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ABSTRACT
The availability of online services is vital as its strong relevance to

revenue and user experience. To ensure online services’ availabil-

ity, quickly localizing the root causes of system failures is crucial.

Given the high resource consumption of traces, call metric data

are widely used by existing approaches to construct call graphs

in practice. However, ambiguous correspondences between up-

stream and downstream calls may exist and result in exploring

unexpected edges in the constructed call graph. Conducting root

cause localization on this graph may lead to misjudgments of real

root causes. To the best of our knowledge, we are the first to investi-

gate such ambiguity, which is overlooked in the existing literature.

Inspired by the law of large numbers and the Markov properties

of network traffic, we propose a regression-based method (named

AmSitor) to address this problem effectively. Based on AmSitor,

we propose an ambiguity-aware root cause localization approach

based on Call Metric Data named CMDiagnostor, containing metric

anomaly detection, ambiguity-free call graph construction, root

cause exploration, and candidate root cause ranking modules. The

comprehensive experimental evaluations conducted on real-world

datasets show that our CMDiagnostor can outperform the state-of-

the-art approaches by 14% on the top-5 hit rate. Moreover, AmSitor

can also be applied to existing baseline approaches separately to

improve their performances one step further. The source code is

released at https://github.com/NetManAIOps/CMDiagnostor.

∗
Changhua Pei is the corresponding author. Email: chpei@cnic.cn

†
HL-IT is short for Haihe Laboratory of Information Technology Application

Innovation.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

WWW ’23, May 1–5, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9416-1/23/04.

https://doi.org/10.1145/3543507.3583302

CCS CONCEPTS
• Software and its engineering→Cloud computing; •General
and reference→ Reliability; Performance.

KEYWORDS
online service, root cause localization, call metric data, ambiguity

ACM Reference Format:
Qingyang Yu, Changhua Pei, Bowen Hao, Mingjie Li, Zeyan Li, Shenglin

Zhang, Xianglin Lu, Rui Wang, Jiaqi Li, Zhenyu Wu, and Dan Pei. 2023.

CMDiagnostor: An Ambiguity-Aware Root Cause Localization Approach

Based on Call Metric Data. In Proceedings of the ACM Web Conference 2023
(WWW ’23), May 1–5, 2023, Austin, TX, USA. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3543507.3583302

1 INTRODUCTION
Recent years have witnessed the booming of online services, e.g.,
online shopping websites like Amazon, short-video platforms like

Tiktok, and social media networks like Instagram. The availability

of online services is crucial as its strong relevance to revenue and

user experiences. For example, Amazon’s one-hour downtime on

Prime Day may lead to the loss of up to $100 million in sales [26].

How to quickly locate the root causes of system failures has become

an active research topic these years. This paper mainly focuses on

root cause localization (RCL) based on call metric data.

Among different kinds of system data used for RCL, Call Metric

Data (CMD) are widely used [16] as the reasonable trade-off be-

tween information capacity and system collection burden. Some

leading internet companies like Alibaba [16] and Tencent (this pa-

per) use CMD for RCL. Table 1 gives an example record of CMD.

Each piece of CMD indicates the call events between two nodes

which are labeled as caller and callee according to the call direc-

tion. The node can be any system entity, ranging from fine-grained

method level (this paper) to coarse-grained service level. For each

call event with the same caller and callee, CMD records its statistical

information, which is shown as metric in Table 1. Compared with

traditional single-node KPI time series data [21], CMD provides real

https://github.com/NetManAIOps/CMDiagnostor
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Table 1: The fields and the meanings of call metric data.

Category Field Meaning

Caller Caller_service Service name of the caller

Caller_method Method name of the caller

Callee Callee_service Service name of the callee

Callee_method Method name of the callee

Metric RC Request count per minute

RT Average response time per minute

EC Error count per minute
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Figure 1: The call path of an user request and the snapshot
of one piece of trace data.

call relationships between two nodes, which are more friendly for

RCL. Compared with the pure call graph, CMD provides statistical

results for various call metrics, which help identify the anomalous

status of call events.

Detailed trace data [5, 8, 24] are prevalent these years, which

provide more information than CMD. Figure 1 shows a trace record-

ing example. A unique trace ID is generated for each user request.

A complete trace consists of multiple calls (shown as Span in Fig-

ure 1). CMD can be considered the aggregations of spans with the

same caller and callee but ignoring different requests. Although

trace data distinguish among different requests, they are challeng-

ing for large-scale real-world online services to use. First, the high

transmission cost and storage burden should be considered. The

extra transmission bandwidth and storage are 10
3× to 10

4× larger

compared with CMD under different compression rates (e.g., a real-
world trace dataset D𝑅𝑇 used in Section 5.2.2 converted to CMD

achieves 2500× compression). There are huge resource wastes be-

cause the majority of traces are normal, which are useless for RCL.

Second, the massive trace data bring extra computation costs for

RCL algorithms, e.g., parsing, reconstruction, and analyzing. Hence,
this paper mainly focuses on RCL based on CMD.

Though widely usage of CMD, the threat of “ambiguity” is over-

looked in existing RCL algorithms. The ambiguity arises when a

node is called by multiple nodes and calls at least one node. We

give a toy example of the ambiguity in Figure 2, where node 𝐵 has

two callers (𝐴 and 𝐶) and one callee 𝐷 . Figure 2(a) shows three

pieces of CMD data. Based on Figure 2(a), existing methods like

MicroHECL[16] construct a call graph, as shown in Figure 2(b).

Unfortunately, the call graph in Figure 2(b) may be inaccurate. Ac-

tually, three possible control flows are shown in Figure 2(c). If the

calls 𝐴 → 𝐵 and 𝐵 → 𝐷 belong to different user requests, the
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Figure 2: Illustration of the ambiguity faced by existing root
cause localization methods when constructing the call graph
from call metric data. (a) shows the snapshot of call metric
data. (b) shows the call graph constructed by existing meth-
ods like MicroHECL [16], which is one of the three possible
control flows shown in (c). In this paper, we try to identify
the right one to eliminate the negative impact of ambiguity.

correct control flow should be case 2, which is different from Fig-

ure 2(b). The core idea of this work is to benefit RCL by identifying

the actual call graph from all possible cases.

In this paper, we propose an ambiguity-aware RCL approach

called CMDiagnostor. First, we conduct theoretical analyses to re-

veal the feasibility of eliminating ambiguity without the help of

resource-consuming trace data. Based on the analyses, a disam-

biguation algorithm called AmSitor is proposed and integrated into

CMDiagnostor to construct the ambiguity-free call graph. Unsu-

pervised anomaly detection methods are proposed to identify the

anomaly calls in the graph. Then, an explainable root cause explo-

rationmethod is proposed to identify the potential root causes based

on the ambiguity-free call graph. At last, we rank the candidate

root causes based on our proposed key indicators. To summarize,

we make the following contributions.

• To the best of our knowledge, we are the first to investigate the

ambiguity in the call graph. Based on the law of large numbers

and the Markov properties of network traffic, a simple but ef-

fective regression-based method called AmSitor is proposed to

eliminate ambiguity. Evaluation results show that AmSitor can

improve existing RCL methods.

• CMDiagnostor, a four-stage (i.e., detection, construction, explo-
ration, and ranking) based framework, is designed to identify

the root causes in an efficient and explainable way. The eval-

uation results show that our CMDiagnostor outperforms the

state-of-the-art algorithms by 14% on the top-5 hit rate.

• In this paper, we conduct comprehensive experimental evalu-

ations based on real-world datasets. Detailed case studies are

provided with practical experiences. Our code has been released.

2 SYSTEM OVERVIEW
2.1 Problem Statement
In this section, we first introduce the essential notations. Then we

give the formal definition of our problem in this paper.

SLO: Service Level Objectives (SLOs) are adopted by the system

we studied to measure customer satisfaction [1]. Once SLOs are

violated, alerts covering information, such as alerting services, will

be generated to notify operators.
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Node: A node represents a virtual entity belonging to some online

service, which can be method-level, service-level, etc. A service

consists of multiple methods. Our root cause algorithm is built

on a method-level dataset (shown in Table 1) because it provides

finer-grained information. We output the service-level root causes

as the operators usually focus on root cause services rather than

a mass of methods. It is noteworthy that the method-level causes

can also be provided to operators for further failure recovery.

Call: A call refers to that a service node (𝐴) invokes another

service node (𝐵) with corresponding minute-granularity metrics,

as the record in Table 1. The call here can be represented as 𝐴→ 𝐵.

A service node in this paper refers to a method. If there are a call

(𝐴→ 𝐵) invokes a node (𝐵) and a call (𝐵 → 𝐶) invoked by the same

node (𝐵), we call the former call the upstream call and the latter call
the downstream call. The calls whose caller or callee service reports
a SLO violation alert are called entry calls.

The main objective of our paper is: Once the system alert
for SLO violation is reported, we need to identify the most-
possible cause services as soon as possible based on previ-
ously collected method-level call metric data.

2.2 Challenges
To achieve the above goal, there are three main challenges.

• Ambiguity: As illustrated in Figure 2, the ambiguity may cause

awrongly constructed graphwhichmay reduce the performance

of RCL. Eliminating the negative effects without the need to

collect more detailed trace data is challenging.

• Efficiency: We aim to design a RCL algorithm for one top-tier

online service provider. Once an alert is reported, hundreds

of thousands of methods are potential causes. How efficiently

identifying the top causes is challenging.

• Explainability: Root cause localization is not the final stop for

operators. They need to take action to eliminate failures. An

explainable algorithm can provide more detailed information,

friendly to the following failure-eliminating process.

2.3 Design Overview of CMDiagnostor
To address the above challenges, we propose CMDiagnostor, an

ambiguity-aware RCL approach. The overview is shown in Figure 3.

CMDiagnostor inputs alerting services and CMD, and outputs the

ranked root cause service list. The entire process includes four mod-

ules: Metric Anomaly Detection, Ambiguity-free Call Graph
Construction, Root Cause Exploration, and Candidate Root
Cause Ranking. Once a service alert arises, CMDiagnostor first

detects anomalies of entry calls and constructs the call graph with

AmSitor. Next, CMDiagnostor traverses the calls from abnormal

entry calls in the graph using three pruning strategies and ranks

the potential root causes based on our proposed key indicators.

Metric Anomaly Detection. This part identifies the abnormal

calls from CMD for the subsequent two modules. First, it finds the

abnormal entry calls for the ambiguity-free call graph construction

stage. The entry call refers to the call whose caller or callee service

violates the SLO requirements. It is time-consuming to conduct

RCL for all entry calls (challenge of efficiency) as numerous entry

calls can be found for an alerting service. Based on the observation

that the root causes are also anomalous, this module identifies
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Figure 3: Design overview of CMDiagnostor.

the abnormal entry calls to improve efficiency. Moreover, it also

identifies the relevant abnormal calls for the root cause exploration

stage. More details can be found in Section 4.1.

Ambiguity-free Call Graph Construction: This part aims to

construct the call graph for each abnormal entry call given by the

previous module. However, the ambiguity, as shown in Figure 2,

results inmultiple possible control flows, whichmay reduce the RCL

performance (challenge of ambiguity). Based on the theoretical

analyses, we propose a traffic regression method (called AmSitor)

to handle the ambiguity and construct the ambiguity-free call graph.

More detailed information can be found in Section 3 and Section 4.2.

Root Cause Exploration and Candidate Root Cause Rank-
ing: Based on the ambiguity-free call graphs and anomaly detec-

tion results provided by the previous two modules, we propose a

pruning-based exploration method to exclude those false-positive

root causes. The detailed pruning strategies can be found in Sec-

tion 4.3. To further pick the most likely root causes, we rank the

remaining root causes after the exploration process based on the

carefully designed key indicators. More details about the rank-

ing algorithm can be found in Section 4.4. Instead of model-based

methods [22], we adopt rule-based methods in the exploration and

ranking stages for the sake of explainability and efficiency.

3 AMBIGUITY AND SOLUTION
In this section, we first summarize the Ambiguous Situation (short

as AmSit hereinafter) where the ambiguity arises. Then we give the

theoretical analyses of the traffic in AmSit and propose an algorithm

called AmSitor to solve the AmSit. It is noteworthy that AmSitor

can not only be applied in call graph construction by CMD but also

work well for other call graph construction scenarios.

3.1 AmSit
Ambiguity arises in the situation where a node has at least two

upstream calls and at least one downstream call. Figure 2 gives

a simple example of the situation, which has two upstream calls

(𝐴 → 𝐵, 𝐶 → 𝐵) and one downstream call (𝐵 → 𝐷). From the

three calls in Figure 2(a), existing methods like MicroHECL [16]

construct the call graph shown in Figure 2(b). However, the graph is

ambiguous because the actual control flow may be one of the three

cases in Figure 2(c). For the convenience of description, we call such

a situationAmSit. AmSit can be solved by complete trace data that



WWW ’23, May 1–5, 2023, Austin, TX, USA Qingyang Yu et al.

are expensive to record and rarely available in large service systems.

Therefore we focus on solving AmSit using easily acquired CMD.

3.2 Theoretical Analyses of Traffic
For readability, we give the following corollaries based on the law

of large numbers and the Markov properties of network traffic. The

detailed mathematical derivation is provided in Appendix A.

Corollary 3.1. For each time slicing 𝑡 , the overall number of calls
from node A to its downstream node B can be approximated as the
weighted sum of call numbers from A’s one-hop upstream nodes.

Corollary 3.2. Theweight in Corollary 3.1 is the expected number
of 𝐴’s calling 𝐵 per𝑈 ’s calling 𝐴, represented as E (𝑛𝐴→𝐵 |𝑈 → 𝐴).

3.3 Algorithm for Solving the AmSit
According to Corollary 3.1 and Corollary 3.2, from the CMD dataset,

we can get the number of calls from 𝐴 to 𝐵 at the time 𝑡 and the

number of each kind of upstream call at the time 𝑡 . The only thing

wewant is the “weight”mentioned in Corollary 3.2, i.e., the expected
number of 𝐴’s calling 𝐵 per 𝑈 ’s calling 𝐴. We naturally think of

linearly regressing one downstream traffic on its possible upstream

traffic. Time series with the same start and end times are used for

the regression. The regression coefficient of each upstream traffic

can be considered as its expectation. Upstream calls with a low

coefficient, e.g., less than or equal to a threshold (e.g., 0.005), will be
dropped. Notice that we should keep the coefficient non-negative

during the linear regression analysis, as E (𝑛𝐴→𝐵 |𝑈 → 𝐴) means

the expectation of the number of the calls under the given condition.

Based on the analyses above, we propose AmSitor to determine

the correspondences of upstream and downstream calls in AmSits

based on their traffic. The pseudo-code is shown in Algorithm 1.

We use scipy.optimize.dual_annealing [4], a python-based global

optimization function, to implement linear regression.

Algorithm 1 (AmSitor): Determine correspondences of upstream

and downstream calls in the AmSit based on traffic regression

Input: Upstream calls C𝑈 , |C𝑈 | ≥ 2 and their traffic T𝑈 = {T𝑈 ,𝑗 |
𝑗 = 1, 2, · · · , |C𝑈 |}; Downstream calls C𝐷 , |C𝐷 | ≥ 1 and their

traffic T𝐷 = {T𝐷,𝑖 | 𝑖 = 1, 2, · · · , |C𝐷 |};
Output: A mapping from C𝐷 to their upstream calls;

1: 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 ← A mapping from C𝐷 to their upstream calls

2: for all C𝑖 ∈ C𝐷 do
3: linear regress T𝐷,𝑖 =

∑
C𝑈

r𝑗T𝑈 ,𝑗 while keeping r𝑗 ≥ 0

4: 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 [C𝑖 ] ← {𝐶𝑈 ,𝑗 | 𝑟 𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
∧
𝐶𝑈 ,𝑗 ∈ C𝑈 }

5: end for
6: return 𝑟𝑒𝑠𝑢𝑙𝑡𝑠

4 METHODOLOGY
In this section, we introduce the details of CMDiagnostor, i.e., the
four stages of Metric Anomaly Detection, Ambiguity-free Call
Graph Construction, Root Cause Exploration, and Candidate
Root Cause Ranking, as shown in Figure 3.

4.1 Metric Anomaly Detection
The purpose of this module is to detect anomalous calls in CMD

using metrics that are attached to these calls. As shown in Table 1,

three types of metrics can be used, i.e., request count per minute

(RC), average response time per minute (RT), and error count per

minute (EC). The detection results are used in the two following

modules. In the ambiguity-free call graph construction stage, the

anomalous calls which contain alerting service nodes are used as

the entry calls for graph construction. In the root cause exploration,

only the anomalous calls are traversed because of the common

knowledge that the normal call can not become the root cause.

4.1.1 Anomaly Propagation Directions. Once a service alert is re-
ported, the straightforward way is to detect the anomalous calls

in both directions, i.e., upstream and downstream. However, the

anomaly propagation directions are different for different metrics.

According to [16], the call metrics can be divided into three cate-

gories: traffic-related metrics (like RC), performance-related met-

rics (like RT), and reliability-related metrics (like EC). For traffic-

related metrics, the increase/decrease in upstream calls leads to

an increase/decrease in downstream calls. Thus the propagation

direction of traffic-related metrics is from upstream to downstream.

Contrary to the above analysis, the propagation direction is from

downstream to upstream for the other two kinds of metrics.

4.1.2 AnomalyMetric Selection. Among the threemetrics shown in

Table 1, we choose RT and EC instead of RC for anomaly detection

and root cause localization for two reasons. First, the majority of

RC anomalies can be attributed to RT and EC anomalies. Second,

RT and EC anomalies provide more clues for failure elimination.

For example, for RT anomalies, the service operators can deploy

more machines. But for RC anomalies, no clear instructions can be

provided. A more detailed analysis is provided in Appendix B.

4.1.3 Anomaly ComparisonWindow. Given the alerting time 𝑡 , data

within (𝑡 − 10𝑚𝑖𝑛, 𝑡] are considered to sculpture the failure, named

a detection window. Besides, a comparison window is needed to learn

the metrics’ normal patterns. Considering the periodicity of metrics,

we also select those timewindows at the same period of the previous

day and on the same day of the previous week. In other words, we

consider three windows for comparison, i.e., (𝑡 − 70𝑚𝑖𝑛, 𝑡 − 10𝑚𝑖𝑛],
(𝑡 − 60𝑚𝑖𝑛 − 24ℎ, 𝑡 − 24ℎ], (𝑡 − 60𝑚𝑖𝑛 − 7 ∗ 24ℎ, 𝑡 − 7 ∗ 24ℎ].

4.1.4 Anomaly Detection. Performance Anomaly Detection:
We choose the isolated forest (iForest) [18] to detect abnormal

RT fluctuations. iForest identifies anomalies by explicitly isolating

anomalies instead of normal instance profiling. Besides, it works

well in high-dimensional problems and works in an unsupervised

way. We use the same method as [16] to extract four features for

RT fluctuations. The first two are computed by comparing the

values in the detection window with the maximum value in the

comparison window. Specifically, they are the value count in the

detection window exceeding the maximum value in the comparison

window and the difference between the maximum values of the

two windows. The last two are computed by comparing the values

in the detection window with the maximum moving average value

in the comparison window. Specifically, they are the value count

in the detection window exceeding the maximum moving average
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value in the comparison window and the proportion of the mean

in the detection window to the maximum moving average value

in the comparison window. At last, we combine four features with

three comparison windows to get 12 features for model training.

Implementation details can be found in Appendix C.1.

Reliability Anomaly Detection: We propose a simple method

to detect EC anomalies. The 95
𝑡ℎ

percentile of EC in the comparison

period is used as the splitting point of the normal and abnormal val-

ues. We calculate the 95
𝑡ℎ

quantiles of three comparison windows

and take their minimum𝑚𝑖𝑛95. We compare each of the 10 values

in the detection window with𝑚𝑖𝑛95. The EC metric is considered

abnormal if there is more than one value greater than𝑚𝑖𝑛95.

It is noteworthy that other existing anomaly detection algo-

rithms [2, 23] can also be used in this stage as needed.

4.2 Ambiguity-free Call Graph Construction
This module aims to build the ambiguity-free call graph for ab-

normal entry calls provided by theMetric Anomaly Detection
module. First, we generate the call graph starting from each abnor-

mal entry call by extending downstream, adopting a breadth-first

search (BFS), as we only explore RT and EC root causes downstream

opposite their propagation direction. Then we apply AmSitor in-

troduced in Section 3.3 to solve the ambiguous problem.

Take the bottom-left part of Figure 3 as an example where the

abnormal entry call is C1. Add the callee of the entry call to a list,

and find the related calls of the list nodes, where the nodes are

the caller or callee of these related calls. If the callee of a newly

found call is not in the list, add the callee to the list. Iterate this

process until all nodes in the list are traversed and no new nodes

are added. Finally, the graphs are merged if there are overlapping

parts. Among the calls, a call added only as its callee is in the list is

called an extra call (for example, eC0). Extra calls do not participate
in anomaly detection or root cause exploration. They are only used

to disambiguate for AmSits. For each AmSit, the correspondences

of upstream and downstream calls are identified using AmSitor.

Since root cause exploration is from upstream to downstream, a list

of downstream calls corresponding to each upstream call is stored.

For example, C3:{C6} in the figure indicates that the downstream

list of C3 is {C6}. As a result, we get the ambiguity-free call graph.

4.3 Root Cause Exploration
Based on the constructed graph from the previous section, we tra-

verse the graph using a depth-first search (DFS) method to explore

the potential root causes. Three different pruning methods are used

to filter out the non-root causes. The bottom-right part of Figure 3

shows their examples.

AmSit-based Pruning (ASP). For a current call, if it and its

upstream calls form an AmSit, the call and its downstream will

be pruned by ASP when the call is not the downstream call corre-

sponding to the path (e.g., C5 is not downstream of C3).
Metric Similarity-based Pruning (MSP).This analysis is based

on an assumption from MicroHECL [16] that two successive calls

in an anomaly propagation chain have similar change trends in

corresponding metrics. For a current call, check the Pearson cor-

relation coefficient between the anomaly metric of its upstream

call and its corresponding metric based on the period of the last 30

minutes before the alert. If the coefficient is lower than a threshold

(e.g., 0.7), the call and its downstream will be pruned by MSP.

Anomaly Detection-based Pruning (ADP). There is a general
consensus [16]: if the metric of one call on the exploration path is

normal, then it and its subsequent calls will not be the root causes

and can be dropped. Specifically, for a current call, perform anomaly

detection for the corresponding metric. If the metric is normal, the

call and its downstream will be pruned by ADP.

After the DFS exploration, CMDiagnostor adds the end-most

nodes on all paths in the pruned graph to the root cause list, e.g.,
node C and node F in the figure. The root cause node lists from RT

and EC are merged to obtain the final candidate root cause node

list. In addition, as required for subsequent ranking, we also store

the calls corresponding to these end-most nodes (e.g., C2 and C3)
and their three types of metrics (RC, RT, EC).

4.4 Candidate Root Cause Ranking
After root cause exploration, we get a candidate root cause node

(method) list. To get the final root cause service ranking, we intro-

duce three ranking keys as follows.

4.4.1 Root Cause Node Count (RCNC). Many nodes (methods)

belonging to different services may exist in the list. We introduce

RCNC because we found in other historical datasets that the root

cause probability of a microservice is positively correlated with

its RCNC, i.e., the more root cause nodes in a service, the more

likely the service is the root cause service. So we count the RCNC

of each service to rank services. The larger the RCNC, the higher

the service ranking.

4.4.2 Average Error Rate (AER). AER is a commonly used metric

for ranking root causes. We first find the call corresponding to each

root cause node and calculate the mean of error rates (𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 =

𝐸𝐶/𝑅𝐶) of 10 values in the detection window. Then we calculate

the average of the error rate means of calls in service as the AER of

service. The higher the AER, the higher the service ranking.

4.4.3 MaximumMetric Similarity (MMS). MMS is introduced based

on existing works [14, 16] that think the anomaly metric of the

entry has similar change trends to that of the root cause. Specifically,

we first find the root cause call corresponding to each root cause

node and then calculate the Pearson correlation coefficient of the

anomaly metric (RT or EC) with the corresponding metric of its

entry call. Use the coefficient maximum (i.e., MMS) of each service

as the key. The higher the MMS, the higher the ranking.

We rank services with RCNC as the primary key and AER as the

secondary key. MMS is used to rankMicroHECL in Section 5.1.3. We

discuss the applicability of the ranking keys above in Section 5.4.3.

5 EVALUATION
In this section, we conduct experimental studies to answer the

following research questions. All the experiments are conducted

on a server with 22-core CPU (Intel(R) Xeon(R) CPU E5-2620 v3 @

2.40GHz) and 57GB RAM.

RQ1 How does AmSitor perform in identifying upstream and

downstream correspondences in AmSits?

RQ2 How does CMDiagnostor perform in root cause localization?
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RQ3 Can each component of CMDiagnostor contribute to the over-

all performance?

RQ4 CanAmSitor improve the performance of the other root cause

localization approaches?

5.1 Experimental Setup
In this section, we first introduce the datasets we used for evaluation.

Then we introduce the baselines and metrics for the AmSit problem

and RCL task correspondingly.

5.1.1 Datasets. Simulated Trace Dataset (D𝑆𝑇 ). We generate

D𝑆𝑇 based on the train-ticket testbed [29], which is a benchmark

system of microservice architecture with 41 microservices. D𝑆𝑇

spans 1 hour with 150,000 span records.

Real-world Trace Dataset (D𝑅𝑇 ). We collect D𝑅𝑇 from a

large-scale online advertising service system with 1.8K+ microser-

vices and 0.23 million service nodes. D𝑅𝑇 contains 0.5 billion span

records lasting 6 hours.

Real-world Failure Dataset (D𝑅𝐹 ). D𝑅𝐹 contains 65 real-

world failures from an online service system of a top-tier global

multimedia service provider. The system consists of 8K+ microser-

vices and 0.57 million service nodes. We collect D𝑅𝐹 from Decem-

ber 2021 to July 2022. The content of each data record is shown in

Table 1. On average, there are 0.8 million CMD records per day.

5.1.2 AmSit Problem.

Baselines. To the best of our knowledge, we are the first to ad-

dress the ambiguity in CMD. As a result, we find no existing solu-

tions for AmSit. Hence, we propose the following two straw man

methods as baselines instead.

PWS: Pair-Wise Similarity (PWS) determines the relationship

between a downstream call and each upstream one based on the

intuitive traffic similarity. Specifically, PWS measures the similarity

with the Pearson coefficient. A relation will be removed if the

similarity is lower than a threshold. In this paper, we select the

threshold of 0.3, which has the best overall performance.

CBS: The traffic of a downstream call may come from multiple

upstream calls. As a result, the similarity between the downstream

traffic and each upstream traffic can be intangible. Combination-
Based Similarity (CBS) is proposed based on PWS. Specifically

speaking, given a downstream call, CBS sums up the traffic for

each combination of upstream calls. Calls in the combination with

the maximal similarity will be considered as the actual upstream

calls of the given downstream one.

Evaluation Metrics. We adopt accuracy, precision, and recall of

AmSit cases to evaluate the performance of each AmSit solution. An

AmSit case refers to a downstream call and the set of corresponding

upstream ones S𝑢 . Let 𝑁 be the number of AmSit cases in a dataset

and Ŝ𝑢 be the set of upstream calls identified by a AmSit solutions.

Eq.(1) shows the definitions for the precision and recall for 𝑖𝑡ℎ

AmSit case, as well as the accuracy. We present the average of the

precision and recall in the rest of this section.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = |{𝑖 | S𝑢,𝑖 ≡ Ŝ𝑢,𝑖 , 𝑖 = 1, 2, · · · , 𝑁 }| /𝑁
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 = |S𝑢,𝑖 ∩ Ŝ𝑢,𝑖 | / |Ŝ𝑢,𝑖 |

𝑅𝑒𝑐𝑎𝑙𝑙𝑖 = |S𝑢,𝑖 ∩ Ŝ𝑢,𝑖 | / |S𝑢,𝑖 |
(1)

5.1.3 Root Cause Localization.

Baselines. Existing root-cause service localization works are

mainly of two categories, i.e., topological graph-based and causal

graph-based. We choose the state-of-the-art approaches from each

as baselines, i.e., MonitorRank [10] (topological graph-based ran-

dom walk), MicroHECL [16] (topological graph-based DFS), Mi-

croscope [14] (causal graph-based DFS), and AutoMap [22] (causal

graph-based random walk). As the high time complexity of the PC

algorithm, it is infeasible for Microscope and AutoMap to work

in the method level. We transform the dataset they use to the ser-

vice level. MonitorRank and MicroHECL use the same method-level

CMD as CMDiagnostor. More details can be found in Appendix C.2.

Beyond these two categories, there are also some other categories

of root cause analysis approaches, such as trace-based [13, 27], log

analysis-based [7, 15], and direct KPI correlation [19] approaches.

We do not choose baselines from these works since their inputs and

outputs are much different from our scenario.

Evaluation Metrics. Following the existing works [16], we adopt

the top-k hit ratio (HR@k) and mean reciprocal rank (MRR) to

measure the performance of each RCL method. HR@k represents

the proportion of the top-k candidate root cause lists containing

the actual root causes. For a given failure case, the reciprocal rank

is the multiplicative inverse of the rank of the first correct answer.

MRR further averages the reciprocal ranks in the dataset. If the

correct answer of a case is not included in the list, its reciprocal

rank is taken as 0.

5.2 Performance of AmSitor (RQ1)
It is impractical to obtain explicit call correspondences in AmSits

from D𝑅𝐹 . For evaluating AmSitor (Algorithm 1), we use both

simulated and real-world trace datasets (D𝑆𝑇 and D𝑅𝑇 ) that can

obtain actual call correspondences. Before the evaluation, we first

transform the trace data into CMD with a window size of 1 minute.

5.2.1 Performance in D𝑆𝑇 . The experimental results are shown

in the left part of Table 2. We perform data transformation with

operationName as the node, and get 71 different calls and 13 AmSits.

The AmSits in D𝑆𝑇 are very simple, with 2 to 3 upstream calls cor-

responding to one downstream call. Each upstream call execution

will inevitably invoke its downstream call. Therefore, AmSits in

the train-ticket testbed are simple to solve, which is confirmed by

the high precision of all methods in Table 2.

PWS determines the correspondence of the downstream call

and each upstream call by their traffic similarity. Once the traffic

of the downstream call comes from multiple upstream calls, the

similarity between the downstream traffic and each upstream traffic

is less obvious. This makes PWS not always effective. Both CBS and

AmSitor can handle these AmSits with complete accuracy. However,

CBS assumes that a request execution will invariably invoke each

relevant call once and only once. But this assumption may not

always hold, especially in some complex environments. To evaluate

the performance of the three methods in a more complex real-world

service environment, we use D𝑅𝑇 for further evaluation.

5.2.2 Performance in D𝑅𝑇 . The experimental results are shown in

the right part of Table 2. We get 0.2 million different method calls
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Table 2: Comparison among AmSit solutions inD𝑆𝑇 andD𝑅𝑇

(A = Accuracy, P = Average Precision, R = Average Recall).

Method D𝑆𝑇 D𝑅𝑇

A P R A P R

PWS 61.54% 1 0.87 52.29% 0.69 0.76

CBS 100% 1 1 55.13% 0.73 0.79

AmSitor 100% 1 1 89.51% 0.96 0.97

Table 3: Performance of AmSitor with different numbers of
upstream calls.

#Upstream
Call

Frequency
of AmSit Accuracy

Average
Precision

Average
Recall

[2, 10] 88% 95.67% 0.98 0.99

[11, 100] 11% 80.75% 0.92 0.96

[101,∞) 1% 39.31% 0.83 0.92

[2,∞) 100% 89.51% 0.96 0.97

by data transformation and find 1,428 AmSits. These AmSits cover

277,236 possible upstream-downstream pairs and 222,621 actual

upstream-downstream pairs. The ideal reduction rate is 19.70%.

We aim to determine the right upstream calls for each down-

stream call in these AmSits. There are 12,084 upstream and 9,323

downstream calls, so 9,323 AmSit cases can be used for evalua-

tion. AmSitor effectively identifies the upstream and downstream

correspondences in real-world AmSits, as shown in Table 2. The

accuracy of AmSitor achieves 89.51%, significantly outperforming

the two baseline methods by over 44%. The actual reduction rate, i.e.,
the number of upstream-downstream pairs removed by AmSitor

divided by the total pair number, is 17.67%, close to the ideal value.

We note that the performance of AmSitor is affected by the up-

stream call number, as shown in Table 3. As the number increases,

the accuracy of AmSitor decreases. But AmSitor still achieves higher

precision and recall than baseline methods. We dig into the up-

stream calls that are mistakenly identified and find that 87% of

them occur no more than 20 times during the 6-hour period. We

believe that calls of this magnitude would have little impact on

RCL, even if misidentified.

5.3 Performance of CMDiagnostor (RQ2)
We evaluate the effectiveness and efficiency of CMDiagnostor com-

pared with four baselines by using the real-world failure dataset

D𝑅𝐹 . We do not useD𝑆𝑇 for this evaluation because the AmSits in

the train-ticket testbed are too simple and not needed for handling,

which are not in line with the characteristics of real-world AmSits

in large-scale service systems. We do not use D𝑅𝑇 because we do

not have a collection spanning many days and any failure case.

5.3.1 Effectiveness Evaluation. Table 4 compares different RCL

approaches, where CMDiagnostor achieves HR@5 and MRR of

0.94 and 0.83, both outperforming the strongest baseline Micro-

HECL [16] by 0.14. Each component of CMDiagnostor contributes

to the overall performance, including metric anomaly detection,

ambiguity-free call graph construction, root cause exploration, and

candidate root cause ranking. The detailed ablation studies can be

found in Section 5.4 and Appendix E.

Table 4: Comparison among RCL approaches.

Method HR@1 HR@3 HR@5 MRR

MonitorRank 0.35 0.60 0.63 0.53

Microscope 0.42 0.66 0.68 0.59

MicroHECL 0.49 0.77 0.80 0.69

AutoMap 0.22 0.74 0.78 0.58

CMDiagnostor 0.65 0.91 0.94 0.83

[0,10) [10,100) [100,500) [500, + )
Grouped call number

10
1

10
2

10
3

Av
er

ag
e 

tim
e/

s

CMDiagnostor-cached
CMDiagnostor
MicroHECL

MonitorRank
Microscope
AutoMap

Figure 4: Average execution time for different RCL ap-
proaches with respect to the group of the explored call num-
ber, which is positively related to the complexity of the task.

5.3.2 Efficiency Evaluation. Figure 4 compares the time taken by

different approaches to locate the root causes of failure cases. We

group the cases by the actual number of explored calls (after prun-

ing) of CMDiagnostor. Note that the identified correspondences

in AmSits can be cached during actual deployment. So we accel-

erate CMDiagnostor by reading the cached AmSits, denoted as

CMDiagnostor-cached in Figure 4. It can be seen that the efficiency

of CMDiagnostor-cached is slightly higher than that of MicroHECL

as CMDiagnostor-cached prunes some extra calls. Microscope and

AutoMap are inefficient as it is time-consuming to build causal

graphs in a large service system. The average analysis time of these

approaches increases with the number of exploration calls.

5.4 Ablation Study of CMDiagnostor (RQ3)
In this section, we conduct ablation studies to evaluate the con-

tribution of each component of CMDiagnostor to the overall per-

formance, including the ambiguity-free call graph construction,

pruning strategies, metric anomaly detection, and candidate root

cause ranking. Since the metric anomaly detection and candidate

root cause ranking modules can not be completely removed in the

ablation study, we evaluate their effectiveness by replacing each

method with alternative methods separately.

5.4.1 Contribution of Ambiguity-Free Call Graph Construction and
Pruning Strategies. Three pruning strategies are proposed in Sec-

tion 4.3. Among them, ADP is a basic one because, without it, root

cause exploration may indiscriminately explore to the end of each

path, which is not in line with root cause localization. Therefore, we

focus on analyzing the contribution of ASP and MSP and conduct 3

comparison experiments, i.e., not use ASP and MSP, only use MSP,

and only use ASP. The results are shown in Table 5, which show

that both ASP and MSP have considerable improvement effects, and

the performance can be improved one step further when combining

two pruning strategies. Furthermore, from the ablation of ASP, we
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Table 5: Ablation analysis by removing each pruning strategy.

Method HR@1 HR@3 HR@5 MRR

CMDiagnostor 0.65 0.91 0.94 0.83

w/o ASP 0.63 0.89 0.91 0.81

w/o MSP 0.60 0.88 0.89 0.79

w/o ASP, MSP 0.57 0.85 0.85 0.76

Table 6: Comparisons of anomaly detection methods.

No. RT EC HR@1 HR@3 HR@5 MRR

1 iForest 3𝜎-1CW 0.62 0.88 0.91 0.80

2 iForest 3𝜎-3CW 0.60 0.91 0.94 0.82

3 iForest iForest 0.58 0.89 0.92 0.80

4 iForest OC-SVM 0.54 0.88 0.91 0.78

5 iForest SPOT 0.58 0.85 0.89 0.77

6 3𝜎-1CW 95-3CW 0.55 0.82 0.83 0.73

7 3𝜎-3CW 95-3CW 0.52 0.85 0.86 0.74

8 95-3CW 95-3CW 0.55 0.91 0.94 0.80

9 OC-SVM 95-3CW 0.58 0.86 0.91 0.78

10 SPOT 95-3CW 0.52 0.80 0.82 0.71

Ours iForest 95-3CW 0.65 0.91 0.94 0.83

Table 7: Comparisons of ranking strategies.

Method Primary
Key

Secondary
Key HR@1 HR@3 HR@5 MRR

1 RCNC - 0.62 0.88 0.91 0.80

2 AER - 0.51 0.86 0.89 0.75

3 MMS - 0.11 0.65 0.8 0.52

4 AMS - 0.15 0.63 0.78 0.52

5 MMS AER 0.46 0.83 0.89 0.73

6 AMS AER 0.38 0.71 0.80 0.63

Ours RCNC AER 0.65 0.91 0.94 0.83

also conclude that ambiguity-free call graph construction has a

significant contribution to the overall performance.

5.4.2 Performance of Anomaly Detection Methods. To investigate

the performance of our anomaly detection methods, we perform

ablation studies by replacing one of them with alternative methods.

Several common unsupervised methods are selected, including 3𝜎-

based methods that respectively use the one hour before the alert

window as the comparison window (CW) and the three compari-

son windows we use, one class support vector machine (OC-SVM)

[12] using 12 features the same as our performance anomaly detec-

tion, and the SPOT algorithm [17]. Table 6 shows the experimental

results, which indicate that our methods are the most effective.

5.4.3 Performance of Ranking Method. The ablation studies for

different ranking strategies are shown in Table 7. According to

Section 4.4, various indicators, i.e., RCNC, AER, and MMS, are used

for ranking. We also compare the service’s average metric similarity

(AMS). Considering there are the same values for MMS, AMS, and

RCNC, a secondary key is used to improve their performance. The

results show our method achieves the best performance with RCNC

as the primary key and AER as the secondary key.

5.5 Performance of Baselines enhanced by
AmSitor (RQ4)

We are the first to investigate the AmSit problem and propose

AmSitor to eliminate its side effects. AmSitor can also be used by

Table 8: Performance of baselines with/without AmSitor,
where + indicates equipping AmSitor.

Approach HR@1 HR@3 HR@5 MRR

MonitorRank 0.35 0.60 0.63 0.53

MonitorRank(+) 0.37 0.62 0.66 0.55
Microscope 0.42 0.66 0.68 0.59

Microscope(+) 0.45 0.66 0.69 0.60
MicroHECL 0.46 0.77 0.80 0.69

MicroHECL(+) 0.46 0.83 0.89 0.73
AutoMap 0.22 0.74 0.78 0.58

AutoMap(+) 0.31 0.82 0.82 0.65

existing RCL methods to improve their performance. In this section,

we conduct experiments to see whether AmSitor can improve their

performance. As shown in Table 8, AmSitor improves four baselines.

6 RELATEDWORK
There are mainly two categories of root cause service localiza-

tion approaches based on call metrics, i.e., causal graph-based and

topological graph-based. The causal graph-based approaches use

causal discovery algorithms to identify the relationships among

service components. For example, PC algorithm [9, 25] is widely

used [3, 14, 20, 22]. Then, they apply various inference methods to

identify the root causes, such as the randomwalk [22] or DFS [3, 14].

We refer readers to a recent survey [6] for more details. However,

they are usually limited by the low efficiency and accuracy of causal

discovery. Therefore, many approaches use call graphs, which can

be obtained by sensors deployed on service components [10], to

represent the dependencies among the components. However, these

methods suffer from the AmSit problem, limiting their performance.

Root cause service localization based on traces [13, 28] and

logs [7, 15] are also extensively studied. However, traces are col-

lected by distributed tracing systems and consume much computa-

tion and storage resources, and thus, are unavailable in many online

services. Logs are arbitrary and ad-hoc and contain much useless

information, which limits the accuracy of root cause localization.

Therefore, call metrics-based approaches are much more practical.

MicroHECL [16] is a state-of-the-art topological graph-based

DFS method using CMD and the MSP pruning strategy to im-

prove efficiency. Compared with MicroHECL, CMDiagnostor uses

AmSitor to disambiguate the call graph and only explores abnormal

RT and EC metrics downstream from the entry node instead of up-

stream. It uses unsupervised anomaly detection methods instead of

supervised ones. In addition, it ranks services based on the number

of root cause nodes in each service.

7 CONCLUSIONS
This paper proposes CMDiagnostor, an ambiguity-aware root cause

localization approach based on call metric data. Though call metric

data are widely used, the ambiguity existing in the call graph is

ignored, which may lead to misjudgments on failure root causes.

A simple but effective method, AmSitor, is proposed to address

the ambiguity problem and integrated into CMDiagnostor. Signifi-

cant improvements on a large-scale real-world dataset verify the

effectiveness and efficiency of CMDiagnostor.
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A MATHEMATICAL ANALYSIS OF TRAFFIC
Each time the user request is processed by a given caller 𝐴, the

number of calls from 𝐴 to 𝐵 is determined by the business logic

of the system, denoted as a random variable 𝑛𝐴→𝐵 . Within each

time slicing 𝑡 , denote the number of calls from 𝐴 to 𝐵 as 𝑁
(𝑡 )
𝐴→𝐵

=∑
𝑖 𝑛
(𝑡 )
𝐴→𝐵,𝑖

, where 𝑖 is the index for different requests. Let 𝜃𝑖 be the

context of 𝑖𝑡ℎ request, e.g., the distribution of user input and the

effect of middle-wares like caching. Hence, the probability distri-

bution of 𝑛𝐴→𝐵,𝑖 can be taken as a conditional one of 𝑛𝐴→𝐵 , i.e.,
𝑛𝐴→𝐵,𝑖 ∼ 𝑃 (𝑛𝐴→𝐵 | 𝜃𝑖 ). By grouping the contexts of all calls in the

same time slicing, we obtain 𝑁
(𝑡 )
𝐴→𝐵

=
∑
𝜃

[∑
𝑗∈{𝑖 |𝜃 (𝑡 )

𝑖
=𝜃 } 𝑛

(𝑡 )
𝐴→𝐵,𝑗

]
.

Notice that elements within the brackets come from the same dis-

tribution 𝑃 (𝑛𝐴→𝐵 | 𝜃 ). With the Law of Large Numbers, we have

(2) where 𝑁
(𝑡 )
𝐴,𝜃

= |{𝑖 | 𝜃 (𝑡 )
𝑖

= 𝜃 }| is the number of requests starting

from 𝐴 at the given time 𝑡 with the same context 𝜃 .

𝑁
(𝑡 )
𝐴→𝐵

→
∑︁
𝜃

𝑁
(𝑡 )
𝐴,𝜃
E (𝑛𝐴→𝐵 | 𝜃 ) (2)

In this work, we approximate 𝜃 in 𝑃 (𝑛𝐴→𝐵 | 𝜃 ) with 𝐴’s up-

stream calls, as the structure of a trace, i.e., how the system pro-

cesses a user request, has to be consistent withwhat the user request

is. So (2) can be extended into (3), where each𝑈 is a caller of 𝐴.

𝑁
(𝑡 )
𝐴→𝐵

→
∑︁
𝜃

𝑁
(𝑡 )
𝐴,𝜃
E (𝑛𝐴→𝐵 | 𝜃 )

≈
∑︁
𝑈

𝑁
(𝑡 )
𝑈→𝐴

E (𝑛𝐴→𝐵 | 𝑈 → 𝐴)
(3)

Then, we find the number of calls from 𝐴 to 𝐵 can be approxi-

mated as the weighted sum of the numbers of 𝐴’s upstream calls.

A special case of 𝑃 (𝑛𝐴→𝐵 | 𝜃 ) is a Bernoulli distribution with a

parameter of 𝑝𝜃 , i.e., 𝐴 will call 𝐵 once with a probability of 𝑝𝜃 or

not with a probability of 1−𝑝𝜃 . Under this circumstance, (3) can be

further deduced to

∑
𝑈 𝑁

(𝑡 )
𝑈→𝐴

𝑝𝑈→𝐴 . We use the expectation here

for an arbitrary distribution.

B METRIC SELECTION
We choose RT and EC for root cause localization instead of RC

because we do not think the RC anomaly is the failure root cause.

We analyze two types of RC anomalies as follows.

• Traffic is too high: If the RC of a call is too high, the down-

stream call traffic will increase. As a result, some service nodes

on the link cannot cope with such a large number of requests,

causing an increase in RT or EC. Conversely, if the high RC

does not cause an increase in RT or EC, then the high RC is not

considered a root cause because it does not affect the service

performance and reliability. We prefer to regard service nodes

that cannot adapt to the current traffic when the traffic is too

high as the root cause in order to solve the current problem

through capacity expansion of the nodes.

• Traffic is too low: The traffic of a call is too lowmay be because

relevant user requests are few currently (e.g., early morning),

which is not the root cause of failure. On the other hand, the

related user requests are not few, but those reaching the caller

of the call are few due to the reasons of the intermediate link.

The EC of intermediate calls increases as the related request

does not execute the necessary calls.

Therefore, we do not consider high or low traffic to be the root

cause of failure. Because the root cause of high-traffic failure should

be that some nodes can not respond correctly, and the root cause

of low-traffic failure should be that some upstream calls do not

execute properly. So we chose RT and EC instead of RC.

C IMPLEMENTATION DETAILS
C.1 Performance Anomaly Detection
We use the Python-based machine learning framework scikit-learn
[11] to implement the iForest model. IForest identifies anomalies by

isolating themwith shorter path lengths. A large number of samples

will reduce the ability of iForest to isolate anomalies because normal

samples will interfere with the isolation process. Small datasets

tend to achieve better results and efficiency in iForest. Each training

case corresponds to a 10-minute period with 12 features, so the

dataset contains too many such 10-minute cases. Thus, sampling

is necessary. We select a subset (e.g., 200,000 cases in this paper)

for training. Training cases are selected from historical data semi-

randomly. Specifically, we randomly select a few days from each

month, then randomly select some calls from each of those days,

and finally, randomly select some 10-minute periods from the calls.

The selected cases are used to train the iForest model. The model

trained can output the prediction results (i.e., normal or abnormal)

after receiving 12 features of a detection window.

C.2 RCL approaches
Five RCL approaches are implemented as follows.

• MonitorRank [10]: It determines possible root causes of a

failure by running a personalized PageRank algorithm on the

topological graph. We adjust MonitorRank to start from each

entry node to meet our context and rank services by the average

ranking of methods in each service to meet the method level.

• Microscope [14]: It determines possible root causes of a fail-

ure by recursively visiting the causal graph built based on PC

algorithm and enriched by service calls. As PC algorithm is chal-

lenging to handle a mass of method-level nodes, we transform

the method-level data to service level. We also adjust it to start

from each entry service instead of the front-end service.

• MicroHECL [16]: It determines possible root causes of a failure

by extending anomaly propagation chains starting from the en-

try service. As its anomaly detection methods need labeled data

lacking in our context, we use our methods in Section 4.1 instead.

Since our cases have no traffic root causes, exploring upstream

is unnecessary. So MicroHECL only explores downstream for

RT and EC anomalies, as in our approach. MicroHECL ranks

services withMMS as the primary key and AER as the secondary

key, as described in Section 4.4, to meet the method level.

• AutoMap [22]: It determines possible root causes of a failure

by running a heuristic random walk algorithm on the causal

graph constructed by combining PC algorithm and multi-metric

data. We transform the method-level data to the service level as

in Microscope. In addition, we parallelize the original algorithm

to make the time consumption acceptable in our scenario.
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• CMDiagnostor: Some default threshold settings are the fol-

lowing: the regression coefficient threshold used by AmSitor is

0.005; the correlation threshold used by the MSP pruning strat-

egy is 0.7. In addition, the traffic interval used by AmSitor is the

24-hour period before the alert is generated.

D HYPERPARAMETER SENSITIVITY
There are two hyper-parameters in CMDiagnostor, i.e., the regres-

sion coefficient threshold used by AmSitor (Section 3.3) and the

correlation threshold used by theMSP pruning strategy (Section 4.3).

Their default settings are 0.005 and 0.7, respectively. The following

results are based on the D𝑅𝐹 dataset.

Impact of regression coefficient threshold. Figure 5(a) shows
the impacts of different regression coefficient thresholds on the

effectiveness of CMDiagnostor. We find that the regression coef-

ficient threshold does not impact the CMDiagnostor effectiveness

much. The largest difference in the four metrics is 0.05 of HR@1,

and the largest differences in the other three metrics are all 0.02.

In addition, our setting of regression coefficient threshold (0.005)

shows the best performance in the comparison.

Impact of MSP threshold. Figure 5(b) shows the impacts of

different MSP thresholds on the effectiveness of CMDiagnostor.

The MSP threshold also does not impact the CMDiagnostor effec-

tiveness much. The largest difference in the four metrics is 0.07 of

HR@1, and the largest differences in HR@3, HR@5, and MRR, are

0.02, 0.02, and 0.03, respectively. Our setting of MSP threshold (0.7)

shows the best performance in the comparison.

We also discuss the impact of regression coefficient threshold on

AmSitor using D𝑆𝑇 and D𝑅𝑇 datasets. Figure 6 shows the results.

We findAmSitor is robust and insensitive to the threshold. 0.005 also

performs the best compared with the other four values. When the

algorithm is applied to datasets beyond this paper, we recommend

adopting the optimal value in this paper as a starting point and

experimentally searching for better ones.
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E CASE STUDY
E.1 Pruning Number Analysis in Failure Cases
As an extension of Section 5.4.1, this section explores the call num-

ber pruned in failure cases. According to statistics, 22 out of 65

cases encounter and deal with the AmSit problem. We count the

number of calls explored using different pruning strategies for these

cases, and the results are shown in Figure 7. More precise statistics

are below. In the 22 cases, compared with method CMDiagnostor

without ASP and MSP, the number of calls explored by method

CMDiagnostor without ASP is reduced by 0.17 on average; the

number of calls explored by method CMDiagnostor without MSP

is on average a reduction of 0.14; our CMDiagnostor using both

ASP and MSP explores an average reduction of 0.23 in the number

of calls. This shows our pruning methods can improve efficiency.

E.2 Actual Effect of AmSitor on RCL
We use a real-world failure case to show the effect. For this case,

CMDiagnostor can identify the actual root cause by using AmSitor

but cannot identify the root cause without AmSitor. Figure 8 shows

the main AmSit affecting the identification. When exploring from

the entry node 𝐴, the method without AmSitor explores the call𝐶4

while missing the root cause node 𝐷 . Fortunately, CMDiagnostor

identifies the upstream call of 𝐶4 is 𝐶3. Related traffic flows are

shown in Figure 9, which intuitively illustrates the correctness of

AmSitor. As a result, CMDiagnostor does not explore 𝐶4 and finds

the actual root cause node 𝐷 . This shows that AmSitor can improve

real-world root cause exploration effectiveness.


	Abstract
	1 Introduction
	2 System Overview
	2.1 Problem Statement
	2.2 Challenges
	2.3 Design Overview of CMDiagnostor

	3 Ambiguity and Solution
	3.1 AmSit
	3.2 Theoretical Analyses of Traffic
	3.3 Algorithm for Solving the AmSit

	4 Methodology
	4.1 Metric Anomaly Detection
	4.2 Ambiguity-free Call Graph Construction
	4.3 Root Cause Exploration
	4.4 Candidate Root Cause Ranking

	5 Evaluation
	5.1 Experimental Setup
	5.2 Performance of AmSitor (RQ1)
	5.3 Performance of CMDiagnostor (RQ2)
	5.4 Ablation Study of CMDiagnostor (RQ3)
	5.5 Performance of Baselines enhanced by AmSitor (RQ4)

	6 Related Work
	7 Conclusions
	Acknowledgments
	References
	A Mathematical Analysis of Traffic
	B Metric Selection
	C Implementation Details
	C.1 Performance Anomaly Detection
	C.2 RCL approaches

	D Hyperparameter Sensitivity
	E Case Study
	E.1 Pruning Number Analysis in Failure Cases
	E.2 Actual Effect of AmSitor on RCL


