
Robust Multimodal Failure Detection for Microservice Systems
Chenyu Zhao*
Nankai University
Tianjin, China

Minghua Ma∗
Microsoft

Beijing, China

Zhenyu Zhong
Shenglin Zhang†
Nankai University
Tianjin, China

Zhiyuan Tan
Xiao Xiong

Nankai University
Tianjin, China

LuLu Yu
Jiayi Feng

Nankai University
Tianjin, China

Yongqian Sun
Yuzhi Zhang

Nankai University
Tianjin, China

Dan Pei
Tsinghua University

Beijing, China

Qingwei Lin
Dongmei Zhang

Microsoft
Beijing, China

ABSTRACT
Proactive failure detection of instances is vitally essential to mi-
croservice systems because an instance failure can propagate to
the whole system and degrade the system’s performance. Over the
years, many single-modal (i.e., metrics, logs, or traces) data-based
anomaly detection methods have been proposed. However, they
tend to miss a large number of failures and generate numerous
false alarms because they ignore the correlation of multimodal data.
In this work, we propose AnoFusion, an unsupervised failure de-
tection approach, to proactively detect instance failures through
multimodal data for microservice systems. It applies a Graph Trans-
former Network (GTN) to learn the correlation of the heteroge-
neous multimodal data and integrates a Graph Attention Network
(GAT) with Gated Recurrent Unit (GRU) to address the challenges
introduced by dynamically changing multimodal data. We evaluate
the performance of AnoFusion through two datasets, demonstrat-
ing that it achieves the 𝐹1-score of 0.857 and 0.922, respectively,
outperforming the state-of-the-art failure detection approaches.

CCS CONCEPTS
• Software and its engineering → Maintaining software; •
Computing methodologies → Failure Detection; Graph Neu-
ral Networks.

KEYWORDS
Microservice System, Multimodal, Failure Detection
ACM Reference Format:
Chenyu Zhao, Minghua Ma, Zhenyu Zhong, Shenglin Zhang, Zhiyuan Tan,
Xiao Xiong, LuLu Yu, Jiayi Feng, Yongqian Sun, Yuzhi Zhang, Dan Pei,
Qingwei Lin, Dongmei Zhang. 2023. Robust Multimodal Failure Detection
forMicroservice Systems. In Proceedings of the 29th ACM SIGKDDConference
on Knowledge Discovery and Data Mining (KDD ’23), August 6–10, 2023, Long

∗Equal Contribution
†Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’23, August 6–10, 2023, Long Beach, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0103-0/23/08. . . $15.00
https://doi.org/10.1145/3580305.3599902

Beach, CA, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3580305.3599902

1 INTRODUCTION
As an increasing number of Internet applications migrate to the
cloud, the microservice architecture, which allows each microser-
vice to be independently developed, deployed, upgraded, and scaled,
has attractedwidespread attention recently [47]. Amicroservice sys-
tem is typically a large-scale system with many instances (e.g., vir-
tual machines or containers). Correlations among instances, e.g., ser-
vice invocations and resource contention, are usually complex and
dynamic [42]. When an instance fails, it may degrade the perfor-
mance of the whole microservice system, impact user experience
and even lead to revenue loss. For example, some failed instances
resulted in a surge of connection activity that overwhelmed the net-
working devices between the internal network and the main AWS
network in December 2021 [2]. Therefore, it is crucial to proactively
detect instance failures to mitigate failures timely.

Operators continuously collect three types of monitoring data,
including metrics, logs, and traces for proactively detecting instance
failures [30]. The metrics include system-level metrics (e.g., CPU
utilization, memory utilization, and network throughput) and user-
perceived metrics (e.g., average response time, error rate, and page
view count). A log records the hardware or software runtime in-
formation, including state changes, debugging output, and system
alerts. For an API request, a trace records its invocation chain
through instances, where each service invocation is called a span.

We adopt failure and anomaly to characterize the faulty behav-
iors of instances and monitoring data: 1) an anomaly is a deviation
from the normal system state (often reflected in monitoring data),
and 2) a failure is an event where the service delivered by an in-
stance goes wrong, and user experience is degraded [23]. Table 1
lists some types of anomalies and failures. For example, when a
“login failure” occurs, users cannot log into the system successfully.
Anomalies in logs and traces can be detected when this failure hap-
pens: many “ERROR”s will be printed in logs, and some trace data
will have significantly larger Response Time (RT). It is common
to observe many anomalies during a service failure. However, an
(intermittent) anomaly does not necessarily lead to a failure.

Over the years, a significant number of methods have been pro-
posed for automatic metric/log/trace (from now on, we call them
single-modal) anomaly detection. They try to proactively detect the
single-modal data’s anomalous behaviors and determine that the

5639

https://doi.org/10.1145/3580305.3599902
https://doi.org/10.1145/3580305.3599902
https://doi.org/10.1145/3580305.3599902
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3580305.3599902&domain=pdf&date_stamp=2023-08-04

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Chenyu Zhao et al.

Table 1: The anomalies of multimodal data during service
failures. “Mem” represents the memory utilization metric,
“ERR” is an error log, and 𝑅𝑇𝑆𝑥→𝑆𝑦 denotes the response time
when service instance 𝑆𝑥 calls 𝑆𝑦 . “–” means no anomaly is
found or data is lost in that data modality.

Failure Type Metric Log Trace # Failures

failed of QR code Mem ↑ – – 505
system stuck Mem ↓ – – 16
login failure – ERR 𝑅𝑇𝑆1→𝑆2=11s 527
file not found – – 𝑅𝑇𝑆2→𝑆3=1.5s 36
access denied – ERR 𝑅𝑇𝑆2→𝑆4=1.1s 15

instance fails when the monitoring data becomes anomalous. How-
ever, after investigating hundreds of instance failures (see § 5.1.1),
we conclude that previous methods do not work well for instance
failure detection in microservice systems. Correlating metrics, logs,
and traces (from now on, we call them multimodal) is crucial for
instance failure detection. On the one hand, the single-modal data
cannot reveal all types of failures, let alone itself can be missing or
collected too slowly [23]. For example, in Table 1, when the failure
“failed to generate QR code” happens, only the instance’s metrics,
i.e., memory utilization, increase dramatically and exhibit anoma-
lous behaviors. If only conducting log or trace anomaly detection,
this type of failure will be falsely ignored. On the other hand, sim-
ply combining the anomaly detection results of the single-modal
anomaly detection methods may generate false alarms, which have
been confirmed in our experiments (see Table 3). For instance, the
(transient) anomalies detected by single-modal anomaly detection
methods may not represent any instance failure. Suppose an in-
stance’s network throughput metric experiences an anomaly and an
alarm is reported because the metric increases suddenly and returns
to the normal level after a short period. However, the system still
delivers normal service, because no trace data becomes anomalous,
and user experience is not impacted. Hence, no instance failure
should be reported.

To this end, we aim to correlate the multimodal data to detect
instance failures for microservice systems, which face the following
two challenges. (1) Modeling the complex correlations among multi-
modal data. When a failure occurs, one, two, or three modalities
of data can become anomalous, and they are correlated with each
other. Neglecting the correlations can degrade the failure detection
accuracy. (2) Dealing with the heterogeneous and dynamically chang-
ing multimodal data. Specifically, metrics are usually in the form of
multivariate time series, and logs are typically semi-structured text.
Moreover, a trace consists of spans in a tree structure. Integrating
such heterogeneous multimodal data is quite challenging. Addition-
ally, an instance’s multimodal data usually changes dynamically
over time.

In this work, we propose AnoFusion, an unsupervised instance
failure detection approach for microservice systems. To address the
first challenge, we apply Graph Transformer Network (GTN) [16,
45] since it can embed multimodal data into a graph and learn the
correlation of heterogeneous data through the effective represen-
tations of graph nodes and edges [40, 43]. To address the second
challenge, we first serialize the data of each modality according to

ERROR | 0.0.0.4 | Service2 | mob_helper.py ->
mob_info_to_redis -> 88 | ... information has

expired, mobile phone login is invalid

S2->S4: Response time = 11s

disk_io_rate

Va
lu

e

Timestamps

M
L

T

Anomaly

disk_io_time

Figure 1: The multimodal monitoring data, i.e., Metrics, Logs,
and Trace, during an instance failure

the modality’s characteristics and construct the nodes and edges of
heterogeneous graphs. After that, we adopt Graph Attention Net-
work (GAT) [36], which assigns different weights to neighbor nodes
and learns the dynamic patterns of multimodal data, to optimize the
graphs and filter significant node information. We then use a Gated
Recurrent Unit (GRU) [19] to capture the temporal information
and predict the multimodal data of the next moment. Finally, the
similarity between the observation and prediction values is used to
determine whether an instance fails.

The contributions of this paper are summarized as follows:

• To the best of our knowledge, we are among the first to iden-
tify the importance of exploring the correlation of multimodal
monitoring data (i.e., metrics, logs, and traces), and correlate the
multimodal data using GTN for instance failure detection.

• Our approach, AnoFusion, serializes the data of the three modali-
ties according to each modality’s trait. It combines GTN and GAT
to detect anomalies in the dynamic multimodal data robustly. In
addition, a GRU layer is used to capture the temporal information
of the multimodal data.

• We adopt two microservice systems, consisting of 10 and 28 in-
stances, respectively, to evaluate the performance of AnoFusion.
The evaluation results show that AnoFusion detects instance fail-
ures with average 𝐹1-score of 0.857 and 0.922, outperforming
baseline methods by 0.278 and 0.480 on average, respectively.

Our source code and experimental data are available at https:
//github.com/zcyyc/AnoFusion.

2 BACKGROUND AND RELATEDWORK
2.1 Single-modal Anomaly Detection
Generally, operators continuously collect three types of observ-
able monitoring data: metrics, logs, and traces [30] to ensure the
reliability of microservice systems. Figure 1 shows an example of
anomalous multimodal data in a failure case.
Metric. A metric is defined as x = {𝑥1, 𝑥2, . . . , 𝑥𝑇 }, where 𝑇 is the
length of the metric, 𝑥𝑡 ∈ R denotes the observation at time 𝑡 . A
microservice instance typically has a set of metrics that can be rep-
resented as a multivariate time series, monitoring various service
metrics (e.g., page view) and system/hardware metrics (e.g., CPU

5640

https://github.com/zcyyc/AnoFusion
https://github.com/zcyyc/AnoFusion

Robust Multimodal Failure Detection for Microservice Systems KDD ’23, August 6–10, 2023, Long Beach, CA, USA

usage). Figure 1 (M part) shows an example of metric data. Tradi-
tional statistic metric anomaly detection methods [24] do not need
training data but can be less effective when facing intricate data.
Supervised learning methods [17, 20] need operators to manually
label anomalies, which is impractical in many real-world scenarios.
Thus, unsupervised methods [1, 25, 25, 35, 44] that do not require
anomaly labels have become a hot research topic in recent years.
For example, JumpStarter [25] applies a compressed sensing tech-
nique for anomaly detection. USAD [1] detects anomalies through
adversarial training with high efficiency. A metric anomaly de-
tection method can easily detect an instance failure if multiple
metrics become anomalous soon after the failure. However, since
metric anomaly detection methods only utilize metric data to detect
anomalies and possible failures in a system, they will fail to alert
operators when a failure does not manifest itself on metrics. AnoFu-
sion analyzes metric data in an unsupervised way and reduces false
alarms by using metric data together with other data modalities.
Log. Log data is semi-structured text output by instances at the
application or system level. It is typically used to record the opera-
tional status of hardware or software. Generally, logs are generated
with a predefined structure. As a result, extracting log templates
and their parameters is a standard step in analyzing log data [7]. For
example, Figure 1 (L part) lists a log. Traditional log anomaly detec-
tion methods are usually designed to identify keywords in logs like
“ERROR” or “fail”. However, negative keywords such as “fail” may
appear in logs due to network jitters or operator login failure, and
they do not imply an instance failure. Advanced approaches follow
a similar workflow: log parsing, feature extraction, and anomaly
detection [11]. Deep learning-based methods learn the log patterns
(e.g., sequential feature, quantitative relationship) of normal execu-
tions and determine an anomaly when the pattern of a log sequence
deviates from the learned normal patterns [5, 22, 41]. For example,
LogAnomaly [27] applies template vectors to extract the hidden
semantic information in the log templates and detects continuous
and quantitative log anomalies at the same time. Deeplog [5] pre-
dicts the logs that may appear after a sliding window utilizing the
LSTM model. AnoFusion requires neither labeling work nor domain
knowledge when analyzing log data.
Trace. A trace is made up of spans, each of which corresponds to a
service invocation [29]. Figure 1 (T part) shows an example of trace
data. When the service processes a user’s request, several instances
will be invoked. The monitoring system records when a specific
service is called and when it responds, and the difference between
them is the Response Time (RT). Most trace anomaly detection
methods detect anomalies according to whether the response time
of each invocation increases dramatically and/or whether the in-
vocation path behaves abnormally [9, 18, 21, 28, 29]. For instance,
TraceAnomaly [21] learns the normal patterns of traces, and anom-
alies are detected when their patterns deviate from those of normal
traces. However, on the one hand, a trace anomaly alone does not
necessarily denotes an instance fails. On the other hand, an instance
failure may not manifest itself in the trace data. Therefore, using
trace anomaly detection methods alone can also lead to missed
alerts or false alarms. AnoFusion can combine trace data with other
modalities to boost anomaly detection performance.

2.2 Multimodal Anomaly Detection
Deep learning-based multimodal data fusion has witnessed great
success in several research fields. For example, video subtitle gener-
ation [12], conversation behavior classification [32], and emotion
recognition [14]. Recent studies have started to tackle the anomaly
detection problem based on multimodal data. Vijayanand et al. [37]
propose an anomaly detection framework for cloud servers using
multidimensional data, including different features such as net-
work traffic sequence features, CPU usage, and memory usage from
host logs. These extracted multidimensional features are fed to the
detection model that identifies the anomalies and maximizes the
detection accuracy. [6] performs correlation analysis on metrics and
logs to discover the anomaly patterns in cloud operations. Addition-
ally, SCWarn [46] combines metrics and logs for anomaly detection
by serializing the metrics and logs separately and adopting LSTM
to detect failures. However, traces, which are vital to instances,
are missing in these works, and thus, they cannot achieve optimal
performance when detecting anomalies in our scenario. To the best
of our knowledge, we are among the first to focus on detecting
instance failures using multimodal data.

2.3 Graph Neural Networks
GTN. GTN takes a heterogeneous graph as input and turns it into
a new graph structure specified by meta-paths. Meta-paths are re-
lational sequences that connect pairs of objects in heterogeneous
graphs, which are commonly employed to extract structural infor-
mation. By combining multiple GT layers with GCN, GTN learns
node representations on the graph efficiently in an end-to-end
way [43]. We apply GTN to learn the correlations among multi-
modal data in our scenario.
GAT. GCN is not good at analyzing dynamic graphs, and when
the graph structure of training and test sets changes, GCN will
no longer be suitable. In addition, GCN assigns the same weight
to each neighbor node, which falls short of our expectations for
future graph structure optimization. GAT solves the problems of
GCN by allocating various weights to different nodes. It enables
various nodes to be distinguished in terms of importance, so that
AnoFusion can focus on more significant information in the graph
structure [36]. Therefore, GAT is expected to achieve better perfor-
mance in processing dynamically changing time series data, and
thus we utilize GAT instead of GCN.
GRU. As we know, RNN [15] can represent time dependency by
adopting deterministic hidden variables. However, RNN may be
incapable of dealing with the long-term dependency problem in the
time series, and LSTM [13] and GRU [19] are proposed as solutions.
Generally, GRU is often comparable to LSTM, and the fewer param-
eters and more straightforward structure make it ideal for model
training [35]. We thus apply GRU to capture the time dependency
of the multimodal data.

3 MOTIVATION
To prove that single-modal data is insufficient to comprehensively
capture the failure patterns of instances, we adopt two datasets (see
Section 5.1 for more details) for an empirical study. These datasets
contain the multimodal data (i.e., metrics, logs, and traces) collected

5641

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Chenyu Zhao et al.

from microservice systems. It also includes the records of all failure
injections for a fair evaluation.

We perform a thorough internal data analysis to investigate the
correlation of different modalities. Table 1 lists some monitoring
data collected from a microservice system. Many instance failures
cannot be successfully captured using single-modal data. It also
shows that when a failure occurs, data of different modalities may
display anomalous patterns at the same time. Mining the correlation
between multimodal data can provide more comprehensive and
accurate information for failure detection tasks.

Moreover, we experiment to evaluate the failure detection per-
formance of single-modal data-based anomaly detection meth-
ods. We apply five popular single-modal anomaly detection meth-
ods (Section 5.1), JumpStarter [25], USAD [1], LogAnomaly [27],
Deeplog [5], TraceAnomaly [21], and the combination of Jump-
Starter, LogAnomaly, and TraceAnomaly, to conductmetric/log/trace
anomaly detection, respectively. Table 3 lists the precision, recall,
and 𝐹1-score of these methods.
Metric anomaly detection. JumpStarter and USAD achieve low
performance on the two datasets. JumpStarter extracts real-time
normal patterns from metric data, but it does not consider the
patterns of historical data. USAD is not very noise-resilient, which
results in a significant number of false positives and false negatives.
Furthermore, they do not take logs and traces into account, thus
they lack essential information from logs and traces for failure
detection tasks.
Log anomaly detection. LogAnomaly and Deeplog achieve rela-
tively high 𝐹1-score on D1. It is because the anomaly patterns of
the log data in D1 are more obvious and straightforward to identify
than those in D2. When a keyword like “ERROR” appears in logs,
there is a high probability that it is an instance failure. However,
only relying on log data results in a large number of false positives
and false negatives in D2, for some failures do not manifest them-
selves obviously in logs, and some anomalous logs do not indicate
an instance failure.
Trace anomaly detection. TraceAnomaly gets unsatisfactory 𝐹1-
score on both datasets. The precision of TraceAnomaly is low, in-
dicating that there are a huge number of false positives. Because
TraceAnomaly determines anomalies based on only response time.
However, a larger response time quickly returning to normal status
does not indicate an instance failure.
JLT. JLT aggregates the results of JumpStarter, LogAnomaly, and
TraceAnomaly directly, to form a multimodal baseline. The aggre-
gation method is majority voting, which determines a failure if
two or more modalities have anomalies at a certain moment. JLT
suffers from low precision (recall) on D1 (D2), indicating a high
false positive (negative) rate, because it ignores the correlation of
the multimodal data. On the one hand, some failures only manifest
themselves in a specific modality of data, making the majority vot-
ing strategy requiring two or more modalities to have anomalies for
failure detection ineffective, which results in many false negatives
on D2. On the other hand, since JumpStarter, LogAnomaly, and
TraceAnomaly all suffer from low precision on D1, their combina-
tion, i.e., JLT, still experiences a high false positive rate.

In summary, single-modal anomaly detection approaches fail
to detect failures robustly since they lack insights from other data
modalities. Additionally, simply combining the anomaly detection
results of the single-modal anomaly detection methods, instead of
mining the correlations of the multimodal data, cannot guarantee
high accuracy. Therefore, we attempt to design a robust instance
failure detection approach by correlating the multimodal data.

4 ANOFUSION
4.1 Overview
As shown in Figure 2, the workflow of AnoFusion is divided into the
offline training stage and the online detection stage. To capture the
heterogeneity and correlation among multimodal data, we employ
GTN to update the heterogeneous graphs. Moreover, to improve
the robustness of AnoFusion, we apply GAT after GTN, making
it perform stably when the data patterns of the training set and
test set are different. In addition, to achieve unsupervised failure
detection and make AnoFusion more suitable for time series data,
we use GRU to predict the multimodal data of the next moment. In
the offline training stage, AnoFusion consists of four main steps:

• Multimodal Data Serialization. To prepare for the future graph
structure’s construction, AnoFusion converts multimodal data
(i.e., metrics, logs, and traces) into time series using predefined
processes and aligns their time. After serialization, AnoFusion
treats each time series as a “data channel”.

• Graph Stream Construction. To build the raw inputs for GTN,
AnoFusion constructs a heterogeneous graph containing all the
data channels based on their connections for each moment 𝑡 .
Then, all heterogeneous graphs form a graph stream, which will
be input into GTN.

• Feature Filtering. GTN updates the graph stream by learning
the representations of nodes in the heterogeneous graph and
capturing the correlation among different data modalities. The
updated graph stream is regarded as the features of the original
data channels. Then, AnoFusion utilizes GAT to give attention
scores to the nodes in the graph stream, identifying different
patterns and achieving feature filtering.

• Failure Detection. GRU is applied to temporal sequences to
predict the values at the next moment based on the previous
inputs. We train the GRU network to predict the next graph
based on the given graph stream as accurately as possible.

In the online detecting stage, for a given time 𝑡 , multimodal data
will be serialized according to the observations in [𝑡 −𝜃, 𝑡], where 𝜃
is the input window size. Then, we use the serialized data channels
to construct a heterogeneous graph stream. The graph stream of this
window will be fed into the trained model to obtain the prediction
of the next graph. AnoFusion calculates the similarity between the
predicted graph and the observed graph as the failure score and
then determines whether it is a failure. Note that AnoFusion does
not restrict the dimensions of any modality data.

4.2 Multimodal Data Serialization
Serialization of metric data. Metrics collected from instances
are in the form of time series, which have a serialized structure.
Therefore, it only requires regular preprocessing steps such as

5642

Robust Multimodal Failure Detection for Microservice Systems KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Time

Service
Instance

Metric

Log

Trace

Channels

Metric

Log

Trace

① Multimodal Data Serialization























0000

01075
071010
051010











Edge TypesTimestamps
② Graph Stream Construction

③ Feature Filtering
Timestamps

Graph
Transformer

Network

Graph Attention
Network

④ Failure Detection

G
R
U

Calculate
Similarity

Calculate
Similarity

t+1

T

Trained Model

PredictionObservation

Metric

Log

Trace
window

Trained Model

Threshold

Failure Score

Failure

Offline Training Online Detection

Figure 2: The framework of AnoFusion. It is an unsupervised learning approach without using labels in the offline training.

normalization. The normalization process is given by: m̂ ≡ m/|m|
where m is the raw metric data and m̂ is the normalized data. It
scales individual samples to have a unit norm, which can be useful
when using a quadratic form such as the dot-product to quantify
the similarity of any pair of samples.
Serialization of log data. Parsing logs correctly and extracting
log templates are the two essential steps of log serialization [39].
We adopt the advanced log parsing algorithm, Drain [10], which
has shown its superiority and efficiency, to extract log templates in
AnoFusion. The log serialization process is the following two steps:
(1) Clustering. To deal with log changes caused by constantly
updating code, adding new logs, and altering new logs in actual
microservice systems, we first use a clustering algorithm for the log
templates. By grouping similar log templates into clusters, on the
one hand, the redundant information can be removed, and on the
other hand, the types of log templates can be used to characterize
log data. Once a new log template emerges due to a software up-
date, the similarity between the new log template and the previous
cluster centroids can be calculated, and it can be decided whether
the new log template belongs in an existing cluster or should be
regarded as a new cluster. Furthermore, through the empirical study
of a large number of online service systems, we conclude that fail-
ures rarely occur in real-world scenarios [25]. Since AnoFusion is
an unsupervised learning method based on the assumption that
all training samples have normal patterns, removing anomalous
log templates will improve the model’s performance. Based on the
analysis mentioned above, we finally utilize the “bert-base-uncased”
model [4] to obtain sentence embedding vectors, and apply the DB-
SCAN [33] algorithm to cluster these vectors. AnoFusion computes
the centroid c of each cluster C by:

c = argmin
a∈C

∑︁
b∈C

|a − b| (1)

(2) Serialization. The category of each log entry in the input can
be determined by calculating the distance between its sentence

embedding vector and that of the centroid of each cluster. After
that, AnoFusion uses a sliding window to split the input log data
into windows, each of which has the window length 𝜃 and the step
size 𝛿 . We count the number of each category of logs as well as
the total number of logs in each window to form𝑀 + 1 time series,
where𝑀 is the number of log template clusters. The horizontal axis
𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 corresponds to the input log’s collection time.
Serialization of tracing data. AnoFusion uses the sliding window
with length 𝜃 and step size 𝛿 to split tracing data. Each window
contains tracing data (in the form of RT) of the invocations related
to the instance. Then, for each window, AnoFusion computes the
mean, median, range, and standard deviation of the invocations RT,
producing four time series, respectively. If status code is available,
AnoFusion may take them as the fifth time series. We treat each
time series as a data channel, similar to the serialization of log data.
Clock synchronization. To build the graph structure more con-
veniently, AnoFusion synchronizes the clocks of the three modal
data after serialization. The goal of AnoFusion is failure detection
for a single instance and all the monitoring data acquired is within
that instance. Therefore, the monitoring data clocks of the three
modalities are relatively synchronized. The metric data is collected
every minute. A log entry is generated when an event occurs in the
instance. Moreover, a trace is recorded when a request is processed.
Therefore, we obtained the features (e.g. the number of occurrences)
of metrics, logs, and traces every minute in our scenario.

4.3 Graph Stream Construction
The data channels we get from the previous step can be described
as 𝑋 =

{
x(1) , . . . , x(𝑁)

}
, where 𝑁 is the number of data channels.

AnoFusion constructs a heterogeneous graph𝐺𝑡 for each timestamp
𝑡 using the extracted data channels. The node set of graph 𝐺𝑡 ,
denoted by 𝑋𝑡 , consists of the value of each data channel at time 𝑡 ,
i.e., 𝑋𝑡 =

{
𝑥
(1)
𝑡 , . . . , 𝑥

(𝑁)
𝑡

}
. Since there are three modalities, there

5643

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Chenyu Zhao et al.

are also three types of nodes (i.e., metrics, logs, and traces). Thus,
the number of edge types 𝐾 = 6 (i.e., metrics-metrics, metrics-logs,
metrics-traces, logs-logs, log-traces, traces-traces). The adjacency
matrix for each type of edge in graph 𝐺𝑡 can now be expressed as
𝐴(𝑘) ∈ R𝑁×𝑁 , where 𝑘 = 1, . . . , 𝐾 .

AnoFusion utilizes the mutual information (MI) [8] to calculate
the adjacency matrix. For each data channel pair

(
x(𝑖) , x(𝑗)

)
with

an edge type of 𝑘 , the corresponding adjacency matrix value can
be calculated as follows:

𝐴
(𝑘)
𝑖, 𝑗

= 𝐴
(𝑘)
𝑗,𝑖

=

𝜏∑︁
𝑎=1

𝜏∑︁
𝑏=1

𝑝

(
𝑥
(𝑖)
𝑎 , 𝑥

(𝑗)
𝑏

)
𝑙𝑜𝑔

𝑝

(
𝑥
(𝑖)
𝑎 , 𝑥

(𝑗)
𝑏

)
𝑝

(
𝑥
(𝑖)
𝑎

)
𝑝

(
𝑥
(𝑗)
𝑏

) (2)

where 𝜏 is the number of timestamps (i.e., the length of each data
channel), 𝑝

(
x(𝑖) , x(𝑗)

)
is the joint probability mass function of x(𝑖)

and x(𝑗) , and 𝑝
(
x(𝑖)

)
and 𝑝

(
x(𝑗)

)
are the marginal probability

mass functions of x(𝑖) and x(𝑗) , respectively. After calculating
MI for all channel pairs, we now have the final adjacency matrix
𝐴 ∈ R𝑁×𝑁×𝐾 . 𝐺𝑡 = (𝑋𝑡 , 𝐴) is defined to be the heterogeneous
graph generated at time 𝑡 . AnoFusion stacks the graphs of each
moment together to form a graph stream 𝐺 = {𝐺1, . . . ,𝐺𝜏 }.

4.4 Feature Filtering
AnoFusion performs feature filtering by updating the heterogeneous
graph stream 𝐺 with GTN and learning failure patterns by GAT.
Graph Transformer Network. GTN models the heterogeneity
and correlation of multimodal channels using the adjacency matrix
𝐴. Graph Transformer layers (GT layers) are the main component
of GTN. They learn the soft selection and composite relationship of
edge types to produce useful multi-hop connections, also known as
meta-path [43]. Specifically, considering the adjacency matrix 𝐴 as
the input, a GT layer has two steps: First, it softly constructs several
graph structures from 𝐴 by a 1 × 1 convolutional layer, which can
be formulated as:

𝑄 (𝑘) = 𝜙
(
𝐴,𝑊 (𝑘)

)
=

𝐾∑︁
𝑖=1

𝑤
(𝑘)
𝑖

𝐴(𝑖) (3)

where𝑄 (𝑘) is the generated graph for edge type 𝑘 ,𝜙 denotes the 1×
1 convolution,𝑊 (𝑘) ∈ R1×1×𝐾 is the parameter of 𝜙 (for edge type
𝑘), 𝐾 is the number of edge types. Second, it combines each 𝑄 (𝑘)

through matrix multiplication to generate a new graph structure
𝐴′, a.k.a, meta-path:

𝐴′ = 𝐷−1
𝐾∏
𝑘=1

𝑄 (𝑘) (4)

Note that we also normalize 𝐴′ by 𝐷 , which denotes the degree
matrix of 𝐴, to ensure numerical stability. Stacking several GT
layers in GTN aims to learn a high-level meta-path that is a useful
relationship of multimodal data.
Graph Attention Network. With the meta-path matrix 𝐴′ gen-
erated by stacking multiple GT layers, AnoFusion employs GAT
on the heterogeneous graph stream to distinguish the significance
of multimodal data channels and completes the feature filtering.
The multi-head attention mechanism is utilized as well to stabilize

this process. Specifically, for each channel pair
(
x(𝑖) , x(𝑗)

)
, we first

compute a raw attention score for each attention head based on 𝐴′:

𝛽
(ℎ)
𝑖, 𝑗

= 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝑙𝑢

(
𝐴′
𝑖, 𝑗 · 𝑐𝑜𝑛𝑐𝑎𝑡

(
𝑊 x(𝑖) ,𝑊 x(𝑗)

))
(5)

where 𝛽 (ℎ) is the attention score for the ℎ-th attention head,𝑊
denotes the learnable parameter of a linear transformation. Then,
AnoFusion normalizes the raw attention score with softmax and
performs node feature aggregation for the 𝑖-th node 𝑥 (𝑖) by:

𝛽
(ℎ)′
𝑖, 𝑗

= 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝛽
(ℎ)′
𝑖, 𝑗

)
=

exp
(
𝛽
(ℎ)
𝑖, 𝑗

)
∑𝑁
𝑙=1 exp

(
𝛽
(ℎ)
𝑖,𝑙

)
x(𝑖)′ =𝑊𝐻 ·

𝐻
𝑐𝑜𝑛𝑐𝑎𝑡
ℎ=1

©­«
𝑁∑︁
𝑗=1

𝑊 (ℎ)x(𝑗)𝛽 (ℎ)′
𝑖, 𝑗

ª®¬
(6)

where 𝐻 is the number of attention heads, 𝛽 (ℎ)
𝑖,𝑙

denote the ℎ-th
head attention score between channel 𝑖 and channel 𝑙 ,𝑊 (ℎ) and
𝑊𝐻 denote the linear transformation for each head and final output,
respectively. The data channels are successively updated across the
multi-layer Graph Attention Network.

4.5 Failure Detection
After feature filtering, we use the updated graph stream to train a
failure detection model based on a recurrent neural network. Let
𝑋 ′ ∈ R𝑁×𝜏 denote the updated data channels, we can use GRU to
capture its complex temporal dependence and predict the value of
data channels at time 𝜏 . The GRU network can be formulated as:

𝑧𝑡 = 𝜎
(
𝑊𝑧𝑋

′
𝑡 +𝑈𝑧ℎ𝑡−1 + 𝑏𝑧

)
𝑟𝑡 = 𝜎

(
𝑊𝑟𝑋

′
𝑡 +𝑈𝑟ℎ𝑡−1 + 𝑏𝑟

)
ℎ̂𝑡 = tanh

(
𝑊ℎ𝑋

′
𝑡 +𝑈ℎ (ℎ𝑡−1 ⊙ 𝑟𝑡) + 𝑏ℎ

)
ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ̂𝑡 ,

(7)

where 𝜎 denotes the sigmoid function, ⊙ denotes the Hadamard
product (i.e., element-wise product), 𝑋 ′

𝑡 is the input vector, ℎ𝑡−1
is the previous hidden state, ℎ̂𝑡 is the candidate activation vector,
ℎ𝑡 is the hidden state and output vector of time 𝑡 . 𝑧𝑡 denotes the
update gate, controlling how much information ℎ𝑡 needs to keep
from ℎ𝑡−1, and how much information needs to be received from
ℎ̂𝑡 . 𝑟𝑡 denotes the reset gate, controlling whether the calculation
of the candidate activation vector depends on the previous hidden
state.𝑊 and𝑈 are trainable parameter matrices, and 𝑏 is a trainable
parameter vector. AnoFusion uses the final hidden state of GRU, ℎ𝑡 ,
to predict the value of data channels at time 𝜏 (i.e., the last moment
in the graph stream):

𝑋 ′
𝜏 = tanh (𝑊𝑜ℎ𝜏−1 + 𝑏𝑜) (8)

where𝑊𝑜 and 𝑏𝑜 are the learnable parameters. AnoFusion adopts
mean squared error (MSE) between the predicted value 𝑋 ′

𝜏 and the
observation 𝑋 ′

𝜏 as the loss function:

L =
1
𝑁
∥𝑋 ′
𝜏 − 𝑋 ′

𝜏 ∥22 (9)

where 𝑁 is the number of data channels. The GRU network is
updated using this loss function iteratively.

5644

Robust Multimodal Failure Detection for Microservice Systems KDD ’23, August 6–10, 2023, Long Beach, CA, USA

4.6 Online Detection
In the online detection stage, for a new-coming multimodal mon-
itoring data 𝑋𝑡 , AnoFusion will first serialize the data using its
previous historical observations, i.e., 𝑋𝑡−𝜃+1:𝑡−1, and construct the
graph stream 𝐺 = {𝐺𝑡−𝜃+1, . . . ,𝐺𝑡 }, where 𝜃 is the length of the
window. Then, the graph stream is fed into the trained model to
get a prediction 𝑋𝑡 for 𝑋𝑡 . We calculate the difference between the
observed and predicted values for each data channel 𝑛 [3]:

𝐸𝑅𝑅𝑛 = |𝑋 (𝑛)
𝑡 − 𝑋 (𝑛)

𝑡 | (10)

Failures may only happen in part of the multimodal data, so we
focus on the biggest error. AnoFusion utilizes the max function to
aggregate 𝐸𝑅𝑅𝑛 (𝑡) , 𝑛 ∈ [1, 𝑁]:

𝐸𝑅𝑅 =
𝑁max
𝑛=1

𝐸𝑅𝑅𝑛 − 𝜇̃
𝜎

(11)

where 𝐸𝑅𝑅 is the failure score at time 𝑡 , 𝜇̃ and 𝜎 are the median and
inter-quartile range (IQR) of the set composed by 𝐸𝑅𝑅𝑛 , respectively.
We use median and IQR instead of mean and standard deviation as
they are more robust.

AnoFusion uses a threshold to determine if a failure has occurred
at a specific time 𝑡 . However, using a static threshold is not effective
since data distribution changes over time. To solve this problem,
we employ the Extreme Value Theory (EVT) [34] to automatically
and accurately determine the threshold. EVT is a statistical theory
that identifies the occurrences of extreme values and doesn’t make
any assumptions about data distribution. EVT can be applied to
estimate the likelihood of observing the extreme value for anomaly
detection. EVT has been shown to accurately choose thresholds in
previous failure detection methods [25, 26].

5 EVALUATION
In this section, we address the following research questions:
• RQ1: How well does AnoFusion perform in failure detection?
• RQ2: Does each component contribute to AnoFusion?
• RQ3: How do the major hyperparameters of AnoFusion influence
its performance?

5.1 Experimental Design
5.1.1 Datasets. To evaluate the performance of AnoFusion, we
conduct extensive experiments using two microservice systems
(forming dataset 1 and 2, respectively). Table 2 lists the detailed in-
formation of the datasets. The second column indicates the number
of microservices of each dataset. The third column indicates the
number of instances of each dataset. The fourth column displays
the average failure ratio (𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 𝑤𝑖𝑛𝑑𝑜𝑤𝑠

𝑇ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑤𝑖𝑛𝑑𝑜𝑤𝑠
) of all in-

stances. The fifth column lists every modality, and the last column
shows the number of metrics, logs, or traces.
• Dataset 1 (D1) is Generic AIOps Atlas (GAIA) dataset from
CloudWise1. It contains the multimodal data collected from a
system consisting of 10 instances, which is collected more than
0.7 million metrics, 87 million logs, and 28 million traces in two
weeks. Real-world failures are injected, and Table 1 lists some

1https://github.com/CloudWise-OpenSource

Table 2: The detailed information of the two datasets. #Micro
and #Ins denote the number of microservices and instances,
respectively.

#Micro #Ins %Failures Modality #

D1 5 10 4.908
Metric 734,165
Log 87,974,577
Trace 28,681,438

D2 14 28 1.243
Metric 3,122,168
Log 14,894,069
Trace 9,473,763

typical symptoms of failure types, such as QR code generation
failure, system stuck, file not found, and access denied, etc.

• Dataset 2 (D2) is collected from a large-scalemicroservice system
operated by a commercial bank. The system has 28 instances such
as Web servers, application servers, databases, etc., and provides
services for millions of users daily. Failures are injected into the
system manually by professional operators and the multimodal
monitoring data (i.e. metrics, logs, and traces) is collected. In
general, these failures can be resource (CPU, memory, disk) fail-
ures, network failures (network packet loss and network latency),
and application failures (VM failures). Due to the non-disclosure
agreement, we cannot make this dataset publicly available.

5.1.2 Implementation. AnoFusion is implemented in PyTorch and
all of the experiments are conducted on a Linux Server with two
16C32T Intel(R) Xeon(R) Gold 5218 CPU@2.30GHz, twoNVIDIA(R)
Tesla(R) V100S, and 192 GB RAM. In the multimodal data serial-
ization stage, we set the sliding window length 𝜃 = 60 and step
size 𝛿 = 1 (more discussions can be found in Section 5.4). In the
graph stream construction stage, we set the number of GT layers
in GTN to 5, as suggested by [14]. For GAT, the total number of
attention heads𝐻 is 6 (see Section 5.4 for more details). We split the
multimodal monitoring datasets into a training set and a testing set,
where the training set contains the front 60% data of each instance
and the testing set contains the rest 40%.

5.1.3 Baseline Approaches. We utilize JumpStarter [25], USAD [1],
LogAnomaly [27], Deeplog [5], TraceAnomaly [21], SCWarn [46],
and JLT (see Section 3), which use single modality, two modalities,
or threemodalities of data for instance failure detection, as baselines.
For all approaches, we use grid-search to set their parameters best
for accuracy.

5.1.4 Evaluation Metrics. We adopt the widely-used True Positive
(TP), False Positive (FP), and False Negative (FN), to label the failure
detection results according to the ground truth [25, 26, 31]. A TP is
a failure both confirmed by operators and detected by an approach.
An FP is a normal window that is falsely identified as a failure by an
approach. An FN is a missed failure that should have been detected.
We calculate 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃), 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁),
and 𝐹1-score= 2 · 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙/(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙) to evaluate
the overall performance of each approach.

5.2 RQ1: Effectiveness of AnoFusion
Table 3 lists the average precision, recall, and best 𝐹1-score ofAnoFu-
sion and seven baseline approaches described above on the two

5645

https://github.com/CloudWise-OpenSource

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Chenyu Zhao et al.

Table 3: The average precision, recall, and 𝐹1-score of different approaches on the two datasets

Approach Modality D1 D2

Metric Log Trace Precision Recall 𝐹1-score Precision Recall 𝐹1-score

JumpStarter [25] ✓ 0.466 0.785 0.584 0.533 0.413 0.465
USAD [1] ✓ 0.459 0.825 0.590 0.837 0.341 0.484

LogAnomaly [27] ✓ 0.486 0.957 0.644 0.126 0.344 0.184
Deeplog [5] ✓ 0.506 0.812 0.623 0.105 0.275 0.151

TraceAnomaly [21] ✓ 0.550 0.548 0.549 0.521 0.699 0.597

SCWarn [46] ✓ ✓ 0.547 0.425 0.447 0.633 0.891 0.734
JLT ✓ ✓ ✓ 0.461 0.940 0.618 0.800 0.344 0.481

AnoFusion ✓ ✓ ✓ 0.795 0.945 0.857 0.863 0.991 0.922

datasets. AnoFusion outperforms all baseline approaches on both
datasets, with best 𝐹1-score of 0.857 and 0.922, respectively.
Multimodal failure detection. SCWarn performs better than
single-modal failure detection methods by simultaneously process-
ing metrics and logs on D2. However, it ignores tracing data, which
is crucial for detecting instance failures in microservice systems
on D1. The correlation among each modality is ignored by JLT,
yielding sub-optimal performance on both datasets.
AnoFusion. Our approach is effective to detect instance failures,
with the average best 𝐹1-score significantly higher than existing
methods. Compared with SCWarn which combines two modalities,
the average best 𝐹1-score ofAnoFusion outperforms it by 41.00% and
18.80% on both datasets, respectively. Compared with JLT, using a
heterogeneous graph stream significantly improves the effective-
ness of instance failure detection. AnoFusion outperforms JLT by
23.90% and 44.10% on both datasets, respectively.
Robustness comparison. Firstly, we use two datasets from differ-
ent microservice systems, and the experiments show thatAnoFusion
achieves superior detection results on both datasets, outperform-
ing all baselines. Secondly, each dataset contains many kinds of
instances. We analyze the failure detection results of each instance
for each dataset. The 𝐹1-scores of AnoFusion for all instances on D1
range from 0.784 to 0.977, and from 0.805 to 0.986 on D2. We can
see that AnoFusion performs well in both D1 and D2. Therefore, we
believe these are testaments to the robustness of AnoFusion.
Efficiency comparison. We simulate the online detection en-
vironment and analyze the complexity of AnoFusion and other
baselines by counting the detection time required for each slid-
ing window. AnoFusion takes a window containing the data points
as input and then calculates a failure score through the trained
model. The average running time of AnoFusion’s online failure de-
tection is 1.932 × 10−2s. The prediction time of other baselines is
9.810×10−3s for JumpStarter, 8.975×10−5s for USAD, 1.707×10−3s
for LogAnomaly, 1.165 × 10−4s for Deeplog, 1.102 × 10−2s for
TraceAnomaly, 3.331 × 10−3s for SCWarn, and 9.958 × 10−3s for
JLT. Since operators perform failure detection every minute, ev-
ery approach can satisfy this requirement. Furthermore, AnoFusion
achieves satisfactory results by leveraging the three modalities,
which is superior considering both effectiveness and performance.

Table 4: The average precision, recall, and 𝐹1-score of AnoFu-
sion and different model variants

Approach Precision Recall 𝐹1-score

D1

w/o GTN 0.608 0.891 0.723
use GCN 0.769 0.847 0.802
w/o GAT 0.602 0.643 0.615
AnoFusion 0.795 0.945 0.857

D2

w/o GTN 0.742 0.917 0.859
use GCN 0.819 0.863 0.823
w/o GAT 0.698 0.735 0.700
AnoFusion 0.863 0.991 0.922

5.3 RQ2: Contributions of Components
To demonstrate the contribution and importance of each component
of AnoFusion, we create three variants of AnoFusion and conduct a
series of experiments to compare their performance. These variants
are: 1) AnoFusion w/o GTN. To study the significance of GTN in
modeling the heterogeneity and correlation of multimodal data, we
remove GTN from AnoFusion. 2) AnoFusion using GCN. To show
the importance of assigning different weights to neighbor nodes
in the graph (attention mechanism), we use GCN instead of GAT
in AnoFusion. 3) AnoFusion w/o GAT. To demonstrate how the
graph attention mechanism improves AnoFusion’s performance, we
remove the GAT from AnoFusion.

Table 4 lists the average precision, recall, and best 𝐹1-score of
the three variants discussed above on two datasets. When GTN
is removed, both precision and recall are degraded. The decrease
in precision is especially obvious. It shows that GTN can capture
heterogeneity and correlation among multimodal data in heteroge-
neous graphs, thereby reducing false positives by comprehensively
synthesizing the information of the three modalities. Both precision
and recall decrease when GCN is substituted with GAT, demonstrat-
ing that GAT is more efficient than GCN for dynamically changing
time series. Each node in the heterogeneous graph stream behaves
differently. Treating all nodes equally like GCN introduces noise to
the graph stream that can interfere with the model training process.
Furthermore, when GAT is no longer present in AnoFusion, the
precision and recall drop dramatically, which indicates that GAT
can focus on the most relevant information in the graph.

5646

Robust Multimodal Failure Detection for Microservice Systems KDD ’23, August 6–10, 2023, Long Beach, CA, USA

H

F 1
-s

co
re

w
F 1

-s
co

re

Figure 3: 𝐹1-score of AnoFusion under different parameters

5.4 RQ3: Hyperparameters Sensitivity
Wemainly discuss the effect of two hyperparameters in multimodal
data serialization and graph stream construction onAnoFusion’s per-
formance. Figure 3 shows how the average best 𝐹1-score of AnoFu-
sion changes with different values of hyperparameters. Specifically,
we increase the size of the sliding window in data serialization, 𝜃 ,
from 10 to 120. From the experiment results, we can find that if 𝜃
is too large, it will contain too many seasonal variations and will
struggle to reconstruct the current state; if 𝜃 is too small, the model
will be unable to comprehensively learn the information from his-
torical data, degrading AnoFusion’s performance. 𝜃 between 40 and
90 can lead to relatively good performance. Thus, we set 𝜃 = 60.

We change the number of attention heads in GAT, 𝐻 , from 2 to
10. An 𝐻 of 6 yields the best performance. If 𝐻 is too small, the
performance of AnoFusion will slightly degrade due to the decrease
in model size; if 𝐻 is too large, more redundant information may
be generated, interfering with the training of AnoFusion [38].

6 DISCUSSION
6.1 Lessons Learned
Collecting multimodal monitoring data in real-time. We uti-
lize multimodal data to detect failures in instances. Ensuring the
real time data quality of different modalities is essential for the deep
learning models. From our real-world experience in Microsoft, we
suggest leveraging the open-source monitoring systems or Azure
Monitor2 to build the data pipeline. For example, Prometheus3 can
be used to collect metrics. ELK (Elasticsearch, Logstash, and Kibana)
Stack4 are used to collect logs. Skywalking5 can be used to collect
traces. Additionally, 16 days of data are utilized for training. When
the model training is completed, AnoFusion digests 10 minutes of
data to perform real-time detection in the online detection stage,
which is efficient and effective in practice.
Selection of evaluation metrics. In the online detection stage,
AnoFusion adopts the EVT algorithm [34] to obtain the best 𝐹1-score.
In practice, however, operators may have varying preferences for
precision and recall depending on the business type. For example,
operators generally seek a high recall for the core services that
provide online shopping services. They do not want to miss any
potential failures that could negatively impact users’ experience.
Precision is often preferable in data analytic services. Operators

2https://azure.microsoft.com/en-us/products/monitor
3https://prometheus.io
4https://www.elastic.co/what-is/elk-stack
5https://skywalking.apache.org

want to detect failures accurately rather than receive a large number
of false alarms. Therefore, concentrating solely on 𝐹1-score is not
appropriate for all instances. In the future, we plan to provide an
interface that allows operators to apply additional weights, valuing
one of precision or recall more than the other.

6.2 Threat to Validity
Failure labeling. In our experiments, we use two datasets, one
is public and another is collected from a real-world commercial
bank. The ground truth labels are based on failure injection (D1)
and manually checking failure reports by system operators (D2).
Manually labeling anomalies may contain few noises. We believe
that the labeling noises are minimal due to the extensive experience
of operators. Furthermore, to reduce the impact of labeling noises,
we adopt widely used evaluation metric to detect continuous failure
segments instead of point-wise anomalies [26].
Granularity effect. The granularity of the monitoring data in our
experiments is one minute, but this has no effect on the algorithm’s
effectiveness. We believe the algorithm can still work with finer or
coarser-grained data without additional effort. The datasets in our
experiments are still limited. We will experiment AnoFusion with a
larger scale of system in the future.
Data modalities. Our work involves the utilization of three modal-
ities of monitoring data. We believe that in a real-world scenario,
as long as the modalities of the monitoring data are no less than
two, the algorithm will function normally. Furthermore, if a failure
manifests itself in only one type of monitoring data, AnoFusion
will consider not only the correlation among historical multimodal
data, but also the proportion of anomalous in all monitoring data
to determine whether the instance fails.

7 CONCLUSION
Failure detection in the microservice systems is of great importance
for service reliability. In this work, we propose AnoFusion, one of
the first studies using multimodal data, i.e., metrics, logs, and traces,
to detect failures of instances in microservice systems robustly.
Specifically, we first serialize the data of the three modalities and
construct a heterogeneous graph structure. Then, GTN is utilized to
update the heterogeneous graph, with GAT being used to capture
significant features. Finally, we use GRU to predict the data pat-
tern at the next moment. The deviation between the predicted and
observed values is used as the failure scores. We apply AnoFusion
on two microservice systems, which proves that it significantly
improves the 𝐹1-score for failure detection. We believe that the so-
lution of applying multimodal data for failure detection will benefit
more areas beyond microservice systems.

ACKNOWLEDGMENTS
The work was supported by the National Natural Science Foun-
dation of China (Grant No. 62272249 and 62072264), the Natural
Science Foundation of Tianjin (Grant No. 21JCQNJC00180), and
the Beijing National Research Center for Information Science and
Technology (BNRist).

5647

https://azure.microsoft.com/en-us/products/monitor
https://prometheus.io
https://www.elastic.co/what-is/elk-stack
https://skywalking.apache.org

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Chenyu Zhao et al.

REFERENCES
[1] Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, and Maria A.

Zuluaga. 2020. USAD: UnSupervised Anomaly Detection on Multivariate Time
Series. In KDD ’20: The 26th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, Virtual Event, CA, USA, August 23-27, 2020, Rajesh Gupta,
Yan Liu, Jiliang Tang, and B. Aditya Prakash (Eds.). ACM, 3395–3404. https:
//doi.org/10.1145/3394486.3403392

[2] AWS. 2021. Summary of the AWS Service Event in the Northern Virginia (US-
EAST-1) Region. (2021). https://aws.amazon.com/cn/message/12721/.

[3] Ailin Deng and Bryan Hooi. 2021. Graph Neural Network-Based Anomaly De-
tection in Multivariate Time Series. In Thirty-Fifth AAAI Conference on Artificial
Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Ar-
tificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances
in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021. AAAI Press,
4027–4035. https://ojs.aaai.org/index.php/AAAI/article/view/16523

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), Jill
Burstein, Christy Doran, and Thamar Solorio (Eds.). Association for Computa-
tional Linguistics, 4171–4186. https://doi.org/10.18653/v1/n19-1423

[5] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. DeepLog: Anomaly
Detection andDiagnosis from System Logs throughDeep Learning. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, Bhavani M. Thurais-
ingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM, 1285–1298.
https://doi.org/10.1145/3133956.3134015

[6] Mostafa Farshchi, Jean-Guy Schneider, Ingo Weber, and John Grundy. 2018.
Metric selection and anomaly detection for cloud operations using log and metric
correlation analysis. J. Syst. Softw. 137 (2018), 531–549. https://doi.org/10.1016/j.
jss.2017.03.012

[7] Ying Fu, Meng Yan, Jian Xu, Jianguo Li, Zhongxin Liu, Xiaohong Zhang, and Dan
Yang. 2022. Investigating and improving log parsing in practice. In Proceedings
of the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 1566–1577.

[8] Weihao Gao, Sreeram Kannan, Sewoong Oh, and Pramod Viswanath. 2017. Esti-
mating Mutual Information for Discrete-Continuous Mixtures. In Advances in
Neural Information Processing Systems 30: Annual Conference on Neural Infor-
mation Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, Is-
abelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus,
S. V. N. Vishwanathan, and RomanGarnett (Eds.). 5986–5997. https://proceedings.
neurips.cc/paper/2017/hash/ef72d53990bc4805684c9b61fa64a102-Abstract.html

[9] Xiaofeng Guo, Xin Peng, Hanzhang Wang, Wanxue Li, Huai Jiang, Dan Ding,
Tao Xie, and Liangfei Su. 2020. Graph-based trace analysis for microservice
architecture understanding and problem diagnosis. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 1387–1397.

[10] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R. Lyu. 2017. Drain: An
Online Log Parsing Approach with Fixed Depth Tree. In 2017 IEEE International
Conference on Web Services, ICWS 2017, Honolulu, HI, USA, June 25-30, 2017, Ilkay
Altintas and Shiping Chen (Eds.). IEEE, 33–40. https://doi.org/10.1109/ICWS.
2017.13

[11] Shilin He, Xu Zhang, Pinjia He, Yong Xu, Liqun Li, Yu Kang, Minghua Ma,
Yining Wei, Yingnong Dang, Saravanakumar Rajmohan, et al. 2022. An empirical
study of log analysis at Microsoft. In Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 1465–1476.

[12] Vladimir Iashin and Esa Rahtu. 2020. Multi-modal Dense Video Captioning. In
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR
Workshops 2020, Seattle, WA, USA, June 14-19, 2020. Computer Vision Foundation
/ IEEE, 4117–4126. https://doi.org/10.1109/CVPRW50498.2020.00487

[13] Chen Jia and Yue Zhang. 2020. Multi-Cell Compositional LSTM for NER Domain
Adaptation. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, ACL 2020, Online, July 5-10, 2020, Dan Jurafsky, Joyce
Chai, Natalie Schluter, and Joel R. Tetreault (Eds.). Association for Computational
Linguistics, 5906–5917. https://doi.org/10.18653/v1/2020.acl-main.524

[14] Ziyu Jia, Youfang Lin, Jing Wang, Zhiyang Feng, Xiangheng Xie, and Caijie Chen.
2021. HetEmotionNet: Two-Stream Heterogeneous Graph Recurrent Neural
Network for Multi-modal Emotion Recognition. In MM ’21: ACM Multimedia
Conference, Virtual Event, China, October 20 - 24, 2021, Heng Tao Shen, Yueting
Zhuang, John R. Smith, Yang Yang, Pablo Cesar, Florian Metze, and Balakrishnan
Prabhakaran (Eds.). ACM, 1047–1056. https://doi.org/10.1145/3474085.3475583

[15] Soopil Kim, Sion An, Philip Chikontwe, and Sang Hyun Park. 2021. Bidirec-
tional RNN-based Few Shot Learning for 3D Medical Image Segmentation. In
Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third
Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The

Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021,
Virtual Event, February 2-9, 2021. AAAI Press, 1808–1816. https://ojs.aaai.org/
index.php/AAAI/article/view/16275

[16] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net. https://openreview.net/forum?id=SJU4ayYgl

[17] Nikolay Laptev, Saeed Amizadeh, and Ian Flint. 2015. Generic and Scalable
Framework for Automated Time-series Anomaly Detection. In Proceedings of
the 21th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Sydney, NSW, Australia, August 10-13, 2015, Longbing Cao, Chengqi
Zhang, Thorsten Joachims, Geoffrey I.Webb, Dragos D.Margineantu, andGraham
Williams (Eds.). ACM, 1939–1947. https://doi.org/10.1145/2783258.2788611

[18] Zeyan Li, Junjie Chen, Rui Jiao, Nengwen Zhao, Zhijun Wang, Shuwei Zhang,
Yanjun Wu, Long Jiang, Leiqin Yan, Zikai Wang, Zhekang Chen, Wenchi Zhang,
Xiaohui Nie, Kaixin Sui, and Dan Pei. 2021. Practical Root Cause Localization
for Microservice Systems via Trace Analysis. In 29th IEEE/ACM International
Symposium on Quality of Service, IWQOS 2021, Tokyo, Japan, June 25-28, 2021.
IEEE, 1–10. https://doi.org/10.1109/IWQOS52092.2021.9521340

[19] Zhe Li, Peisong Wang, Hanqing Lu, and Jian Cheng. 2019. Reading selectively
via Binary Input Gated Recurrent Unit. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China,
August 10-16, 2019, Sarit Kraus (Ed.). ijcai.org, 5074–5080. https://doi.org/10.
24963/ijcai.2019/705

[20] Dapeng Liu, Youjian Zhao, Haowen Xu, Yongqian Sun, Dan Pei, Jiao Luo, Xiaowei
Jing, and Mei Feng. 2015. Opprentice: Towards Practical and Automatic Anomaly
Detection Through Machine Learning. In Proceedings of the 2015 ACM Internet
Measurement Conference, IMC 2015, Tokyo, Japan, October 28-30, 2015, Kenjiro
Cho, Kensuke Fukuda, Vivek S. Pai, and Neil Spring (Eds.). ACM, 211–224. https:
//doi.org/10.1145/2815675.2815679

[21] Ping Liu, Haowen Xu, Qianyu Ouyang, Rui Jiao, Zhekang Chen, Shenglin Zhang,
Jiahai Yang, Linlin Mo, Jice Zeng, Wenman Xue, and Dan Pei. 2020. Unsuper-
vised Detection of Microservice Trace Anomalies through Service-Level Deep
Bayesian Networks. In 31st IEEE International Symposium on Software Relia-
bility Engineering, ISSRE 2020, Coimbra, Portugal, October 12-15, 2020, Marco
Vieira, Henrique Madeira, Nuno Antunes, and Zheng Zheng (Eds.). IEEE, 48–58.
https://doi.org/10.1109/ISSRE5003.2020.00014

[22] Yudong Liu, Xu Zhang, Shilin He, Hongyu Zhang, Liqun Li, Yu Kang, Yong Xu,
Minghua Ma, Qingwei Lin, Yingnong Dang, Saravan Rajmohan, and Dongmei
Zhang. 2022. UniParser: A Unified Log Parser for Heterogeneous Log Data.
In Proceedings of the Web Conference (WWW ’22). ACM, 1893–1901. https:
//doi.org/10.1145/3485447.3511993

[23] Minghua Ma, Yudong Liu, Yuang Tong, Haozhe Li, Pu Zhao, Yong Xu, Hongyu
Zhang, Shilin He, Lu Wang, Yingnong Dang, Saravanakumar Rajmohan, and
Qingwei Lin. 2022. An Empirical Investigation of Missing Data Handling in Cloud
Node Failure Prediction. In Proceedings of the European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE).
1453 – 1464.

[24] Minghua Ma, Zheng Yin, Shenglin Zhang, Sheng Wang, Christopher Zheng, Xin-
hao Jiang, Hanwen Hu, Cheng Luo, Yilin Li, Nengjun Qiu, et al. 2020. Diagnosing
Root Causes of Intermittent Slow Queries in Cloud Databases. In PVLDB, Vol. 13.
1176–1189.

[25] Minghua Ma, Shenglin Zhang, Junjie Chen, Jim Xu, Haozhe Li, Yongliang Lin,
Xiaohui Nie, Bo Zhou, YongWang, and Dan Pei. 2021. Jump-Starting Multivariate
Time Series Anomaly Detection for Online Service Systems. In 2021 USENIX
Annual Technical Conference, USENIX ATC 2021, July 14-16, 2021, Irina Calciu and
Geoff Kuenning (Eds.). USENIX Association, 413–426. https://www.usenix.org/
conference/atc21/presentation/ma

[26] Minghua Ma, Shenglin Zhang, Dan Pei, Xin Huang, and Hongwei Dai. 2018.
Robust and Rapid Adaption for Concept Drift in Software System Anomaly
Detection. In 29th IEEE International Symposium on Software Reliability Engineer-
ing, ISSRE 2018, Memphis, TN, USA, October 15-18, 2018, Sudipto Ghosh, Roberto
Natella, Bojan Cukic, Robin S. Poston, and Nuno Laranjeiro (Eds.). IEEE Computer
Society, 13–24. https://doi.org/10.1109/ISSRE.2018.00013

[27] Weibin Meng, Ying Liu, Yichen Zhu, Shenglin Zhang, Dan Pei, Yuqing Liu, Yihao
Chen, Ruizhi Zhang, Shimin Tao, Pei Sun, and Rong Zhou. 2019. LogAnomaly:
Unsupervised Detection of Sequential and Quantitative Anomalies in Unstruc-
tured Logs. In Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, Sarit Kraus
(Ed.). ijcai.org, 4739–4745. https://doi.org/10.24963/ijcai.2019/658

[28] Sasho Nedelkoski, Jorge S. Cardoso, and Odej Kao. 2019. Anomaly Detection and
Classification using Distributed Tracing and Deep Learning. In 19th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, CCGRID 2019,
Larnaca, Cyprus, May 14-17, 2019. IEEE, 241–250. https://doi.org/10.1109/CCGRID.
2019.00038

[29] Sasho Nedelkoski, Jorge S. Cardoso, and Odej Kao. 2019. Anomaly Detection from
System Tracing Data Using Multimodal Deep Learning. In 12th IEEE International
Conference on Cloud Computing, CLOUD 2019, Milan, Italy, July 8-13, 2019, Elisa

5648

https://doi.org/10.1145/3394486.3403392
https://doi.org/10.1145/3394486.3403392
https://aws.amazon.com/cn/message/12721/
https://ojs.aaai.org/index.php/AAAI/article/view/16523
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1145/3133956.3134015
https://doi.org/10.1016/j.jss.2017.03.012
https://doi.org/10.1016/j.jss.2017.03.012
https://proceedings.neurips.cc/paper/2017/hash/ef72d53990bc4805684c9b61fa64a102-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/ef72d53990bc4805684c9b61fa64a102-Abstract.html
https://doi.org/10.1109/ICWS.2017.13
https://doi.org/10.1109/ICWS.2017.13
https://doi.org/10.1109/CVPRW50498.2020.00487
https://doi.org/10.18653/v1/2020.acl-main.524
https://doi.org/10.1145/3474085.3475583
https://ojs.aaai.org/index.php/AAAI/article/view/16275
https://ojs.aaai.org/index.php/AAAI/article/view/16275
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1145/2783258.2788611
https://doi.org/10.1109/IWQOS52092.2021.9521340
https://doi.org/10.24963/ijcai.2019/705
https://doi.org/10.24963/ijcai.2019/705
https://doi.org/10.1145/2815675.2815679
https://doi.org/10.1145/2815675.2815679
https://doi.org/10.1109/ISSRE5003.2020.00014
https://doi.org/10.1145/3485447.3511993
https://doi.org/10.1145/3485447.3511993
https://www.usenix.org/conference/atc21/presentation/ma
https://www.usenix.org/conference/atc21/presentation/ma
https://doi.org/10.1109/ISSRE.2018.00013
https://doi.org/10.24963/ijcai.2019/658
https://doi.org/10.1109/CCGRID.2019.00038
https://doi.org/10.1109/CCGRID.2019.00038

Robust Multimodal Failure Detection for Microservice Systems KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Bertino, Carl K. Chang, Peter Chen, Ernesto Damiani, Michael Goul, and Kat-
sunori Oyama (Eds.). IEEE, 179–186. https://doi.org/10.1109/CLOUD.2019.00038

[30] Rodolfo Picoreti, Alexandre Pereira do Carmo, Felippe Mendonça de Queiroz,
Anilton Salles Garcia, Raquel Frizera Vassallo, and Dimitra Simeonidou. 2018.
Multilevel Observability in Cloud Orchestration. In 2018 IEEE 16th Intl Conf
on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive
Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing
and Cyber Science and Technology Congress, DASC/PiCom/DataCom/CyberSciTech
2018, Athens, Greece, August 12-15, 2018. IEEE Computer Society, 776–784. https:
//doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00134

[31] Hansheng Ren, Bixiong Xu, Yujing Wang, Chao Yi, Congrui Huang, Xiaoyu
Kou, Tony Xing, Mao Yang, Jie Tong, and Qi Zhang. 2019. Time-Series Anom-
aly Detection Service at Microsoft. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, KDD 2019, An-
chorage, AK, USA, August 4-8, 2019, Ankur Teredesai, Vipin Kumar, Ying Li,
Rómer Rosales, Evimaria Terzi, and George Karypis (Eds.). ACM, 3009–3017.
https://doi.org/10.1145/3292500.3330680

[32] Tulika Saha, Aditya Prakash Patra, Sriparna Saha, and Pushpak Bhattacharyya.
2020. Towards Emotion-aided Multi-modal Dialogue Act Classification. In Pro-
ceedings of the 58th Annual Meeting of the Association for Computational Linguis-
tics, ACL 2020, Online, July 5-10, 2020, Dan Jurafsky, Joyce Chai, Natalie Schluter,
and Joel R. Tetreault (Eds.). Association for Computational Linguistics, 4361–4372.
https://doi.org/10.18653/v1/2020.acl-main.402

[33] Erich Schubert, Jörg Sander, Martin Ester, Hans Peter Kriegel, and Xiaowei
Xu. 2017. DBSCAN Revisited, Revisited: Why and How You Should (Still) Use
DBSCAN. ACM Trans. Database Syst. 42, 3, Article 19 (jul 2017), 21 pages. https:
//doi.org/10.1145/3068335

[34] Alban Siffer, Pierre-Alain Fouque, Alexandre Termier, and Christine Largouët.
2017. Anomaly Detection in Streams with Extreme Value Theory. In Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Halifax, NS, Canada, August 13 - 17, 2017. ACM, 1067–1075. https:
//doi.org/10.1145/3097983.3098144

[35] Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. 2019. Robust
Anomaly Detection for Multivariate Time Series through Stochastic Recurrent
Neural Network. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August
4-8, 2019, Ankur Teredesai, Vipin Kumar, Ying Li, Rómer Rosales, Evimaria Terzi,
and George Karypis (Eds.). ACM, 2828–2837. https://doi.org/10.1145/3292500.
3330672

[36] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30
- May 3, 2018, Conference Track Proceedings. OpenReview.net. https://openreview.
net/forum?id=rJXMpikCZ

[37] S. Vijayanand and S. Saravanan. 2022. A deep learning model based anomalous
behavior detection for supporting verifiable access control scheme in cloud
servers. J. Intell. Fuzzy Syst. 42, 6 (2022), 6171–6181. https://doi.org/10.3233/JIFS-
212572

[38] Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. 2019.
Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy Lifting,
the Rest Can Be Pruned. In Proceedings of the 57th Conference of the Association
for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019,
Volume 1: Long Papers, Anna Korhonen, David R. Traum, and Lluís Màrquez
(Eds.). Association for Computational Linguistics, 5797–5808. https://doi.org/10.

18653/v1/p19-1580
[39] Lingzhi Wang, Nengwen Zhao, Junjie Chen, Pinnong Li, Wenchi Zhang, and

Kaixin Sui. 2020. Root-Cause Metric Location for Microservice Systems via Log
Anomaly Detection. In 2020 IEEE International Conference on Web Services (ICWS).
142–150. https://doi.org/10.1109/ICWS49710.2020.00026

[40] Lianghao Xia, Chao Huang, Yong Xu, Peng Dai, Xiyue Zhang, Hongsheng Yang,
Jian Pei, and Liefeng Bo. 2021. Knowledge-Enhanced Hierarchical Graph Trans-
former Network for Multi-Behavior Recommendation. In Thirty-Fifth AAAI Con-
ference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative
Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Edu-
cational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9,
2021. AAAI Press, 4486–4493. https://ojs.aaai.org/index.php/AAAI/article/view/
16576

[41] Shi Ying, Bingming Wang, Lu Wang, Qingshan Li, Yishi Zhao, Jianga Shang, Hao
Huang, Guoli Cheng, Zhe Yang, and Jiangyi Geng. 2021. An Improved KNN-Based
Efficient Log Anomaly Detection Method with Automatically Labeled Samples.
ACM Transactions on Knowledge Discovery from Data (TKDD) 15, 3 (2021), 1–22.

[42] Guangba Yu, Pengfei Chen, Hongyang Chen, Zijie Guan, Zicheng Huang, Linxiao
Jing, TianjunWeng, Xinmeng Sun, and Xiaoyun Li. 2021. MicroRank: End-to-End
Latency Issue Localization with Extended Spectrum Analysis in Microservice
Environments. In WWW ’21: The Web Conference 2021, Virtual Event / Ljubljana,
Slovenia, April 19-23, 2021, Jure Leskovec, Marko Grobelnik, Marc Najork, Jie
Tang, and Leila Zia (Eds.). ACM / IW3C2, 3087–3098. https://doi.org/10.1145/
3442381.3449905

[43] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J. Kim.
2019. Graph Transformer Networks. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and
Roman Garnett (Eds.). 11960–11970. https://proceedings.neurips.cc/paper/2019/
hash/9d63484abb477c97640154d40595a3bb-Abstract.html

[44] Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu Zhang, Yingnong Dang,
Chunyu Xie, Xinsheng Yang, Qian Cheng, Ze Li, Junjie Chen, Xiaoting He, Ran-
dolph Yao, Jian-Guang Lou, Murali Chintalapati, Furao Shen, and Dongmei Zhang.
2019. Robust log-based anomaly detection on unstable log data. In Proceedings
of the ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019,
Tallinn, Estonia, August 26-30, 2019, Marlon Dumas, Dietmar Pfahl, Sven Apel, and
Alessandra Russo (Eds.). ACM, 807–817. https://doi.org/10.1145/3338906.3338931

[45] Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2022. Deep Learning on Graphs: A
Survey. IEEE Trans. Knowl. Data Eng. 34, 1 (2022), 249–270. https://doi.org/10.
1109/TKDE.2020.2981333

[46] Nengwen Zhao, Junjie Chen, Zhaoyang Yu, Honglin Wang, Jiesong Li, Bin Qiu,
Hongyu Xu, Wenchi Zhang, Kaixin Sui, and Dan Pei. 2021. Identifying bad soft-
ware changes via multimodal anomaly detection for online service systems. In
ESEC/FSE ’21: 29th ACM Joint European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering, Athens, Greece, August 23-28,
2021, Diomidis Spinellis, Georgios Gousios, Marsha Chechik, andMassimiliano Di
Penta (Eds.). ACM, 527–539. https://doi.org/10.1145/3468264.3468543

[47] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Wenhai Li, and Dan Ding.
2021. Fault Analysis and Debugging of Microservice Systems: Industrial Survey,
Benchmark System, and Empirical Study. IEEE Trans. Software Eng. 47, 2 (2021),
243–260. https://doi.org/10.1109/TSE.2018.2887384

5649

https://doi.org/10.1109/CLOUD.2019.00038
https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00134
https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00134
https://doi.org/10.1145/3292500.3330680
https://doi.org/10.18653/v1/2020.acl-main.402
https://doi.org/10.1145/3068335
https://doi.org/10.1145/3068335
https://doi.org/10.1145/3097983.3098144
https://doi.org/10.1145/3097983.3098144
https://doi.org/10.1145/3292500.3330672
https://doi.org/10.1145/3292500.3330672
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.3233/JIFS-212572
https://doi.org/10.3233/JIFS-212572
https://doi.org/10.18653/v1/p19-1580
https://doi.org/10.18653/v1/p19-1580
https://doi.org/10.1109/ICWS49710.2020.00026
https://ojs.aaai.org/index.php/AAAI/article/view/16576
https://ojs.aaai.org/index.php/AAAI/article/view/16576
https://doi.org/10.1145/3442381.3449905
https://doi.org/10.1145/3442381.3449905
https://proceedings.neurips.cc/paper/2019/hash/9d63484abb477c97640154d40595a3bb-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/9d63484abb477c97640154d40595a3bb-Abstract.html
https://doi.org/10.1145/3338906.3338931
https://doi.org/10.1109/TKDE.2020.2981333
https://doi.org/10.1109/TKDE.2020.2981333
https://doi.org/10.1145/3468264.3468543
https://doi.org/10.1109/TSE.2018.2887384

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Single-modal Anomaly Detection
	2.2 Multimodal Anomaly Detection
	2.3 Graph Neural Networks

	3 Motivation
	4 AnoFusion
	4.1 Overview
	4.2 Multimodal Data Serialization
	4.3 Graph Stream Construction
	4.4 Feature Filtering
	4.5 Failure Detection
	4.6 Online Detection

	5 Evaluation
	5.1 Experimental Design
	5.2 RQ1: Effectiveness of AnoFusion
	5.3 RQ2: Contributions of Components
	5.4 RQ3: Hyperparameters Sensitivity

	6 Discussion
	6.1 Lessons Learned
	6.2 Threat to Validity

	7 Conclusion
	Acknowledgments
	References

