] since it can embed multimodal data into a graph and learn the
correlation of heterogeneous data through the effective represen-
tations of graph nodes and edges [40, 43]. To address the second
challenge, we first serialize the data of each modality according to

ERROR | 0.0.0.4 | Service2 | mob_helper.py -> 
mob_info_to_redis -> 88 | ... information has 

expired, mobile phone login is invalid

S2->S4: Response time = 11s
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Figure 1: The multimodal monitoring data, i.e., Metrics, Logs,
and Trace, during an instance failure

the modality’s characteristics and construct the nodes and edges of
heterogeneous graphs. After that, we adopt Graph Attention Net-
work (GAT) [36], which assigns different weights to neighbor nodes
and learns the dynamic patterns of multimodal data, to optimize the
graphs and filter significant node information. We then use a Gated
Recurrent Unit (GRU) [19] to capture the temporal information
and predict the multimodal data of the next moment. Finally, the
similarity between the observation and prediction values is used to
determine whether an instance fails.

The contributions of this paper are summarized as follows:

• To the best of our knowledge, we are among the first to iden-
tify the importance of exploring the correlation of multimodal
monitoring data (i.e., metrics, logs, and traces), and correlate the
multimodal data using GTN for instance failure detection.

• Our approach, AnoFusion, serializes the data of the three modali-
ties according to each modality’s trait. It combines GTN and GAT
to detect anomalies in the dynamic multimodal data robustly. In
addition, a GRU layer is used to capture the temporal information
of the multimodal data.

• We adopt two microservice systems, consisting of 10 and 28 in-
stances, respectively, to evaluate the performance of AnoFusion.
The evaluation results show that AnoFusion detects instance fail-
ures with average 𝐹1-score of 0.857 and 0.922, outperforming
baseline methods by 0.278 and 0.480 on average, respectively.

Our source code and experimental data are available at https:
//github.com/zcyyc/AnoFusion.

2 BACKGROUND AND RELATEDWORK
2.1 Single-modal Anomaly Detection
Generally, operators continuously collect three types of observ-
able monitoring data: metrics, logs, and traces [30] to ensure the
reliability of microservice systems. Figure 1 shows an example of
anomalous multimodal data in a failure case.
Metric. A metric is defined as x = {𝑥1, 𝑥2, . . . , 𝑥𝑇 }, where 𝑇 is the
length of the metric, 𝑥𝑡 ∈ R denotes the observation at time 𝑡 . A
microservice instance typically has a set of metrics that can be rep-
resented as a multivariate time series, monitoring various service
metrics (e.g., page view) and system/hardware metrics (e.g., CPU
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usage). Figure 1 (M part) shows an example of metric data. Tradi-
tional statistic metric anomaly detection methods [24] do not need
training data but can be less effective when facing intricate data.
Supervised learning methods [17, 20] need operators to manually
label anomalies, which is impractical in many real-world scenarios.
Thus, unsupervised methods [1, 25, 25, 35, 44] that do not require
anomaly labels have become a hot research topic in recent years.
For example, JumpStarter [25] applies a compressed sensing tech-
nique for anomaly detection. USAD [1] detects anomalies through
adversarial training with high efficiency. A metric anomaly de-
tection method can easily detect an instance failure if multiple
metrics become anomalous soon after the failure. However, since
metric anomaly detection methods only utilize metric data to detect
anomalies and possible failures in a system, they will fail to alert
operators when a failure does not manifest itself on metrics. AnoFu-
sion analyzes metric data in an unsupervised way and reduces false
alarms by using metric data together with other data modalities.
Log. Log data is semi-structured text output by instances at the
application or system level. It is typically used to record the opera-
tional status of hardware or software. Generally, logs are generated
with a predefined structure. As a result, extracting log templates
and their parameters is a standard step in analyzing log data [7]. For
example, Figure 1 (L part) lists a log. Traditional log anomaly detec-
tion methods are usually designed to identify keywords in logs like
“ERROR” or “fail”. However, negative keywords such as “fail” may
appear in logs due to network jitters or operator login failure, and
they do not imply an instance failure. Advanced approaches follow
a similar workflow: log parsing, feature extraction, and anomaly
detection [11]. Deep learning-based methods learn the log patterns
(e.g., sequential feature, quantitative relationship) of normal execu-
tions and determine an anomaly when the pattern of a log sequence
deviates from the learned normal patterns [5, 22, 41]. For example,
LogAnomaly [27] applies template vectors to extract the hidden
semantic information in the log templates and detects continuous
and quantitative log anomalies at the same time. Deeplog [5] pre-
dicts the logs that may appear after a sliding window utilizing the
LSTM model. AnoFusion requires neither labeling work nor domain
knowledge when analyzing log data.
Trace. A trace is made up of spans, each of which corresponds to a
service invocation [29]. Figure 1 (T part) shows an example of trace
data. When the service processes a user’s request, several instances
will be invoked. The monitoring system records when a specific
service is called and when it responds, and the difference between
them is the Response Time (RT). Most trace anomaly detection
methods detect anomalies according to whether the response time
of each invocation increases dramatically and/or whether the in-
vocation path behaves abnormally [9, 18, 21, 28, 29]. For instance,
TraceAnomaly [21] learns the normal patterns of traces, and anom-
alies are detected when their patterns deviate from those of normal
traces. However, on the one hand, a trace anomaly alone does not
necessarily denotes an instance fails. On the other hand, an instance
failure may not manifest itself in the trace data. Therefore, using
trace anomaly detection methods alone can also lead to missed
alerts or false alarms. AnoFusion can combine trace data with other
modalities to boost anomaly detection performance.

2.2 Multimodal Anomaly Detection
Deep learning-based multimodal data fusion has witnessed great
success in several research fields. For example, video subtitle gener-
ation [12], conversation behavior classification [32], and emotion
recognition [14]. Recent studies have started to tackle the anomaly
detection problem based on multimodal data. Vijayanand et al. [37]
propose an anomaly detection framework for cloud servers using
multidimensional data, including different features such as net-
work traffic sequence features, CPU usage, and memory usage from
host logs. These extracted multidimensional features are fed to the
detection model that identifies the anomalies and maximizes the
detection accuracy. [6] performs correlation analysis on metrics and
logs to discover the anomaly patterns in cloud operations. Addition-
ally, SCWarn [46] combines metrics and logs for anomaly detection
by serializing the metrics and logs separately and adopting LSTM
to detect failures. However, traces, which are vital to instances,
are missing in these works, and thus, they cannot achieve optimal
performance when detecting anomalies in our scenario. To the best
of our knowledge, we are among the first to focus on detecting
instance failures using multimodal data.

2.3 Graph Neural Networks
GTN. GTN takes a heterogeneous graph as input and turns it into
a new graph structure specified by meta-paths. Meta-paths are re-
lational sequences that connect pairs of objects in heterogeneous
graphs, which are commonly employed to extract structural infor-
mation. By combining multiple GT layers with GCN, GTN learns
node representations on the graph efficiently in an end-to-end
way [43]. We apply GTN to learn the correlations among multi-
modal data in our scenario.
GAT. GCN is not good at analyzing dynamic graphs, and when
the graph structure of training and test sets changes, GCN will
no longer be suitable. In addition, GCN assigns the same weight
to each neighbor node, which falls short of our expectations for
future graph structure optimization. GAT solves the problems of
GCN by allocating various weights to different nodes. It enables
various nodes to be distinguished in terms of importance, so that
AnoFusion can focus on more significant information in the graph
structure [36]. Therefore, GAT is expected to achieve better perfor-
mance in processing dynamically changing time series data, and
thus we utilize GAT instead of GCN.
GRU. As we know, RNN [15] can represent time dependency by
adopting deterministic hidden variables. However, RNN may be
incapable of dealing with the long-term dependency problem in the
time series, and LSTM [13] and GRU [19] are proposed as solutions.
Generally, GRU is often comparable to LSTM, and the fewer param-
eters and more straightforward structure make it ideal for model
training [35]. We thus apply GRU to capture the time dependency
of the multimodal data.

3 MOTIVATION
To prove that single-modal data is insufficient to comprehensively
capture the failure patterns of instances, we adopt two datasets (see
Section 5.1 for more details) for an empirical study. These datasets
contain the multimodal data (i.e., metrics, logs, and traces) collected
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from microservice systems. It also includes the records of all failure
injections for a fair evaluation.

We perform a thorough internal data analysis to investigate the
correlation of different modalities. Table 1 lists some monitoring
data collected from a microservice system. Many instance failures
cannot be successfully captured using single-modal data. It also
shows that when a failure occurs, data of different modalities may
display anomalous patterns at the same time. Mining the correlation
between multimodal data can provide more comprehensive and
accurate information for failure detection tasks.

Moreover, we experiment to evaluate the failure detection per-
formance of single-modal data-based anomaly detection meth-
ods. We apply five popular single-modal anomaly detection meth-
ods (Section 5.1), JumpStarter [25], USAD [1], LogAnomaly [27],
Deeplog [5], TraceAnomaly [21], and the combination of Jump-
Starter, LogAnomaly, and TraceAnomaly, to conductmetric/log/trace
anomaly detection, respectively. Table 3 lists the precision, recall,
and 𝐹1-score of these methods.
Metric anomaly detection. JumpStarter and USAD achieve low
performance on the two datasets. JumpStarter extracts real-time
normal patterns from metric data, but it does not consider the
patterns of historical data. USAD is not very noise-resilient, which
results in a significant number of false positives and false negatives.
Furthermore, they do not take logs and traces into account, thus
they lack essential information from logs and traces for failure
detection tasks.
Log anomaly detection. LogAnomaly and Deeplog achieve rela-
tively high 𝐹1-score on D1. It is because the anomaly patterns of
the log data in D1 are more obvious and straightforward to identify
than those in D2. When a keyword like “ERROR” appears in logs,
there is a high probability that it is an instance failure. However,
only relying on log data results in a large number of false positives
and false negatives in D2, for some failures do not manifest them-
selves obviously in logs, and some anomalous logs do not indicate
an instance failure.
Trace anomaly detection. TraceAnomaly gets unsatisfactory 𝐹1-
score on both datasets. The precision of TraceAnomaly is low, in-
dicating that there are a huge number of false positives. Because
TraceAnomaly determines anomalies based on only response time.
However, a larger response time quickly returning to normal status
does not indicate an instance failure.
JLT. JLT aggregates the results of JumpStarter, LogAnomaly, and
TraceAnomaly directly, to form a multimodal baseline. The aggre-
gation method is majority voting, which determines a failure if
two or more modalities have anomalies at a certain moment. JLT
suffers from low precision (recall) on D1 (D2), indicating a high
false positive (negative) rate, because it ignores the correlation of
the multimodal data. On the one hand, some failures only manifest
themselves in a specific modality of data, making the majority vot-
ing strategy requiring two or more modalities to have anomalies for
failure detection ineffective, which results in many false negatives
on D2. On the other hand, since JumpStarter, LogAnomaly, and
TraceAnomaly all suffer from low precision on D1, their combina-
tion, i.e., JLT, still experiences a high false positive rate.

In summary, single-modal anomaly detection approaches fail
to detect failures robustly since they lack insights from other data
modalities. Additionally, simply combining the anomaly detection
results of the single-modal anomaly detection methods, instead of
mining the correlations of the multimodal data, cannot guarantee
high accuracy. Therefore, we attempt to design a robust instance
failure detection approach by correlating the multimodal data.

4 ANOFUSION
4.1 Overview
As shown in Figure 2, the workflow of AnoFusion is divided into the
offline training stage and the online detection stage. To capture the
heterogeneity and correlation among multimodal data, we employ
GTN to update the heterogeneous graphs. Moreover, to improve
the robustness of AnoFusion, we apply GAT after GTN, making
it perform stably when the data patterns of the training set and
test set are different. In addition, to achieve unsupervised failure
detection and make AnoFusion more suitable for time series data,
we use GRU to predict the multimodal data of the next moment. In
the offline training stage, AnoFusion consists of four main steps:

• Multimodal Data Serialization. To prepare for the future graph
structure’s construction, AnoFusion converts multimodal data
(i.e., metrics, logs, and traces) into time series using predefined
processes and aligns their time. After serialization, AnoFusion
treats each time series as a “data channel”.

• Graph Stream Construction. To build the raw inputs for GTN,
AnoFusion constructs a heterogeneous graph containing all the
data channels based on their connections for each moment 𝑡 .
Then, all heterogeneous graphs form a graph stream, which will
be input into GTN.

• Feature Filtering. GTN updates the graph stream by learning
the representations of nodes in the heterogeneous graph and
capturing the correlation among different data modalities. The
updated graph stream is regarded as the features of the original
data channels. Then, AnoFusion utilizes GAT to give attention
scores to the nodes in the graph stream, identifying different
patterns and achieving feature filtering.

• Failure Detection. GRU is applied to temporal sequences to
predict the values at the next moment based on the previous
inputs. We train the GRU network to predict the next graph
based on the given graph stream as accurately as possible.

In the online detecting stage, for a given time 𝑡 , multimodal data
will be serialized according to the observations in [𝑡 −𝜃, 𝑡], where 𝜃
is the input window size. Then, we use the serialized data channels
to construct a heterogeneous graph stream. The graph stream of this
window will be fed into the trained model to obtain the prediction
of the next graph. AnoFusion calculates the similarity between the
predicted graph and the observed graph as the failure score and
then determines whether it is a failure. Note that AnoFusion does
not restrict the dimensions of any modality data.

4.2 Multimodal Data Serialization
Serialization of metric data. Metrics collected from instances
are in the form of time series, which have a serialized structure.
Therefore, it only requires regular preprocessing steps such as
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Figure 2: The framework of AnoFusion. It is an unsupervised learning approach without using labels in the offline training.

normalization. The normalization process is given by: m̂ ≡ m/|m|
where m is the raw metric data and m̂ is the normalized data. It
scales individual samples to have a unit norm, which can be useful
when using a quadratic form such as the dot-product to quantify
the similarity of any pair of samples.
Serialization of log data. Parsing logs correctly and extracting
log templates are the two essential steps of log serialization [39].
We adopt the advanced log parsing algorithm, Drain [10], which
has shown its superiority and efficiency, to extract log templates in
AnoFusion. The log serialization process is the following two steps:
(1) Clustering. To deal with log changes caused by constantly
updating code, adding new logs, and altering new logs in actual
microservice systems, we first use a clustering algorithm for the log
templates. By grouping similar log templates into clusters, on the
one hand, the redundant information can be removed, and on the
other hand, the types of log templates can be used to characterize
log data. Once a new log template emerges due to a software up-
date, the similarity between the new log template and the previous
cluster centroids can be calculated, and it can be decided whether
the new log template belongs in an existing cluster or should be
regarded as a new cluster. Furthermore, through the empirical study
of a large number of online service systems, we conclude that fail-
ures rarely occur in real-world scenarios [25]. Since AnoFusion is
an unsupervised learning method based on the assumption that
all training samples have normal patterns, removing anomalous
log templates will improve the model’s performance. Based on the
analysis mentioned above, we finally utilize the “bert-base-uncased”
model [4] to obtain sentence embedding vectors, and apply the DB-
SCAN [33] algorithm to cluster these vectors. AnoFusion computes
the centroid c of each cluster C by:

c = argmin
a∈C

∑︁
b∈C

|a − b| (1)

(2) Serialization. The category of each log entry in the input can
be determined by calculating the distance between its sentence

embedding vector and that of the centroid of each cluster. After
that, AnoFusion uses a sliding window to split the input log data
into windows, each of which has the window length 𝜃 and the step
size 𝛿 . We count the number of each category of logs as well as
the total number of logs in each window to form𝑀 + 1 time series,
where𝑀 is the number of log template clusters. The horizontal axis
𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 corresponds to the input log’s collection time.
Serialization of tracing data. AnoFusion uses the sliding window
with length 𝜃 and step size 𝛿 to split tracing data. Each window
contains tracing data (in the form of RT) of the invocations related
to the instance. Then, for each window, AnoFusion computes the
mean, median, range, and standard deviation of the invocations RT,
producing four time series, respectively. If status code is available,
AnoFusion may take them as the fifth time series. We treat each
time series as a data channel, similar to the serialization of log data.
Clock synchronization. To build the graph structure more con-
veniently, AnoFusion synchronizes the clocks of the three modal
data after serialization. The goal of AnoFusion is failure detection
for a single instance and all the monitoring data acquired is within
that instance. Therefore, the monitoring data clocks of the three
modalities are relatively synchronized. The metric data is collected
every minute. A log entry is generated when an event occurs in the
instance. Moreover, a trace is recorded when a request is processed.
Therefore, we obtained the features (e.g. the number of occurrences)
of metrics, logs, and traces every minute in our scenario.

4.3 Graph Stream Construction
The data channels we get from the previous step can be described
as 𝑋 =

{
x(1) , . . . , x(𝑁 )

}
, where 𝑁 is the number of data channels.

AnoFusion constructs a heterogeneous graph𝐺𝑡 for each timestamp
𝑡 using the extracted data channels. The node set of graph 𝐺𝑡 ,
denoted by 𝑋𝑡 , consists of the value of each data channel at time 𝑡 ,
i.e., 𝑋𝑡 =

{
𝑥
(1)
𝑡 , . . . , 𝑥

(𝑁 )
𝑡

}
. Since there are three modalities, there
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are also three types of nodes (i.e., metrics, logs, and traces). Thus,
the number of edge types 𝐾 = 6 (i.e., metrics-metrics, metrics-logs,
metrics-traces, logs-logs, log-traces, traces-traces). The adjacency
matrix for each type of edge in graph 𝐺𝑡 can now be expressed as
𝐴(𝑘 ) ∈ R𝑁×𝑁 , where 𝑘 = 1, . . . , 𝐾 .

AnoFusion utilizes the mutual information (MI) [8] to calculate
the adjacency matrix. For each data channel pair

(
x(𝑖 ) , x( 𝑗 )

)
with

an edge type of 𝑘 , the corresponding adjacency matrix value can
be calculated as follows:
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where 𝜏 is the number of timestamps (i.e., the length of each data
channel), 𝑝

(
x(𝑖 ) , x( 𝑗 )

)
is the joint probability mass function of x(𝑖 )

and x( 𝑗 ) , and 𝑝
(
x(𝑖 )

)
and 𝑝

(
x( 𝑗 )

)
are the marginal probability

mass functions of x(𝑖 ) and x( 𝑗 ) , respectively. After calculating
MI for all channel pairs, we now have the final adjacency matrix
𝐴 ∈ R𝑁×𝑁×𝐾 . 𝐺𝑡 = (𝑋𝑡 , 𝐴) is defined to be the heterogeneous
graph generated at time 𝑡 . AnoFusion stacks the graphs of each
moment together to form a graph stream 𝐺 = {𝐺1, . . . ,𝐺𝜏 }.

4.4 Feature Filtering
AnoFusion performs feature filtering by updating the heterogeneous
graph stream 𝐺 with GTN and learning failure patterns by GAT.
Graph Transformer Network. GTN models the heterogeneity
and correlation of multimodal channels using the adjacency matrix
𝐴. Graph Transformer layers (GT layers) are the main component
of GTN. They learn the soft selection and composite relationship of
edge types to produce useful multi-hop connections, also known as
meta-path [43]. Specifically, considering the adjacency matrix 𝐴 as
the input, a GT layer has two steps: First, it softly constructs several
graph structures from 𝐴 by a 1 × 1 convolutional layer, which can
be formulated as:

𝑄 (𝑘 ) = 𝜙
(
𝐴,𝑊 (𝑘 )

)
=

𝐾∑︁
𝑖=1

𝑤
(𝑘 )
𝑖

𝐴(𝑖 ) (3)

where𝑄 (𝑘 ) is the generated graph for edge type 𝑘 ,𝜙 denotes the 1×
1 convolution,𝑊 (𝑘 ) ∈ R1×1×𝐾 is the parameter of 𝜙 (for edge type
𝑘), 𝐾 is the number of edge types. Second, it combines each 𝑄 (𝑘 )

through matrix multiplication to generate a new graph structure
𝐴′, a.k.a, meta-path:

𝐴′ = 𝐷−1
𝐾∏
𝑘=1

𝑄 (𝑘 ) (4)

Note that we also normalize 𝐴′ by 𝐷 , which denotes the degree
matrix of 𝐴, to ensure numerical stability. Stacking several GT
layers in GTN aims to learn a high-level meta-path that is a useful
relationship of multimodal data.
Graph Attention Network. With the meta-path matrix 𝐴′ gen-
erated by stacking multiple GT layers, AnoFusion employs GAT
on the heterogeneous graph stream to distinguish the significance
of multimodal data channels and completes the feature filtering.
The multi-head attention mechanism is utilized as well to stabilize

this process. Specifically, for each channel pair
(
x(𝑖 ) , x( 𝑗 )

)
, we first

compute a raw attention score for each attention head based on 𝐴′:

𝛽
(ℎ)
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))
(5)

where 𝛽 (ℎ) is the attention score for the ℎ-th attention head,𝑊
denotes the learnable parameter of a linear transformation. Then,
AnoFusion normalizes the raw attention score with softmax and
performs node feature aggregation for the 𝑖-th node 𝑥 (𝑖 ) by:
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where 𝐻 is the number of attention heads, 𝛽 (ℎ)
𝑖,𝑙

denote the ℎ-th
head attention score between channel 𝑖 and channel 𝑙 ,𝑊 (ℎ) and
𝑊𝐻 denote the linear transformation for each head and final output,
respectively. The data channels are successively updated across the
multi-layer Graph Attention Network.

4.5 Failure Detection
After feature filtering, we use the updated graph stream to train a
failure detection model based on a recurrent neural network. Let
𝑋 ′ ∈ R𝑁×𝜏 denote the updated data channels, we can use GRU to
capture its complex temporal dependence and predict the value of
data channels at time 𝜏 . The GRU network can be formulated as:

𝑧𝑡 = 𝜎
(
𝑊𝑧𝑋

′
𝑡 +𝑈𝑧ℎ𝑡−1 + 𝑏𝑧

)
𝑟𝑡 = 𝜎

(
𝑊𝑟𝑋

′
𝑡 +𝑈𝑟ℎ𝑡−1 + 𝑏𝑟

)
ℎ̂𝑡 = tanh

(
𝑊ℎ𝑋

′
𝑡 +𝑈ℎ (ℎ𝑡−1 ⊙ 𝑟𝑡 ) + 𝑏ℎ

)
ℎ𝑡 = (1 − 𝑧𝑡 ) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ̂𝑡 ,

(7)

where 𝜎 denotes the sigmoid function, ⊙ denotes the Hadamard
product (i.e., element-wise product), 𝑋 ′

𝑡 is the input vector, ℎ𝑡−1
is the previous hidden state, ℎ̂𝑡 is the candidate activation vector,
ℎ𝑡 is the hidden state and output vector of time 𝑡 . 𝑧𝑡 denotes the
update gate, controlling how much information ℎ𝑡 needs to keep
from ℎ𝑡−1, and how much information needs to be received from
ℎ̂𝑡 . 𝑟𝑡 denotes the reset gate, controlling whether the calculation
of the candidate activation vector depends on the previous hidden
state.𝑊 and𝑈 are trainable parameter matrices, and 𝑏 is a trainable
parameter vector. AnoFusion uses the final hidden state of GRU, ℎ𝑡 ,
to predict the value of data channels at time 𝜏 (i.e., the last moment
in the graph stream):

𝑋 ′
𝜏 = tanh (𝑊𝑜ℎ𝜏−1 + 𝑏𝑜 ) (8)

where𝑊𝑜 and 𝑏𝑜 are the learnable parameters. AnoFusion adopts
mean squared error (MSE) between the predicted value 𝑋 ′

𝜏 and the
observation 𝑋 ′

𝜏 as the loss function:

L =
1
𝑁
∥𝑋 ′
𝜏 − 𝑋 ′

𝜏 ∥22 (9)

where 𝑁 is the number of data channels. The GRU network is
updated using this loss function iteratively.
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4.6 Online Detection
In the online detection stage, for a new-coming multimodal mon-
itoring data 𝑋𝑡 , AnoFusion will first serialize the data using its
previous historical observations, i.e., 𝑋𝑡−𝜃+1:𝑡−1, and construct the
graph stream 𝐺 = {𝐺𝑡−𝜃+1, . . . ,𝐺𝑡 }, where 𝜃 is the length of the
window. Then, the graph stream is fed into the trained model to
get a prediction 𝑋𝑡 for 𝑋𝑡 . We calculate the difference between the
observed and predicted values for each data channel 𝑛 [3]:

𝐸𝑅𝑅𝑛 = |𝑋 (𝑛)
𝑡 − 𝑋 (𝑛)

𝑡 | (10)

Failures may only happen in part of the multimodal data, so we
focus on the biggest error. AnoFusion utilizes the max function to
aggregate 𝐸𝑅𝑅𝑛 (𝑡) , 𝑛 ∈ [1, 𝑁 ]:

𝐸𝑅𝑅 =
𝑁max
𝑛=1

𝐸𝑅𝑅𝑛 − 𝜇̃
𝜎

(11)

where 𝐸𝑅𝑅 is the failure score at time 𝑡 , 𝜇̃ and 𝜎 are the median and
inter-quartile range (IQR) of the set composed by 𝐸𝑅𝑅𝑛 , respectively.
We use median and IQR instead of mean and standard deviation as
they are more robust.

AnoFusion uses a threshold to determine if a failure has occurred
at a specific time 𝑡 . However, using a static threshold is not effective
since data distribution changes over time. To solve this problem,
we employ the Extreme Value Theory (EVT) [34] to automatically
and accurately determine the threshold. EVT is a statistical theory
that identifies the occurrences of extreme values and doesn’t make
any assumptions about data distribution. EVT can be applied to
estimate the likelihood of observing the extreme value for anomaly
detection. EVT has been shown to accurately choose thresholds in
previous failure detection methods [25, 26].

5 EVALUATION
In this section, we address the following research questions:
• RQ1: How well does AnoFusion perform in failure detection?
• RQ2: Does each component contribute to AnoFusion?
• RQ3: How do the major hyperparameters of AnoFusion influence
its performance?

5.1 Experimental Design
5.1.1 Datasets. To evaluate the performance of AnoFusion, we
conduct extensive experiments using two microservice systems
(forming dataset 1 and 2, respectively). Table 2 lists the detailed in-
formation of the datasets. The second column indicates the number
of microservices of each dataset. The third column indicates the
number of instances of each dataset. The fourth column displays
the average failure ratio (𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 𝑤𝑖𝑛𝑑𝑜𝑤𝑠

𝑇ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑤𝑖𝑛𝑑𝑜𝑤𝑠
) of all in-

stances. The fifth column lists every modality, and the last column
shows the number of metrics, logs, or traces.
• Dataset 1 (D1) is Generic AIOps Atlas (GAIA) dataset from
CloudWise1. It contains the multimodal data collected from a
system consisting of 10 instances, which is collected more than
0.7 million metrics, 87 million logs, and 28 million traces in two
weeks. Real-world failures are injected, and Table 1 lists some

1https://github.com/CloudWise-OpenSource

Table 2: The detailed information of the two datasets. #Micro
and #Ins denote the number of microservices and instances,
respectively.

#Micro #Ins %Failures Modality #

D1 5 10 4.908
Metric 734,165
Log 87,974,577
Trace 28,681,438

D2 14 28 1.243
Metric 3,122,168
Log 14,894,069
Trace 9,473,763

typical symptoms of failure types, such as QR code generation
failure, system stuck, file not found, and access denied, etc.

• Dataset 2 (D2) is collected from a large-scalemicroservice system
operated by a commercial bank. The system has 28 instances such
as Web servers, application servers, databases, etc., and provides
services for millions of users daily. Failures are injected into the
system manually by professional operators and the multimodal
monitoring data (i.e. metrics, logs, and traces) is collected. In
general, these failures can be resource (CPU, memory, disk) fail-
ures, network failures (network packet loss and network latency),
and application failures (VM failures). Due to the non-disclosure
agreement, we cannot make this dataset publicly available.

5.1.2 Implementation. AnoFusion is implemented in PyTorch and
all of the experiments are conducted on a Linux Server with two
16C32T Intel(R) Xeon(R) Gold 5218 CPU@2.30GHz, twoNVIDIA(R)
Tesla(R) V100S, and 192 GB RAM. In the multimodal data serial-
ization stage, we set the sliding window length 𝜃 = 60 and step
size 𝛿 = 1 (more discussions can be found in Section 5.4). In the
graph stream construction stage, we set the number of GT layers
in GTN to 5, as suggested by [14]. For GAT, the total number of
attention heads𝐻 is 6 (see Section 5.4 for more details). We split the
multimodal monitoring datasets into a training set and a testing set,
where the training set contains the front 60% data of each instance
and the testing set contains the rest 40%.

5.1.3 Baseline Approaches. We utilize JumpStarter [25], USAD [1],
LogAnomaly [27], Deeplog [5], TraceAnomaly [21], SCWarn [46],
and JLT (see Section 3), which use single modality, two modalities,
or threemodalities of data for instance failure detection, as baselines.
For all approaches, we use grid-search to set their parameters best
for accuracy.

5.1.4 Evaluation Metrics. We adopt the widely-used True Positive
(TP), False Positive (FP), and False Negative (FN), to label the failure
detection results according to the ground truth [25, 26, 31]. A TP is
a failure both confirmed by operators and detected by an approach.
An FP is a normal window that is falsely identified as a failure by an
approach. An FN is a missed failure that should have been detected.
We calculate 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃), 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁 ),
and 𝐹1-score= 2 · 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙/(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙) to evaluate
the overall performance of each approach.

5.2 RQ1: Effectiveness of AnoFusion
Table 3 lists the average precision, recall, and best 𝐹1-score ofAnoFu-
sion and seven baseline approaches described above on the two
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Table 3: The average precision, recall, and 𝐹1-score of different approaches on the two datasets

Approach Modality D1 D2

Metric Log Trace Precision Recall 𝐹1-score Precision Recall 𝐹1-score

JumpStarter [25] ✓ 0.466 0.785 0.584 0.533 0.413 0.465
USAD [1] ✓ 0.459 0.825 0.590 0.837 0.341 0.484

LogAnomaly [27] ✓ 0.486 0.957 0.644 0.126 0.344 0.184
Deeplog [5] ✓ 0.506 0.812 0.623 0.105 0.275 0.151

TraceAnomaly [21] ✓ 0.550 0.548 0.549 0.521 0.699 0.597

SCWarn [46] ✓ ✓ 0.547 0.425 0.447 0.633 0.891 0.734
JLT ✓ ✓ ✓ 0.461 0.940 0.618 0.800 0.344 0.481

AnoFusion ✓ ✓ ✓ 0.795 0.945 0.857 0.863 0.991 0.922

datasets. AnoFusion outperforms all baseline approaches on both
datasets, with best 𝐹1-score of 0.857 and 0.922, respectively.
Multimodal failure detection. SCWarn performs better than
single-modal failure detection methods by simultaneously process-
ing metrics and logs on D2. However, it ignores tracing data, which
is crucial for detecting instance failures in microservice systems
on D1. The correlation among each modality is ignored by JLT,
yielding sub-optimal performance on both datasets.
AnoFusion. Our approach is effective to detect instance failures,
with the average best 𝐹1-score significantly higher than existing
methods. Compared with SCWarn which combines two modalities,
the average best 𝐹1-score ofAnoFusion outperforms it by 41.00% and
18.80% on both datasets, respectively. Compared with JLT, using a
heterogeneous graph stream significantly improves the effective-
ness of instance failure detection. AnoFusion outperforms JLT by
23.90% and 44.10% on both datasets, respectively.
Robustness comparison. Firstly, we use two datasets from differ-
ent microservice systems, and the experiments show thatAnoFusion
achieves superior detection results on both datasets, outperform-
ing all baselines. Secondly, each dataset contains many kinds of
instances. We analyze the failure detection results of each instance
for each dataset. The 𝐹1-scores of AnoFusion for all instances on D1
range from 0.784 to 0.977, and from 0.805 to 0.986 on D2. We can
see that AnoFusion performs well in both D1 and D2. Therefore, we
believe these are testaments to the robustness of AnoFusion.
Efficiency comparison. We simulate the online detection en-
vironment and analyze the complexity of AnoFusion and other
baselines by counting the detection time required for each slid-
ing window. AnoFusion takes a window containing the data points
as input and then calculates a failure score through the trained
model. The average running time of AnoFusion’s online failure de-
tection is 1.932 × 10−2s. The prediction time of other baselines is
9.810×10−3s for JumpStarter, 8.975×10−5s for USAD, 1.707×10−3s
for LogAnomaly, 1.165 × 10−4s for Deeplog, 1.102 × 10−2s for
TraceAnomaly, 3.331 × 10−3s for SCWarn, and 9.958 × 10−3s for
JLT. Since operators perform failure detection every minute, ev-
ery approach can satisfy this requirement. Furthermore, AnoFusion
achieves satisfactory results by leveraging the three modalities,
which is superior considering both effectiveness and performance.

Table 4: The average precision, recall, and 𝐹1-score of AnoFu-
sion and different model variants

Approach Precision Recall 𝐹1-score

D1

w/o GTN 0.608 0.891 0.723
use GCN 0.769 0.847 0.802
w/o GAT 0.602 0.643 0.615
AnoFusion 0.795 0.945 0.857

D2

w/o GTN 0.742 0.917 0.859
use GCN 0.819 0.863 0.823
w/o GAT 0.698 0.735 0.700
AnoFusion 0.863 0.991 0.922

5.3 RQ2: Contributions of Components
To demonstrate the contribution and importance of each component
of AnoFusion, we create three variants of AnoFusion and conduct a
series of experiments to compare their performance. These variants
are: 1) AnoFusion w/o GTN. To study the significance of GTN in
modeling the heterogeneity and correlation of multimodal data, we
remove GTN from AnoFusion. 2) AnoFusion using GCN. To show
the importance of assigning different weights to neighbor nodes
in the graph (attention mechanism), we use GCN instead of GAT
in AnoFusion. 3) AnoFusion w/o GAT. To demonstrate how the
graph attention mechanism improves AnoFusion’s performance, we
remove the GAT from AnoFusion.

Table 4 lists the average precision, recall, and best 𝐹1-score of
the three variants discussed above on two datasets. When GTN
is removed, both precision and recall are degraded. The decrease
in precision is especially obvious. It shows that GTN can capture
heterogeneity and correlation among multimodal data in heteroge-
neous graphs, thereby reducing false positives by comprehensively
synthesizing the information of the three modalities. Both precision
and recall decrease when GCN is substituted with GAT, demonstrat-
ing that GAT is more efficient than GCN for dynamically changing
time series. Each node in the heterogeneous graph stream behaves
differently. Treating all nodes equally like GCN introduces noise to
the graph stream that can interfere with the model training process.
Furthermore, when GAT is no longer present in AnoFusion, the
precision and recall drop dramatically, which indicates that GAT
can focus on the most relevant information in the graph.
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Figure 3: 𝐹1-score of AnoFusion under different parameters

5.4 RQ3: Hyperparameters Sensitivity
Wemainly discuss the effect of two hyperparameters in multimodal
data serialization and graph stream construction onAnoFusion’s per-
formance. Figure 3 shows how the average best 𝐹1-score of AnoFu-
sion changes with different values of hyperparameters. Specifically,
we increase the size of the sliding window in data serialization, 𝜃 ,
from 10 to 120. From the experiment results, we can find that if 𝜃
is too large, it will contain too many seasonal variations and will
struggle to reconstruct the current state; if 𝜃 is too small, the model
will be unable to comprehensively learn the information from his-
torical data, degrading AnoFusion’s performance. 𝜃 between 40 and
90 can lead to relatively good performance. Thus, we set 𝜃 = 60.

We change the number of attention heads in GAT, 𝐻 , from 2 to
10. An 𝐻 of 6 yields the best performance. If 𝐻 is too small, the
performance of AnoFusion will slightly degrade due to the decrease
in model size; if 𝐻 is too large, more redundant information may
be generated, interfering with the training of AnoFusion [38].

6 DISCUSSION
6.1 Lessons Learned
Collecting multimodal monitoring data in real-time. We uti-
lize multimodal data to detect failures in instances. Ensuring the
real time data quality of different modalities is essential for the deep
learning models. From our real-world experience in Microsoft, we
suggest leveraging the open-source monitoring systems or Azure
Monitor2 to build the data pipeline. For example, Prometheus3 can
be used to collect metrics. ELK (Elasticsearch, Logstash, and Kibana)
Stack4 are used to collect logs. Skywalking5 can be used to collect
traces. Additionally, 16 days of data are utilized for training. When
the model training is completed, AnoFusion digests 10 minutes of
data to perform real-time detection in the online detection stage,
which is efficient and effective in practice.
Selection of evaluation metrics. In the online detection stage,
AnoFusion adopts the EVT algorithm [34] to obtain the best 𝐹1-score.
In practice, however, operators may have varying preferences for
precision and recall depending on the business type. For example,
operators generally seek a high recall for the core services that
provide online shopping services. They do not want to miss any
potential failures that could negatively impact users’ experience.
Precision is often preferable in data analytic services. Operators

2https://azure.microsoft.com/en-us/products/monitor
3https://prometheus.io
4https://www.elastic.co/what-is/elk-stack
5https://skywalking.apache.org

want to detect failures accurately rather than receive a large number
of false alarms. Therefore, concentrating solely on 𝐹1-score is not
appropriate for all instances. In the future, we plan to provide an
interface that allows operators to apply additional weights, valuing
one of precision or recall more than the other.

6.2 Threat to Validity
Failure labeling. In our experiments, we use two datasets, one
is public and another is collected from a real-world commercial
bank. The ground truth labels are based on failure injection (D1)
and manually checking failure reports by system operators (D2).
Manually labeling anomalies may contain few noises. We believe
that the labeling noises are minimal due to the extensive experience
of operators. Furthermore, to reduce the impact of labeling noises,
we adopt widely used evaluation metric to detect continuous failure
segments instead of point-wise anomalies [26].
Granularity effect. The granularity of the monitoring data in our
experiments is one minute, but this has no effect on the algorithm’s
effectiveness. We believe the algorithm can still work with finer or
coarser-grained data without additional effort. The datasets in our
experiments are still limited. We will experiment AnoFusion with a
larger scale of system in the future.
Data modalities. Our work involves the utilization of three modal-
ities of monitoring data. We believe that in a real-world scenario,
as long as the modalities of the monitoring data are no less than
two, the algorithm will function normally. Furthermore, if a failure
manifests itself in only one type of monitoring data, AnoFusion
will consider not only the correlation among historical multimodal
data, but also the proportion of anomalous in all monitoring data
to determine whether the instance fails.

7 CONCLUSION
Failure detection in the microservice systems is of great importance
for service reliability. In this work, we propose AnoFusion, one of
the first studies using multimodal data, i.e., metrics, logs, and traces,
to detect failures of instances in microservice systems robustly.
Specifically, we first serialize the data of the three modalities and
construct a heterogeneous graph structure. Then, GTN is utilized to
update the heterogeneous graph, with GAT being used to capture
significant features. Finally, we use GRU to predict the data pat-
tern at the next moment. The deviation between the predicted and
observed values is used as the failure scores. We apply AnoFusion
on two microservice systems, which proves that it significantly
improves the 𝐹1-score for failure detection. We believe that the so-
lution of applying multimodal data for failure detection will benefit
more areas beyond microservice systems.
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