
The Journal of Systems & Software 190 (2022) 111322

Y

b
b
m
d
i
y
e
t
T
b
t
d
l
n
i

3

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Onlinemalicious domain name detectionwith partial labels for
large-scale dependable systems✩

ongqian Sun a,b,c, Kunlin Jian a, Liyue Cui a, Guifei Jiang a, Shenglin Zhang a,b,c,∗,
Yuzhi Zhang a,b,c, Dan Pei d
a College of Software, Nankai University, Tianjin, 300457, China
b Tianjin Key Laboratory of Operating System, Tianjin, 300450, China
c Haihe Laboratory of Information Technology Application Innovation, Tianjin, 300450, China
d Department of Computer Science and Technology, Tsinghua University, Beijing, 100084, China

a r t i c l e i n f o

Article history:
Received 1 October 2021
Received in revised form 12 February 2022
Accepted 26 March 2022
Available online 9 April 2022

Keywords:
DGA
DNS
Feature selection
PU learning
Reinforcement learning

a b s t r a c t

Detecting malicious non-existent domain names (NXDomains) in a real-time manner is vitally impor-
tant to the security of large-scale dependable systems. Existing detection methods are trained based on
the assumption that the NXDomains, which cannot be recognized by the domain generation algorithm
(DGA) archive, are benign. However, new types of malicious NXDomains are continuously generated,
and the DGA archive cannot cover all of them, making the NXDomains partially labeled. Additionally,
extracting all the features for distinguishing malicious and benign NXDomains is computationally
inefficient and inappropriate for online detection in large-scale dependable systems. This work
proposes a framework, PUFS, to train an accurate malicious NXDomain detection model according to
partial labels and conduct efficient online detection for large-scale dependable systems. PUFS adopts
a novel, simple, yet effective three-step strategy to combine PU learning and feature selection. We
conduct extensive experiments using real-world data collected from a top-tier global online bank.
PUFS achieves 99.19% of F1-Score, and improves the feature extraction efficiency by 1153%, making it
suitable for online detection scenarios.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

The security of large-scale dependable systems, such as online
anks, online shopping services, is vitally important to users
ecause a security problem of these systems can bring enor-
ous economic loss. Among the security threats to large-scale
ependable systems, domain name system (DNS) botnet is an
mportant one, which has become increasingly popular in recent
ears (Schüppen et al., 2018; Khormali et al., 2020; Plohmann
t al., 2016; Zhauniarovich et al., 2018; Bilge et al., 2011; An-
onakakis et al., 2012; Schiavoni et al., 2014; Wang et al., 2017;
ruong and Cheng, 2016; Tong et al., 2019). With the botnet, a
otmaster (attacker) uses command and control (C&C) channels
o manipulate devices infected by malware to perform attacks. A
omain generation algorithm (DGA), which randomly generates a
arge number of domain names, is one of the most famous tech-
iques used by botmasters, and its working principle is shown
n Fig. 1. When a botmaster plans to perform an attack, it runs a
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collection of DGAs to generate domain names, randomly selects
one or more from these domain names, and registers them in DNS
servers. The registered domain names are directed to the C&C
server. After that, a bot (victim) runs the built-in DGAs contained
in the malware and tries to access the newly created domain
names one by one. Once a domain name is successfully queried,
the bot successfully finds the C&C server. The botmaster then
communicates with the infected bot through the C&C server and
starts its malicious activities.

To prevent the C&C server from being easily discovered and
blocked, a bot’s malware usually generates a large number of
domain names using DGAs, few of which are registered as valid
domain names (DGA, 2022). In this way, many non-existent do-
mains (NXDomains) are produced. Therefore, we can detect DGA-
generated malicious domain names by analyzing the patterns of
NXDomains (Schüppen et al., 2018; Tong et al., 2019). However,
a user can trigger a non-existent domain name response due
to many other reasons. For example, a user may access a non-
existent domain name due to a spelling error. Additionally, a
certain application may generate NXDomain records because of
misconfigurations. In other words, the NXDomains can be classi-
fied into two types: malicious algorithmically-generated domains
(mAGDs) generated by DGAs and benign non-existent domains

https://doi.org/10.1016/j.jss.2022.111322
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2022.111322&domain=pdf
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Fig. 1. The working principle of DGA.
bNXDs) produced by spelling error, misconfiguration, etc. There-
ore, it is of great importance to distinguish mAGDs from bNXDs.
onsidering the large scale of NXDomains, we attempt to take ad-
antage of machine learning approaches to automatically detect
AGDs.
We can quickly obtain a large number of mAGDs generated by

iverse types of DGAs from DGArchive (Plohmann et al., 2016).
owever, the DGArchive does not cover all mAGDs, and an enor-
ous number of new mAGDs are continuously generated by new

ypes of DGAs. Therefore, the domain names collected from large-
cale dependable systems, which can be used to constitute the
raining set, include labeled (appear in DGArchive) mAGDs, unla-
eled (not appear in DGArchive) mAGDs, and unlabeled bNXDs.
onsequently, we cannot apply supervised learning methods, re-
uiring that all positive samples (mAGDs) and negative samples
bNXDs) in the training set are labeled, for mAGDs detection.
aturally, positive-unlabeled learning (PU learning) (Bekker and
avis, 2020), which trains a classifier using positive and unlabeled
amples, comes into our sight.
A machine learning method usually extracts the features of

omain names and train a classifier for mAGDs detection. Previ-
us researches have concluded 44 features to distinguish mAGDs
rom bNXDs (see Section 2.1 for details). Usually, the more fea-
ures a machine learning method applies, the higher accuracy it
chieves. However, extracting all the 44 features makes the on-
ine detection of mAGDs computationally inefficient. Specifically,
undreds of thousands to millions of NXDomains are generated
very minute in large-scale dependable systems. Extracting all
he 44 features for 1,000,000 NXDomains within one minute
ill ‘‘consume’’ 54 machines, which makes the machine learning
ethod inapplicable in practice (operators are not willing to use

oo much computational resources for mAGD detection). Due
o the diversity of NXDomains, randomly selecting a fraction of
eatures for model training will significantly degrade the perfor-
ance of machine learning methods. Generally, automatic feature
election can be applied to improve the efficiency of feature
xtraction (Deng et al., 2019), and we thus also use it in our
cenario.
However, the combination of PU learning and feature selec-

ion brings an excellent challenge for mAGD detection. If we
irst perform PU learning and then conduct feature selection
n offline training, the input of the trained classifier covers all
he 44 features. In this way, we still have to extract all the 44
eatures in online detection for the trained classifier, and feature
election does not work in this case. Consequently, we should
arry out feature selection first and then apply PU learning to
rain a classifier. Because supervised feature selection methods
re usually more accurate than unsupervised feature selection
2

methods (Deng et al., 2019), we apply them in our work. How-
ever, they require that all the samples in the training set are
fully labeled, which is inconsistent with our scenario where the
samples are partially labeled. Therefore, we should address this
challenge before we integrate PU learning with feature selection.

In this paper, we propose PUFS, integrating PU learning with
feature selection, to accurately and efficiently detect mAGDs
based on partially labeled samples for large-scale dependable
systems. PUFS applies a novel, simple, yet effective three-step
strategy combining reliable negative (RN) extraction, feature se-
lection, and classifier training. The combination of RN extraction
and classifier training achieves PU learning, i.e., learning the pat-
terns of mAGDs from partial labels. Additionally, PUFS applies a
multi-objective reinforcement learning-based method to achieve
optimal feature selection. To address the challenge imposed by
integrating feature selection and PU learning, we first extract
reliable negative samples to initialize feature selection. After
that, we iteratively update feature selection, RN extraction, and
classifier training until we obtain the optimal feature set an
accurate classifier.

The main contributions of this work can be summarized as
follows:

• To the best of our knowledge, we are among the first to
identify the partially labeling problem and the inefficient
feature extraction problem in training an mAGD detection
model for large-scale dependable systems.
• We propose a novel three-step strategy to address the chal-

lenge introduced by integrating PU learning with feature
selection. This strategy can be applied to more scenarios
beyond automatic mAGD detection.
• To comprehensively evaluate the performance of PUFS, we

conduct extensive evaluation experiments using data col-
lected from a top-tier global online bank, which is a large-
scale dependable system. PUFS achieves 99.19% of F1-Score
and improves the feature extraction efficiency by 11.53
times compared to a state-of-the-art method, making it
suitable for online mAGD detection scenarios.

The rest of this paper is organized as follows. We introduce
the background of this paper, include domain name features, PU
learning, and feature selection, in Section 2. The design of PUFS is
elaborated in Section 3, followed by the description of evalua-
tion experiments in Section 4. We discuss the related works in
Section 5, and conclude our work in Section 6.

2. Background

In this section, we first present the domain name features
that can be used for distinguishing mAGDs from NXDomains
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Table 1
Extracted features.
# Feature Type

1 Domain name length Integer
2 Number of subdomains Integer
3 Longest label length Integer
4 Subdomain length mean Float
5 Ratio of hexadecimal parts Float
6 Ratio of digit-exclusive subdomains Float
7 Ratio of underscore Float
8 Contains IPv4 Binary
9 Contains single-character subdomain Binary
10 Contains TLD as subdomain Binary
11 Has www prefix Binary
12 Is exclusive prefix repetition Binary
13 Alphabet size Integer
14 Ratio of vowels Float
15 Ratio of digits Float
16 Ratio of repeated characters Float
17 Ratio of consecutive digits Float
18 Ratio of consecutive consonants Float
19 Contains underscore Binary
20 Contains digits Binary
21 Digit letter count Integer
22 Gibberish score Float
23 Shannon entropy Float
24 N-Gram of domain name Vector

in Section 2.1. After that, we briefly introduce PU learning and
feature selection in Section 2.2.

2.1. Domain character features

In this paper, we conduct mAGDs detection relying on domain
ames only. Therefore, we pay attention to the features of domain
ames that can distinguish mAGDs from bNXDs. These features
ave been well studied and proved to be practical in previous
orks. Usually, the more features an mAGD detection method
ses, the more accurate it is. Consequently, we collect as many
eatures as possible in our work, and a total of 24 features are
ollected. These features can be divided into three categories;
amely, structural features, linguistic features, and statistical fea-
ures (Schüppen et al., 2018; Tang et al., 2020). We list these
eatures in Table 1. Among these features, the first 12 features
re structural features, the middle eight (13–20) features are
inguistic features, and the remaining four features are statistical.

Specifically, the domain names generated by DGAs are usually
ssigned a specialized length, so we use the length of each
omain name as a feature (Antonakakis et al., 2012). Because
AGDs and bNXDs are typically different in the composition
f characters (Ahluwalia et al., 2017), we calculate the ratio of
umerical characters and vowel characters, respectively. Consec-
tive consonants and consecutive digits typically account for a
elatively large proportion of malicious domain strings, and we
hus apply this feature in mAGD detection (Schüppen et al., 2018).
ince DGA-generated domains are usually random characters,
ntropy, which measures the randomness degree of domain name
haracters, can be used in our scenario (Antonakakis et al., 2012;
lohmann et al., 2016; Schüppen et al., 2018). Usually, mAGDs
re not readable; therefore, the gibberish score, which measures
ow readable a string is, is applied in our work (Tang et al., 2020).
ince the domain name-based mAGD detection problem can be
epresented as a text classification problem, N-gram, the well-
nown text classification technique, is also introduced. redFor
domain name, we split it into a contiguous sequence of N

characters using the sliding window technique, which is called an
N-gram. We adopt 1-gram, 2-gram, and 3-gram in our scenario,
respectively. Then we calculate the frequency of occurrence of all

sequences and get three frequency vectors. We calculate seven

3

Table 2
The 21 values in the N-gram feature vectors of the domain name
arnestnessbiophysicalohax.com.
# Meaning Value

1 1-gram mean 1.7
2 1-gram standard deviation 0.9
3 1-gram median 1.0
4 1-gram 25% percentile 1.0
5 1-gram 75% percentile 2.0
6 1-gram-minimum 1
7 1-gram maximum 4
8 2-gram mean 1.1
9 2-gram standard deviation 0.3
10 2-gram median 1.0
11 2-gram 25% percentile 1.0
12 2-gram 75% percentile 1.0
13 2-gram minimum 1
14 2-gram maximum 2
15 3-gram mean 1.0
16 3-gram standard deviation 0.2
17 3-gram median 1.0
18 3-gram 25% percentile 1.0
19 3-gram 75% percentile 1.0
20 3-gram minimum 1
21 3-gram maximum 2

frequency distribution characteristics of these three vectors, in-
cluding mean, standard deviation, median, 25% percentile, 75%
percentile, minimum, and maximum. For example, for the do-
main name earnestnessbiophysicalohax.com, we remove the top-
level domain and dot, and split it into 26 1-gram sequences,
i.e., (e, a, r, n, e, s, t, n, e, s, s, b, i, o, p, h, y, s, i, c, a, l, o, h, a, x),
with each sequence containing only one character. We count the
frequency of occurrence of different sequences, i.e., [e, a, r, n, s, t,
b, i, o, p, h, y, c, l, x], and obtain an array [3, 3, 1, 2, 4, 1, 1, 2, 2,
1, 2, 1, 1, 1, 1]. Next, we calculate seven frequency distribution
characteristics of this array, including mean (1.7), standard devia-
tion (0.9), median (1.0), 25% percentile (1.0), 75% percentile (2.0),
minimum (1), and maximum (4). These seven values constitute
the 1-gram feature vector of the domain name. Similarly, we can
calculate the 2-gram and 3-gram feature vectors, respectively.
Therefore, the three N-gram feature vectors contain 21 values.
Table 2 lists the 21 values in the N-gram feature vectors of the
domain name earnestnessbiophysicalohax.com.

2.2. PU learning and feature selection

Because NXDomains are very complicated, it is challenging,
if not impossible, to label a vast number of bNXDs for training
an accurate mAGD detection model in large-scale dependable
systems. Additionally, with the help of DGArchive, we can only
label a fraction of mAGD, and many mAGDs remain unlabeled
since new mAGDs appear continuously. Accordingly, we must
train an mAGD detection model based on partially labeled mAGDs
(positive samples) and unlabeled bNXDs (negative samples). In-
tuitively, we can apply PU learning to address this problem (Li,
2013; Bekker and Davis, 2020). The assumptions of existing PU
learning methods can be summarized from two perspectives:
labeling mechanism and class distribution (Bekker and Davis,
2020). One can choose an appropriate PU learning method based
on her scenario and the method’s assumption. Previous studies on
mAGD detection have demonstrated that domain name samples
are separable, i.e., a domain name sample is either an mAGD
or a bNXD (Chen et al., 2018; Schüppen et al., 2018). Therefore,
we choose a two-step PU learning strategy, which is based on
separability hypothesis. It consists of two main steps: extracting
reliable negative samples from unlabeled samples and training a
classifier.
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Fig. 2. The overview of PUFS.
Feature selection reduces the dimension of the original feature
et, which is the most intuitive way to reduce feature extraction
ime (Deng et al., 2019). According to the way they combine with
achine learning tasks, they can be divided into three categories:

ilter methods, wrapper methods, and embedded methods (Deng
t al., 2019; Chandrashekar and Sahin, 2014). A filter method
sually analyzes the correlation scores of features and selects the
eatures with higher scores. For example, Ikram and Cherukuri
2016) and Song et al. (2010) applied principal component anal-
sis (PCA) to extract principal components and calculated the
articipation degree of each feature. Giarelis et al. (2020) used
he labels of samples to calculate the x-square score of features
nd sample labels. Typically, a filter method is computationally
fficient, but it often ignores the dependencies of features and
he interaction between features and classifiers and thus suffers
rom low accuracy (Song et al., 2010). Embedded methods, such
s LASSO (Muthukrishnan and Rohini, 2016) and DT-RFE (Thakkar
nd Lohiya, 2021), incorporate feature selection as part of clas-
ifiers. They heavily rely on the performance of classifiers. If
n inappropriate classifier is chosen, the performance of these
ethods will significantly degrade. A wrapper method takes the
erformance of the classifier as the optimization objective. For
nstance, AutoFS (Fan et al., 2020), a state-of-the-art wrapper
ethod, uses reinforcement learning to iteratively search the

eature space and determine the feature subset with which the
lassifier achieves the best performance. It applies multi-agent
o reduce the action search space, which dramatically improves
he training efficiency. In this work, we improve the performance
f AutoFS, and the selected features simultaneously achieve high
ccuracy and efficient feature extraction.

. Methodology

In this section, we first introduce the design overview of
UFS in Section 3.1, followed by the description of the main com-
onents, including feature extraction in Section 3.2, PU learning
including RN extraction and classifier training) in Section 3.3,
nd feature selection in Section 3.4. Finally, we explain how we
ntegrate PU learning and feature selection into a novel, simple,
et effective three-step strategy in Section 3.5.

.1. Design overview

We propose a novel framework, PUFS, to detect DGA-generated
omain names from NXDomains. The overview framework is
hown in Fig. 2. PUFS is mainly divided into two phases: the
ffline training phase and the online detection phase.
In the offline training phase, PUFS firstly executes data pre-

rocessing to prepare the PU data for training. Next, feature
4

extraction is adopted to extract all features from the PU data,
which converts all the samples to feature vectors. After that,
using the feature vectors, PUFS trains a three-step strategy model.
This strategy implements a supervised feature selection method
(i.e., TCFS) based on PU data, which reduces the time-consuming
of online feature extraction. To obtain an optimized classifier,
this strategy continuously iterates the three steps to optimize
the model. After training, we get a set of selected features and
a binary classifier for the online detection phase.

In the online detection phase, we first check whether there
exist known mAGDs in NXDomains, and put them out if they
exist. Otherwise, PUFS performs feature extraction according to
the selected features, where the extraction time is far less than
extracting all features. Then it detects the items of NXDomains
to be positive (mAGD) or negative (bNXD) by using the trained
binary classifier.

Note that the three-step strategy in offline training is the core
idea of PUFS so that it will be elaborated in the following of this
section.

3.2. Feature extraction

3.2.1. Data preprocessing
As mentioned in Section 1, the real-word training data in-

cludes two parts, positive set and unlabeled set. We collected a
large number of NXDomains from a top-tier global online bank
as the unlabeled set. Referring to some other works (Schüppen
et al., 2018; Tang et al., 2020), we obtain DGArchive (Plohmann
et al., 2016) as the positive set. Then we do some necessary
data preprocessing before training: de-duplicating the dataset
and removing the known mAGDs in NXDomians.

3.2.2. Feature analysis and design
In order to extract the characters of domain names more com-

prehensively, 44 features (shown in Table 1) are chosen after full
investigation, as described in Section 2.1. Then through feature
extraction, the domains of PU data are converted to many PU
samples (i.e., positive samples and unlabeled samples), which are
44-dimensional feature vectors.

With these feature vectors, we could have trained a classifier
by PU learning next. However, feature selection has to be carried
out due to the time limitation in the online feature extraction, as
described in Section 1.

3.3. PU learning

This subsection introduce the PU learning method of PUFS,
which consists of two modules: RN extraction and classifier train-
ing. RN extraction is applied to extract reliable negative samples
from the unlabeled samples. Then combined with the positive

samples, we can train the classifier.
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Fig. 3. Reliable negatives extraction of Spy.
.3.1. RN extraction
There have been some studies on RN extraction, such as

py (Liu et al., 2003), K-Means (Chaudhari and Shevade, 2012),
nd C–CRNE (Liu and Peng, 2014). We adopt the Spy method
ecause of its better performance than others in this paper (will
e shown in Section 4.3.1).
The Spy method is shown in Fig. 3. At first, we randomly take a

roportion of s samples from the positive sample set (P) as the spy
amples (S) and put them to the unlabeled sample set (U). Then,
e get two new sample sets: P-S and U+S. Next, we run an I-EM
lgorithm (Liu et al., 2003) to train a classifier by using the new
ets, and the pseudocode of I-EM is shown in Algorithm 1. In I-
M, we first label P-S and U+S as two classes c1 and c0 separately.
hen we perform an iteration of a naive Bayesian classifier (NB-C)
raining: (1) We regard the samples with label c1 as a positive set
nd c0 as a negative set for training a naive Bayesian classifier; (2)
se the classifier to test and re-label the samples in U+S; (3) End
he loop if all the sample labels in U+S are the same as the last
teration, otherwise goto (1). This way, we can get a final NB-C
or specific initial sets of P and U, and obtain the RN set, which
onsists of the samples with c0.

Algorithm 1: I-EM
input : positive samples: P-S, unlabeled samples with

some spies: U+S
output: a naive Bayesian classifier NB-C

1 Label each sample di in P-S the class c1;
2 Label each sample dj in U+S the class c0;
3 NB-C← an initial naive Bayesian classifier built on U+S

and P-S;
4 while the class labels of U+S change do
5 for dj ∈ U+S do
6 Re-label dj using NB-C;
7 end
8 NB-C← a new naive Bayesian classifier built;
9 end

Now we introduce the re-label process of each iteration in I-
M. We get a probability Pr(dj) when test a sample by a NB-C
nd then compare it with a threshold to determine the labels
i.e., if Pr(dj) is greater than the threshold label c1, or label c0).
Then how to determine the threshold? We consider dj in U as
a reliable negative sample only when Pr(d ) is less than most
j

5

spies’ probabilities. Therefore, we set a parameter of proportion t ,
the corresponding probability Pr(dt ) is regarded as the threshold,
where dt is the sample of the t quantile of the spies.

3.3.2. Classifier training
After RN extraction, we obtained the RN set and intended

to train a binary classifier for online detection using P and RN.
Therefore, a machine learning algorithm is required to train the
classifier. In this paper, Random Forest (RF) is adopted because
it is suitable for different types of features and has been proved
to have a good performance in mAGDs detection case (Schüppen
et al., 2018). Empirically, U usually contains few potential mAGDs,
while the RN set above is generally much smaller than U (Bekker
and Davis, 2020). So we should extract negative samples from Q
(i.e., Q=U-RN) as much as possible so that RN can represent the
characters of the negative set more accurately.

As shown in Fig. 4, we train the classifier by RF using an
iteration way, which can constantly extract RN samples from Q.
For each iteration i, the samples in Qi are tested by classifieri,
and then the negative ones are added to RN, and the remaining
constitute Q(i+1). It will keep iterating until Q(i+1)=Qi, and then
we get the final classifier as the binary classifier.

3.4. Feature selection

The principal objective of feature selection is to improve fea-
ture extraction efficiency in the online detecting phase without
degrading accuracy. Usually, a machine learning-based classi-
fier, e.g., decision tree, SVM, random forest, XGboost, requires
that its input in the training and testing set have the same fea-
tures (Lanzi, 2000). Therefore, to reduce the number of features
needed to be extracted and improve the feature extraction effi-
ciency for online detection, we should conduct feature selection,
find the best feature subset, and reduce the number of features
needed to be extracted in offline training. Recently, reinforcement
learning-based methods have shown superior performance in
feature selection (Liu et al., 2021) (more details can be seen
in Section 4.3.2). Consequently, we add time constraint to an
efficient and accurate reinforcement learning-based feature se-
lection method, AutoFS (Fan et al., 2020), and name it TCFS. Its
framework is shown in Fig. 5.

We use a multi-agent approach to reduce the dimension of
action space, which creates an agent for each candidate feature.
They chose actions (select or deselect the candidate feature)
according to the advice given by their private policy network:
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s

Fig. 4. Classifier training.
Fig. 5. The framework of TCFS.

Deep Q-Network (DQN) (Mnih et al., 2015). We perform a feature
subset exploration step at each iteration, which contains two
stages (control stage and training stage).

In the control stage, each agent takes the current state as the
input and outputs the action suggested by their policy network.
We use the method proposed by AutoFS to derive a comprehen-
sive representation of the state with a graph convolutional net-
work (GCN) (Bruna et al., 2013). It transforms the samples with
changing size and content (because selected features changed) as
a same-shape state vector, which ensures that the dimensions
of input of DQN are consistent. At the same time, through RN
extraction and RF classifier training, we will obtain an F1-Score
that classifiers achieved to evaluate the next state. We will de-
scribe in detail how we get this F1-Score on PU data in Section 3.5.
Next, the overall reward, which is defined as the weighted sum of
the F1-Score, the redundancy, and the relevance of the selected
feature subset quantified by the mutual information (Fan et al.,
2020), is designated to all participating agents. For each agent, at
time t , a tuple (sti , a

t
i , r

t
i , s

t+1
i ) will be stored in its memory, where

t
i is the state, ati is the action, r ti is the reward and st+1i is the next
state.

As shown in Algorithm 2, in the training stage, the policy
network of each agent randomly derives a small batch of samples
from the storage and trains the DQN network. When I iterations
are completed or a satisfactory feature subset is explored, TCFS
outputs the selected feature subset.
6

Algorithm 2: Feature selection with time constraint
input : number of iterations: I , number of features: N ,

time constrain: τ

1 Initialize state s, next state s′, subset;
2 Initialize DQNs for N features: {d1,d2,...,dN };
3 Initialize actions for N features: {a1,a2,...,aN };
4 for t ←1 to I do
5 for i←1 to N do
6 ati ← Select;
7 subset← ati ;
8 if Feature extraction time(subset) > τ then
9 ati ← Deselect;

10 else
11 ati ← chosen by di;
12 end
13 with probability ϵ reselect a random action ati ;
14 subset← ati ;
15 end
16 {r t1,r

t
2,...,r

t
N }, s

′
← in state s after actions {at1,a

t
2,...,a

t
N };

17 M←(s, {at1,a
t
2,...,a

t
N }, s

′ ,{r t1,r
t
2,...,r

t
N });

18 {dt1,d
t
2,...,d

t
N } are trained with samples from M;

19 s← s′ ;
20 end

As mentioned earlier, we should conduct feature selection in
offline training to improve the feature extraction for online detec-
tion. Specifically, we try to use limited computational resources
(say ten machines) to conduct online mAGDs detection for online
detection. To achieve this goal, we set a time constraint τ , which
indicates the maximum running time to extract the selected
features for M NXDomains using one machine in offline training
stage (and therefore in online detection stage). For example, when
we set τ = 60 and M = 1, 000, 000, we can extract features for
1, 000, 000 NXDomains within one minute using one machine in
online detection stage. Note that we set a time constraint instead
of a number constraint on the selected feature subset because
different features consume different feature extraction time, and
a small number of features can consume a lot of feature extraction
time. Accordingly, in each iteration, TCFS abandons a feature if
this feature causes the extraction time to exceed τ .

Because AutoFS achieves high effectiveness and efficiency si-
multaneously, TCFS, which adds a time constraint to AutoFS, is

also accurate and efficient in feature selection. Please note that
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Fig. 6. The combination of feature selection and PU learning.

applying TCFS for feature selection is not the main contribution
of this paper.

3.5. Three-step strategy

PUFS proposes a novel framework integrating PU learning and
eature selection, as a three-step strategy. The detail is shown in
ig. 6.
For reinforcement learning methods, the external environ-

ent is usually required to provide an accurate reward value
or each feature selection action. In the case of supervision, the
amples with selected feature subset are used to training the
lassifier, then the accuracy it obtains in the test set is used as the
eward value. However, with partial labels data, this reward value
s not available. To solve this problem, we design a new reward
alue with the help of RN extraction and classifier training parts.
Firstly, we make an initialization. We perform RN-Extraction-

odule for initial RN based on all features from U. These samples
n initial RN are considered as ‘‘true’’ negative samples in this
trategy. Then combined with P samples, we can get the initial PU
ataset. Next, we split the initial PU into two parts by a certain
roportion (i.e., 8:2 in this paper): P_train, U_train for the model
raining iteratively, and P_test and RN_test for testing. We can
alculate a value to evaluate the classifier’s performance (we use
1-Score in our system). And this F1-Score is used to calculate the
eward in reinforcement learning.

After initialization, the partially labeled feature selection prob-
em can be solved in a supervised way. From the perspective
f using reinforcement learning, we can provide a reasonable
eward whenever the reinforcement learning algorithm takes
ction and goes to a state representing a feature subset. The re-
nforcement learning algorithm uses this reward value to update
ts action selection strategy and enter a new iteration. When the
reset number of iterations (I) is completed or the feature subset
atisfying the two target conditions (feature extraction time and
1-Score) is explored, the model outputs the selected feature
ubset and the binary classifier trained with samples on these
eatures.

Because we use the F1-Score that our classifiers achieved on
he data processed by the PU learning part, as one portion of
he reward value, the classifier’s performance will be regarded
s one optimization objective of reinforcement learning feature
election. In this way, our three-step strategy makes PU learning
nd feature selection proceed simultaneously and finally outputs
he selected feature subset and a trained binary classifier.

. Evaluation

In this section, we conduct extensive experiments to demon-
trate PUFS’ performance. In Section 4.1, we introduce the datasets
7

and experimental setup. Then we compare PUFS with baseline
methods in Section 4.2 and replace each module of the three-step
strategy with alternative methods to verify PUFS’s performance in
Section 4.3. Next, in Section 4.4, we try to remove RN extraction
or feature selection models from PUFS to verify their importance.
At last, we discuss how the hype parameters of PUFS affect
its performance in Section 4.5 and show the result of feature
selection in Section 4.6.

4.1. Experimental design

4.1.1. Dataset
We obtain the labeled positive data from DGArchive

(Plohmann et al., 2016). Additionally, we also collect a large
amount of real-world unlabeled data from a top-tier global online
bank. To evaluate the trained classifier, we split out some data
from the unlabeled data, and then label them manually and
regard them as a ground truth set. Motivated by Tang et al.’s
work (Tang et al., 2020), we invite three engineers to label
the ground truth. Every engineer can label 5000–10,000 domain
names per day. Due to the heavy workload, engineers first label
a part of domain names and then summarize some rules. Then
they use the rules to screen domain names. To ensure the label
work more accurately, each domain name is labeled by at least
two engineers independently. If there is a disagreement, the third
engineer will be involved for re-checking.

The details of the three datasets are as follows:

• Positive data: We collect 63 million mAGDs of 107 DGA
families from DGArchive in total.
• Unlabeled data: We collect massive records from the DNS

resolver of a top-tier global online bank. These DNS logs
are generated from October 1 2019 to October 30 2019.
We extract 1.3 billion NXDomain responses from the 30-day
records. In addition, we perform the de-duplication oper-
ation on these domain names. Then we delete the known
mAGDs from these samples composed of known malicious
DGA domains and get about 3.45 million unlabeled domain
names.
• Ground Truth data: The labeled domain dataset used in Tang

et al. (2020) contains 328 thousand bNXDs. Considering
that mAGDs provided by DGArchive are relatively abun-
dant, we sample 328 thousand mAGDs from DGArchive and
used them as positive samples in Ground Truth. In contrast,
the negative samples set of Ground Truth is served by the
labeled bNXDs dataset.
• LOGO test: Motivated by Schüppen et al. (2018), we con-

struct a more ‘‘clear’’ partially labeled set by injecting some
mDGAs to the unlabeled data based on the idea of leave-
one-group-out cross-validation (LOGO CV). In this work,
the positive samples in this experiment consist of domain
names of 66 DGA families we select from DGA-generated
domain names data. We randomly extract 1000 domain
names from each family. The LOGO test we designed con-
tains a total of 66 trials. For each test, the training set in-
cludes 65 family domain names and the equivalent number
of domain names extracted from unlabeled domain names
data. We use one of all 66 DGA families as the test set
for each test. Note that we take 20% of the domain name
samples from the DGA family and add them to the unlabeled
dataset of the training set. The remaining domain samples
of the DGA family are used as the final test set. The specific
experimental setup is shown in Fig. 7.
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Fig. 7. Leave-One-Group-Out test. Successively take one DGA family as ‘‘One
Group Out’’ which is unknown. Add 20% of it into unlabeled samples as
unfilterable noise, and the remaining 80% is test set.

Table 3
Overall performance of PUFS and FANCI.

Precision Recall F1-Score FPR FNR

FANCI 0.9959 0.9862 0.9911 0.00396 1.38e−2
PUFS 0.9841 0.9999 0.9919 0.00821 9.14e−6

4.1.2. Evaluation metrics
To evaluate the effectiveness of our model, we use the met-

ics of precision, recall and F1-Score, where precision = TP
TP+FP ,

ecall = TP
TP+FN . F1-Score combines the characteristics of these two

arameters: F1-Score = 2∗precision∗recall
(precision+recall) . TP (True Positive) presents

the number of positive samples that are classified as positive,
and FP (False Positive) is the number of negative samples that
are mistakenly classified as positive. FN (False Negative) is the
number of positive examples that are predicted to be negative.
TN (True Negative) means the number of negative examples that
are predicted to be negative. In particular, False Positive Rate
(FPR = FP

TN+FP ) and False Negative Rate (FNR = FN
TP+FN ) are also

used to verify the effect of our model.
To evaluate model’s efficiency, we propose a metric: number

of machines, which refers to the number of machines required
to perform the feature extraction of 1,000,000 NXDomains in
one minute. It is given by 1, 000, 000/N , where N refers to the
umber of NXDomains that one machine can carry out feature
xtraction processing in one minute.

.1.3. Experimental environment
The evaluation experiments are implemented using Python

.7.11, and run on an x64 server with 48 Intel Xeon E5-2650

.20 GHz CPU and 128 GB RAM.

.2. The overall performance of PUFS

In order to evaluate the performance of PUFS in a comparable
ay, we use FANCI as the baseline method (more details can be
een in Section 5). We show the performance of these models in
he Ground Truth test in Table 3 and the number of machines
sed for feature extraction in Fig. 8. We also show the result of
he LOGO test in Fig. 8.

As shown in Table 3 we can see that PUFS can achieve a
igh F1-Score similar to FANCI (0.9911). This shows that we keep
n even detection performance when considering domain name
etection as a PU scenario. And, obviously in Fig. 8, the FNR in
he LOGO test of PUFS (0.021) is 30% smaller than FANCI (0.322).
his proves that our system has an obvious advantage in terms
f identifying unknown mAGDs in the PU scenario.
The detection efficiency of PUFS is significantly higher than

he detection model without feature selection shown in Fig. 8,
8

Fig. 8. Number of machines and FNR in LOGO test of PUFS and FANCI.

hich proves that our work of combining feature selection with
U-learning is effective. Using PUFS, we significantly reduce the
umber of machines applied for feature extraction from 54 ma-
hines to 5 machines. Because of the substantial reduction of the
rocessing time on feature extraction, PUFS is more competent
or the task of online detection of large-scale dependable systems.

We acknowledge that it would require fewer machines if
he methods were implemented using more efficient languages
e.g., C and C++) than using Python. However, many widely used
achine learning models, including Random Forest and AutoFS,
re implemented using Python. Therefore, applying Python to
mplement a machine learning-based mAGDs detection method
s much more efficient, and both FANCI1 and PUFS are imple-
ented using Python. Moreover, PUFS is 11.5 times more efficient

han FANCI in mAGDs detection, consuming 7.98% computational
esources (e.g., machines) compared to FANCI. Even if we imple-
ment PUFS and FANCI with other languages, the former will still
be much more efficient than the latter. Usually, operators pay
much attention to the efficiency of a mAGDs detection method.
Accordingly, they prefer deploying PUFS to FANCI because it
achieves the nearly as high accuracy with much fewer machines.

4.3. Alternative experiment

In this section, we test alternative basic methods for three
modules of the three-step strategy: RN extraction, feature selec-
tion, and classifier training, and show their performance on the
Ground Truth test.

4.3.1. Comparison among RN extraction methods
The RN extraction is the first part in the PUFS model, which

is expected to find high-quality RN samples from unlabeled sam-
ples. In our malicious domain name scenario, only a small amount
of positive samples are left in the U samples after being filtered by
the blacklist. However, they may also seriously affect the classifier
performance, which can be reflected in the LOGO test. We present
the Ground Truth test performance of PUFS with (w) different RN
extraction methods:

(a) K-Means. It simply clusters all samples into two clusters
using K-Means, and takes the samples furthest from the
positive cluster as RN.

1 https://github.com/fanci-dga-detection/fanci.

https://github.com/fanci-dga-detection/fanci
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Table 4
Comparison among RN extraction methods.

Precision Recall F1-Score FPR FNR

w K-Means 0.5525 1.0 0.7117 0.81012 0
w C-CRNE 0.6979 1.0 0.8221 0.43286 0
PUFS 0.9841 0.9999 0.9919 0.00821 9.14e−6

(b) C–CRNE. It is a clustering-based method for Collecting Re-
liable Negative Examples. It clusters all the samples into
many clusters and takes those without any positive sam-
ples as the RN.

The result shows that the precision of using K-Means and
C–CRNE is much lower than using the Spy method. We observe
that the RN samples extracted by them are far less than those by
the Spy method (see Table 4).

4.3.2. Comparison among feature selection methods
To examine the performance of the feature selection scheme

based on the reinforcement learning we designed, we also imple-
ment several commonly used feature selection methods to make
comparison as follows.

(a) K-Best (Giarelis et al., 2020). It ranks features by their χ2

scores with the label vector, and selects the K features with
highest scores.

(b) LASSO (Muthukrishnan and Rohini, 2016). It drops the fea-
ture that the coefficient is shrunk to 0 by using L1 penalty.

(c) Decision Tree Recursive Feature Elimination (DT-RFE)
(Thakkar and Lohiya, 2021). It trains a classifier by all
features and scores the importance of each feature by the
classifier. The least important features are deselected and
a new classifier will be trained by the remaining features,
then it processes recursively until the desired number of
features is reached.

(d) PCA (Ikram and Cherukuri, 2016). It firstly calculates the
covariance matrix and selects the principal components us-
ing PCA. Then it calculates the contribution of each feature
to these principal components and sorts them according to
the contribution value.

Among them, K-Best is one of the filter methods; LASSO and
Decision Tree Recursive Feature Elimination (DT-RFE) belong to
embedded methods; and AutoFS is a wrapper method. To make
a more comprehensive comparison, we also test a classic unsu-
pervised feature selection method based on PCA. We compare the
F1-Score on the Ground Truth test between PUFS and PUFS with
(w) these methods, as shown in Table 5.

In this test, we also provide parameter τ to limit the fea-
ture extraction time of these methods’ results. In particular, for
methods that can set the parameter N to specify the number
of features of the selected feature subset, we set N to meet the
maximum number of features that can be accommodated by the
feature subset whose extraction time is less than or equal to τ .
or the method that searching on the whole feature subset space
AutoFS), we cannot limit the number of feature subsets in this
ay without improvement, so we test it without limiting its time

or feature extraction.
The performance of PUFS on Ground Truth is significantly

etter than that of using other non-wrapper feature selection
ethods, as the FPR (0.00830 with AutoFS and 0.00821 of PUFS)

s six times less than their. The features selected by the unsu-
ervised method (PCA) are conducive to the detection of positive
amples, but it will cause a large number of false positives in the
etection model as we can see. AutoFS achieves a similar high
1-Score. But as we aforementioned, its time of feature extraction
annot be limited. In this test, its selected feature subset need at
east 24 machines to extract features.
9

Table 5
Overall performance of feature selection algorithms.

Precision Recall F1-Score FPR FNR

w K-Best 0.9545 0.9999 0.9767 0.04773 3.05e−6
w LASSO 0.9491 0.9998 0.9738 0.05358 2.54e−4
w DT-RFE 0.8926 0.9999 0.9397 0.13812 4.26e−6
w PCA 0.6972 1.0 0.8216 0.43418 0.00
w AutoFS 0.9839 0.9999 0.9918 0.00830 9.14e−6
PUFS 0.9841 0.9999 0.9919 0.00821 9.14e−6

Table 6
Overall performance of PUFS using different classifiers.

Precision Recall F1-Score FPR FNR

w SVM 0.9791 0.9999 0.9894 0.02139 8.53e−5
w XGBoost 0.9810 0.9999 0.9904 0.01938 6.09e−6
PUFS 0.9841 0.9999 0.9919 0.00821 9.14e−6

4.3.3. Comparison of different classifiers
In the classifier training section (Section 3.3.2), we have de-

clared that the basic classifier is can be replaced by alternative
methods. In this section, we test two supervised machine learning
algorithms: SVM and XGBoost, and show the performance of PUFS
with (w) these classifiers on the Ground Truth test in Table 6.
Experiments show that both with SVM and with XGBoost, PUFS
can achieve similar results to that with RF.

4.4. Ablation study

In this section, we evaluate the effectiveness of feature selec-
tion and PU-learning to verify the contribution of these two parts
to our model.

4.4.1. Disable RN extraction
RN extraction is a crucial step of PUFS because our PU learning

method will not work if it is disabled. Our strategy is based
on two-stage strategies which seeking reliable negative samples
from unlabeled samples by RN extraction step. We believe that
the classifier trained on positive samples and such reliable nega-
tive samples can effectively reduce the impact of positive samples
which are in the unlabeled dataset.

To examine the function of this step, we design the ablation
experiment of RN extraction, as follows:

• Remove RN extraction from PUFS. When this happens, the
data input to the feature selection part and classifier training
part will only contain positive and unlabeled samples.
• Label unlabeled samples as negative samples. If the classifier

does not receive the RN dataset, its iterative process will fail
and work as a supervised binary classifier training as the
original. The feature selection part will use the F1-Score of
the classifier to calculate the reward value.

We show the experimental result of PUFS without RN extrac-
tion in Fig. 9.

We observe that disabling RN extraction has little impact on
the performance of PUFS in the Ground Truth test and the feature
extraction time after feature selection. Still, its FNR changes back
to be very high in the LOGO test. This means the model has a
weak ability to detect unknown mAGDs, just like the supervised
method (see Fig. 8).

4.4.2. Disable feature selection
Feature selection effectively shortens the time of feature ex-

traction as well as the machines ‘‘consumption’’ and ensuring
the detection performance of the model. When feature selection
is removed, the model will use all features for training and
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Fig. 9. Overall performance of PUFS, PUFS without RN extraction and PUFS without feature selection.
Fig. 10. The F1-Score of PUFS as the parameters vary.

etecting. To verify the effectiveness of the feature selection, we
irectly put the all-features data into the two-stage strategy for
U-learning: RN extraction and classifier training, to compare the
etection performance and feature extraction time of PUFS with
nd without feature selection.
As Fig. 9 shows, when the feature selection part is disabled,

he number of ‘‘consuming’’ machines will be very large, which
ncreases machine consumption too much for online real-time
etection of a large enterprise.

.5. Parameter determination

In this section, we evaluate the effectiveness of the hyper
arameters in PUFS, and discuss how we determine their value.
We increase s from 5% to 25%, t from 5% to 25% and τ from 10

to 60. As shown in Fig. 10, PUFS achieves very approximate F1-
Score when s and t changes, which means these hyper parameters
in Spy Algorithm do not impact the final performance of PUFS. We
set these parameters as our model achieves the best F1-Score,
i.e., s = 5%, t = 5%. For the parameter τ , we find that the
performance of PUFS is the best when set to 30.
10
4.6. The result of the optimal selected features

The set of selected features of PUFS may be slightly different
when repeating the experiments, although they all eventually
have similar performance. Under the setting of τ = 30, the num-
ber of features in the optimal feature subset is around 10. In many
experiments, we have observed that several features appear in
most selected feature subsets. Specifically, the most frequent
structural features are the domain name length, the number of
subdomains, the ratio of digital exclusive subdomains, and the
ratio of hexadecimal parts. The ratio of digits, the alphabet size,
and the digital letter count are the most frequent to be chosen in
the linguistic features. In statistical features, the gibberish score
and the 25% percentile of 1-gram are always be selected.

5. Related work

A large number of works have been conducted to detect mali-
cious domain names generated by DGAs in the literature (Zhau-
niarovich et al., 2018; Bilge et al., 2011; Antonakakis et al., 2012;
Schiavoni et al., 2014; Schüppen et al., 2018; Wang et al., 2017;
Truong and Cheng, 2016; Tong et al., 2019). EXPOSURE (Bilge
et al., 2011) extracted 15 network traffic features to discover
malicious anomalous domain names and used a decision tree
to train a classifier. These features include four traffic duration
features, four DNS response features, five time-to-live (TTL) fea-
tures, and two domain name features. Pleidas (Antonakakis et al.,
2012) leveraged a combination of clustering and classification
methods. It clustered domains relying on the make-ups of domain
names and the groups of the hosts that queried these domains.
Phoenix (Schiavoni et al., 2014) carried out mAGD detection
based on not only the features of domain names but also those of
IP addresses. It applied the DBSCAN clustering strategy to cluster
samples. Wang et al. (2017) proposed a DBod scheme to detect
mAGDs, which was based on the unsupervised algorithm, Chinese
Whispers, for clustering samples. They also applied the query
behavior of hosts as one of the features for model training. All
of the four methods detected mAGDs according to the features
of domain names and network traffic-related features, namely,
traffic duration, DNS response, TTL, query behaviors of hosts, and
IP addresses. Network traffic data is so confidential and important
for dependable systems such as online banks and online shopping
services that network operators barely share this data. Therefore,
we can only obtain domain names, and the above methods are
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nappropriate in our scenario. Additionally, because the traffic
ata in today’s large-scale dependable systems are pretty huge,
onducting mAGD detection based on so many types of features
s computationally inefficient.

In addition to the above methods relying on network traffic
eatures, a collection of mAGD detection methods based on the
eatures of domain names only have been proposed. For example,
ruong and Cheng (2016) applied two features of domain names,
.e., domain names’ length and expected values, and chose the J48
ecision tree algorithm for binary classification. They used the
omain names collected from Alexa as benign existent domain
ames and treated others as mAGDs. However, a non-existent
omain name does not necessarily represent a malicious domain
ame. There are many benign non-existent domains (bNXDs)
hat spelling errors and misconfigurations could produce. In this
ork, our objective is to distinguish mAGDs from bNXDs, and
hus this method is inappropriate in our scenario. D3N (Tong
t al., 2019) applied convolutional neural networks (CNN) to
dentify mAGDs from NXDomains. To train an accurate mAGD
etection model, it used the mAGDs collected from DGArchive as
ositive samples. Moreover, it applied the non-existent domain
ames obtained from a campus DNS resolver as bNXDs. Similarly,
ANCI (Schüppen et al., 2018), a state-of-the-art domain name-
ased mAGD detection method published in USENIX Security,
lso leveraged the mAGDs collected from DGArchive as positive
amples and considered other non-existent domain names as
NXDs. However, both D3N and FANCI ignored the mAGDs that
GArchive cannot cover. Thus, neither can be applied to the
artially labeling scenario where only part of mAGDs are labeled
ecause new types of mAGDs are continuously generated.

. Conclusion

In this work, we present PUFS, integrating PU learning and fea-
ure selection, to achieve accurate training based on partial labels
nd efficient online detection for large-scale dependable systems.
t applies a novel, simple, yet effective three-step strategy, includ-
ng RN extraction, multi-objective reinforcement learning-based
eature selection, and classifier training to address the challenge
n combining PU learning and feature selection. We believe that
he novel three-step strategy can be applied to far more scenarios
eyond mAGD detection. We conduct extensive evaluation exper-
ments through the domain name data collected from a top-tier
lobal online bank, demonstrating that PUFS achieves 99.19% of
1-Score, and improves the feature extraction efficiency by 11.53
imes compared to a state-of-the-art method. In the future, we
ill apply more data from other large-scale dependable systems
o demonstrate PUFS’s performance.
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