
Robust KPI Anomaly Detection for Large-Scale
Software Services with Partial Labels

Shenglin Zhang§‖, Chenyu Zhao§, Yicheng Sui§, Ya Su‡∗
Yongqian Sun§‖, Yuzhi Zhang§‖, Dan Pei†, Yizhe Wang¶

§Nankai University, {zhangsl, sunyongqian, zyz}@nankai.edu.cn, {zhaochenyu, suiyicheng}@mail.nankai.edu.cn
‡Kuaishou Technology, suya@kuaishou.com, †Tsinghua University, BNRist, peidan@tsinghua.edu.cn

¶Lanling Information Technology (Shijiazhuang) Co. Ltd, wangyizhe 2008@126.com
‖Tianjin Key Laboratory of Operating System

Abstract—To ensure the reliability of software services, opera-
tors collect and monitor a large number of KPI (Key Performance
Indicator) streams constantly. KPI anomaly detection is vitally
important for software service management. However, none of
supervised learning methods, semi-supervised learning methods,
transfer learning methods, or unsupervised learning methods
achieve accurate anomaly detection for the large-scale, diverse,
dynamically changing KPI streams with little labeling effort. In
this paper, we propose PUAD, a PU learning-based method,
to achieve accurate KPI anomaly detection requiring a few
partial labels. It integrates clustering, PU learning, and semi-
supervised learning to minimize labeling effort and improve
anomaly detection accuracy simultaneously. Additionally, we
propose a novel active learning method that selects the samples
most likely to be positive in each iteration to avoid false alarms.
We apply 208 real-world KPI streams collected from a large-scale
software service provider to evaluate the performance of PUAD,
demonstrating that it achieves a close F1-score to supervised
learning methods with much fewer manual labels, and greatly
outperforms semi-supervised learning methods, transfer learning
methods, and unsupervised learning methods.

Index Terms—Anomaly detection, Metrics, AIOps, PU learn-
ing, Active learning

I. INTRODUCTION

With the rapid development of software technology, soft-

ware services, e.g., online games, social networks, search

engines, have witnessed an explosion in both scale and com-

plexity. To ensure the reliability of software systems, millions

of KPI (key performance indicator) streams, including user-

perceived metrics, e.g., response delay, queries per second

(QPS), failure ratio, and system-level metrics, e.g., CPU

utilization, memory utilization, network throughput, are con-

stantly monitored and collected at equal-space timestamps [1],

[2]. Anomalies in KPI streams usually manifest as spikes, level

shifts, ramp up/down and indicate potential service failures,

e.g., software bugs, failed updates, network overload, external

attacks [3]–[7]. KPI anomaly detection, which aims to find the

anomalous behaviors in KPI streams, is vitally important for

operators to proactively detect software failures and timely

trigger failure diagnosis to mitigate loss. Because today’s

software services are at large scale and very complex, KPI

streams have various shapes and KPI anomalies are highly

∗Ya Su is the correspondence author.

Fig. 1: The manual labels needed for semi-supervised learning

methods (upper one) and PU learning methods (lower one)

diverse. Moreover, due to the continuous software updates and

configuration changes, KPI streams and their anomalies can

dramatically change over time [1], [2], [8], [9].

A great number of KPI anomaly detection algorithms have

been proposed over the years [6], [7], [10]–[16], which are

mainly divided into supervised learning and unsupervised

learning methods. Unfortunately, none of them are feasible

to deal with the above scenario well:

(1) For supervised learning methods, all anomalous and nor-
mal samples of each KPI stream in the training set should be

manually labeled [10], [12]. Due to the large scale and high

diversity of KPI streams, this labeling work, if not impossible,

is time-consuming and labor-intensive.

(2) Unsupervised learning methods require no labels. However,

they either suffer from low accuracy [17] or require large

amounts of training data for each new KPI stream (e.g., six

months worth of data) [13]–[16], which cannot be used for

the scenario where the patterns of KPI streams dynamically

change over time because of software upgrades and/or config-

uration changes [2], [11].

Apart from the above two categories of methods, semi-

supervised learning methods (e.g., ADS [18]) or transfer learn-

ing methods [11] (e.g., ATAD [11]) have also been applied

for KPI anomaly detection, both of which enable accurate

anomaly detection for a large number of KPI streams, without

103

2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE)

2332-6549/21/$31.00 ©2021 IEEE
DOI 10.1109/ISSRE52982.2021.00023

Fig. 2: Examples of anomalies in KPI streams. The red parts in the KPI stream denote anomalous segments

manual algorithm selection or parameter tuning. Moreover,

they can be quickly initialized for those KPI streams whose

patterns dynamically change over time. However, they still

need a large number of KPI streams with high-quality ground

truth. Specifically, all the KPI streams (time series segments)
in the training set are required to be carefully labeled and
periodically updated. Considering the diverse types of KPI

streams and frequent updates of their patterns, it is still tedious

for operators to examine the KPI streams back and forth

periodically.

To solve the above problem, a natural idea is to randomly

label some anomalies manually and learn anomaly patterns

from these labels, which is the core idea of PU learning

(Positive-Unlabeled learning) [19]. Specifically, for a KPI

stream in the training set, PU learning only require labeling

part of anomalous segments and does not need to label all the

anomalous segments. In this way, operators’ manual labeling

work is minimized. For example, Fig. 1 shows the manual

labels needed with semi-supervised learning/transfer learning

and those with PU learning, respectively. We can see that PU

learning can greatly reduce the labeling effort compared to

semi-supervised learning/transfer learning.

However, applying PU learning for KPI anomaly detection

faces the following two challenges:

(1) KPI streams are large in number and diverse in the pattern.

On one hand, if we train a PU learning model for each

KPI stream, the overall labeling effort is still very large.

On the other hand, if we train a PU learning model for

all KPI streams, the model will suffer from low accuracy

because different KPI streams have different patterns and thus

their most suitable anomaly detectors and parameters can be

significantly different.

(2) The performance of PU learning methods is limited due

to insufficient labels, and naturally, active learning can be

applied. However, the current active learning methods, which

usually label anomalous samples near classification bound-

ary [20], [21], tend to cause normal samples to be misclassified

as anomalies and thus generate many false alarms.

In this work, we propose PUAD, a PU learning-based

anomaly detection framework, to solve the above challenges

and accurately and efficiently detect KPI anomalies with

a small number of partial labels. PUAD consists of three

major components: (1) Clustering. Clustering KPI streams

according to shape similarity. For each cluster, operators

manually label some anomalous segments for its centroid KPI

stream. Because the number of clusters is much smaller than

that of KPI streams, operators’ labeling effort is minimized.

Moreover, a newly emerging KPI stream can be assigned into

one existed cluster based on its shape similarity with each

cluster centroid. (2) PU learning. For each cluster centroid,

PUAD applies PU learning to build a binary classifier from

positive (i.e., anomalous) and unlabeled samples. It then adopts

a novel active learning method to obtain reliable positive

samples interactively in several iterations. In this way, we can

obtain reliable anomalous and normal labels for each cluster

centroid KPI stream. (3) Semi-supervised learning. For each

KPI stream, we train a semi-supervised learning-based model

according to the labels of its cluster centroid KPI stream. Its

anomalous behavior will be detected based on this model.

The contributions of this paper are summarized as follows:

• To address the first challenge, PUAD integrates cluster-

ing, PU learning, and semi-supervised learning, which

together minimize operators’ labeling effort and achieve

high accuracy simultaneously.

• To address the second challenge, we propose a simple

yet effective active learning model, which selects samples

that are most likely to be positive in each iteration instead

of those that are close to the classification boundary. In

this way, a large number of false alarms are avoided.

• We apply 208 real-world KPI streams collected from a

large-scale software service provider to evaluate PUAD’s

performance. PUAD achieves a close F1-score to a well-

known supervised learning method and greatly outper-

forms two unsupervised learning-based methods, one

semi-supervised learning-based method, and one transfer

learning-based method by 103.7%, 786.2%, 28.7%, and

482.5%, respectively. To get readers better understand our

work, we have made our code publicly available1.

II. BACKGROUND AND CHALLENGES

A. Definitions

In this section, we define some key terms about anomaly

detection.

1https://github.com/PUAD-code/PUAD

104

(a) Step1 (b) Step2

(c) Step3 (d) Step4

Fig. 3: The labeling processes of an active learning method which labels samples near classification boundary

KPI streams: The rapid development of software services

has brought great convenience to our daily life. To ensure

the reliability of a software service, operators continuously

monitor the KPIs (e.g., QPS, error ratio, CPU utilization, net-

work throughput) of every component including microservices,

databases, virtual machines, containers, physical machines,

etc. A KPI stream is a time series containing the monitoring

data of a KPI. It is collected at equal-space timestamps and

defined as X = x1, x2, . . . , xn, where xi is the observation at

the ith time point and n is the length of X [22]. Because of

the great number of components in large-scale software service

and each component have diverse types of KPIs, a great many

KPI streams are generated for each software service.

Anomaly: An anomaly in a KPI stream denotes that one of

its segments deviates from normal behaviors, such as a spike, a

level shift, or a ramp up/down. Fig. 2 shows three examples of

anomalies in KPI streams [22]. Usually, different types of KPI

streams have different patterns when they become anomalous.

Anomaly detection: Anomaly detection for KPI stream X
is to determine whether a segment xi−w+1:i is anomalous (let

yi = 1 denotes an anomaly and yi = 0 otherwise), where

w is the length of the sliding window required for anomaly

detection. For each segment, an anomaly detection method

typically computes an anomaly score to indicate its anomalous

possibility, and usually a threshold is set to determine whether

it is anomalous or not. If its anomaly score exceeds this

threshold, it will be regarded as an anomaly.

B. Challenges

Large-scale and diverse KPI streams. If we train a PU

learning model for each KPI stream following [7], [10], [13]–

[16], too many manual labels are needed because of the large

number of KPI streams. However, if we try to train a universal

PU learning model for all KPI streams, the model will suffer

from low accuracy because KPI streams are highly diverse and

it is very difficult, if not impossible, to find the combinations

of anomaly detectors and parameters that are suitable for all

KPI streams.

Active learning strategy. Naturally, we can adopt active

learning to help a PU learning method obtain more normal

samples. However, the existing active learning methods usually

label samples near the classification boundary in each iteration

[20], [21], causing some normal samples to be misclassified as

anomalies and thus generating a lot of false alarms. As shown

in Fig. 3, when using these active learning methods, it is likely

that the PU learning method will mistakenly label some normal

samples as anomalies (red circles) and more and more normal

samples will be wrongly labeled as anomalies iteratively. We

can see that this active learning strategy is likely to generate

many false alarms.

III. FRAMEWORK OF PUAD

A. The Workflow of PUAD

As mentioned before, we integrate clustering, PU learning,

and semi-supervised learning in PUAD to address the first

challenge. The overall workflow of PUAD is shown in Fig. 4.

105

Fig. 4: The framework of PUAD

In the offline training process, PUAD clusters historical

KPI streams, labels a few potential anomalies, and extracts

the features of cluster centroid KPI streams. To obtain more

and enough credible labeled samples, PUAD exploits PU

learning based on the prior extracted features and labels. For

a newly emerging KPI stream A, PUAD firstly assigns it into

an existing cluster by comparing its shape similarities with

all cluster centroids and then extracts its features. Finally,

PUAD trains a model for it through semi-supervised learning

with its features as well as the features and the labels of its

corresponding cluster centroid.

In the online detection process, for a newly arrived data

point (i.e., xi) of the KPI stream A, its features would be

firstly extracted according to data points in segment xi−w+1:i.

Then the features would be fed into the trained model to get

an anomaly score for xi−w+1:i. PUAD will determine whether

it is an anomaly according to the anomaly threshold. In this

paper, we apply the threshold with which the labeled samples

in the training set reach the best F1-score.

In summary, the combination of clustering, PU learning, and

semi-supervised learning not only greatly reduces the labeling

effort, but also improves the accuracy of anomaly detection.

1) Clustering: After observation on a large number of KPI

streams, we find that despite the diversity of KPIs, many of

them are similar because of their implicit associations and

similarities. If similar KPI streams can be grouped into a few

clusters, we can train an anomaly detection model for each

cluster using a few manual labels, and “transfer” the trained

model within each cluster. Let ε be the number of clusters.

Because ε is significantly smaller than that of KPI streams,

we can greatly reduce the labeling overhead. Therefore, we

cluster KPI streams and obtain a few labels for each cluster

centroid KPI stream, which is the most representative one in

the cluster.

PUAD adopts ROCKA [23] for clustering, which has been

verified to be a robust and rapid time series clustering al-

gorithm. Besides, it uses SBD (shape-based distance) [24]

to measure the time series similarity, and exploits DBSCAN

[25] to cluster KPI streams, and chooses the centroid for

every cluster. Operators will randomly label a small number

of anomalous segments for each cluster centroid. For a new

KPI stream, it will be assigned into the most similar cluster

by calculating its SBD with these centroid KPI streams.

Please note that the choice of clustering method is flexible,

and applying ROCKA for clustering is not the main contribu-

tion of this work.

2) Feature extraction: Motivated by [11], [18], PUAD
extracts and categorizes the features into two groups: temporal

features and forecasting error features.

Temporal Features: In general, dramatic changes in time

series are likely to be anomalous. To indicate the changes of

KPI streams in a short period, PUAD extracts 19 temporal

features, as shown in Table I. These features are calculated

according to a sliding window of data points, i.e., xi−w+1:i.

Forecasting Error Features: Following [11], we utilize

a set of error indicators generated by time series forecasting

methods as features. For a data point, if its actual value differs

too much from its prediction, it may be an anomaly generally.

PUAD adopts three classical time series prediction techniques,

i.e., Holt [26], STL [27], and Holt-Winters [26], to extract

three forecasting error features. Through these techniques,

PUAD can predict the short-term and long-term trends of a

time series, respectively.

In total, PUAD eventually extracts 22 features through the

above methods.

3) PU learning: After extracting the above features, PUAD
adopts the feature samples of each cluster centroid as a training

set, in which only a few anomalies are labeled. Let θ be the

number of initially labeled samples. Then, the training set

consisting of positive samples (i.e., labeled anomalies) and

unlabeled samples will be input together into the PU learning

component. Let Ω(P), Ω(U), and Ω(N) represent the set of

positive samples, unlabeled samples, and negative samples in

the training set, respectively. Hereinafter, we use “positive”

to refer to anomalous, and “negative” to refer to normal.

Each sample is a feature vector. Section III-B introduces this

component in detail.

4) Semi-supervised learning: After obtaining enough labels

by PU learning, each cluster centroid currently contains pos-

itive samples Ω(P ′), negative samples Ω(N ′), and unlabeled

106

Fig. 5: The framework of PU learning and active learning

TABLE I: Temporal features extracted by PUAD.

Feature Description
Slope ratio Slope between two consecutive points.
Sum ratio Slope between two consecutive windows.

Cv delta
Difference of coefficient of variation between
two consecutive windows.

Cv slope
Slope of coefficient of variation between two
consecutive windows.

Ping delta Difference between two consecutive points.
Sum delta Difference between two consecutive windows.

Long time delta
Difference between the current point and the
previous long time window.

Long time slope
Slope between the current point and the pre-
vious long time window.

Block delta Difference between two adjacent windows.
Block slope Slope between two adjacent windows.

Block dping delta
Difference between the current point and the
previous window.

Shift block dping delta
Shift between the current point and previous
window.

Std Standard deviation in a window.

Std delta
Difference of standard deviation between two
consecutive windows.

Max level shift
Max trimmed mean between two consecutive
windows.

Max var shift
Max variance shift between two consecutive
windows.

Max KL shift
Max shift in Kullback-Leibler divergence be-
tween two consecutive windows.

Lumpiness Changing variance in the remainder.

Flatspots
Discretize time series values into ten equal-
sized intervals. Find maximum run length
within the same bucket.

samples Ω(U ′). A newly emerging KPI stream would be

assigned into an existing cluster firstly. Next, we extract its

features and treat them as a new unlabeled dataset Ω(Unew).
Then, we aim to train a model based on the dataset consists of

Ω(P ′), Ω(N ′), Ω(U ′), and Ω(Unew). In this work, we adopt

a semi-supervised learning method called CPLE (Contrastive

Pessimistic Likelihood Estimation) [28]. Verified by [18],

CPLE is more robust than other semi-supervised learning

algorithms because it needs no strong assumptions. Besides,

we apply random forest as the base model of CPLE following

[18]. After the semi-supervised learning process, PUAD gets

an anomaly detection model for each KPI stream.

Note that the choice of semi-supervised methods is flexible,

and applying CPLE as the semi-supervised method is not the

main contribution of our work.

B. PU Learning

[19] improved PU learning method and applied it for

time series anomaly detection. Following [19], we utilize PU

learning to label anomalies as few as possible in PUAD.

Fig. 5 shows an overview of PU learning with two steps.

The first step is to initialize the Ω(N) through pre-training. In

the second step, positive samples Ω(P) and negative samples

Ω(N) are iteratively extended through self-training and active

learning.

Step 1. pre-training. In the beginning, the training set

consists of several positive samples (i.e., Ω(P)) and a great

many unlabeled samples (i.e., Ω(U)). To find reliable negative

samples more cautiously from Ω(U), employing a linear

model as a classifier will be helpful [19]. Note that the choice

of the linear model is flexible, and we adopt Elastic Net [29]

in this paper, which has been proved to identify possible

directional edges even in the presence of highly correlated

data. After training the linear model, we can obtain, for each

sample in Ω(U), a prediction score indicating the probability

of being positive. PUAD selects the top s samples with the

lowest scores from Ω(U) to initialize Ω(N) (we set s = 0.20
in our scenario).

Step 2. active learning-based self-training. After pre-

training, the training set now consists of a few positive samples

(i.e., Ω(P)) and negative samples (i.e., Ω(N)), and a large

number of unlabeled samples (i.e., Ω(U)). To make better use

of the unlabeled samples, we adopt a self-training method to

label more unlabeled samples in Ω(U) iteratively.

As shown in Fig. 3, we need to ensure that positive samples

determined by the self-training method are indeed anomalies.

Consequently, we adopt active learning in this self-training

step, called active learning-based self-training. Algorithm 1

describes the details of this process.

Firstly, PUAD trains a random forest model classifier on

Ω(P) and Ω(N) to obtain the prediction scores of Ω(U) in

each iteration, which is shown from lines 1 to 2.

Then, PUAD labels some unlabeled samples iteratively. In

each iteration, let λ be the speed denoting the number of newly

added unlabeled samples, π be the class prior representing the

proportion of positive samples labeled by operators. For all

iterations, p be the proportion of labeled samples by the PU

learning method consisting of pre-training and self-training.

PUAD sorts Ω(U) according to the above scores, which is

107

Algorithm 1 Active-learning-based self-training process

Input: training data: Ω(P), Ω(U), Ω(N); π: positive

class prior; λ: speed; p: the proportion of labeled

samples by PU learning; s: the proportion of labeled

samples by pre-training in PU learning;

Output: updated Ω(P ′), Ω(U ′), Ω(N ′);
1: Model M = Random Forest Model(Ω(P), Ω(N));
2: score = predict(M, Ω(U));
3: Ω(N ′) = Ω(N);
4: Ω(P ′) = Ω(P);
5: for |Ω(N ′)|−|Ω(N)| < (p−s)×(1−π)×|Ω(U)|/λ

do
6: I = rank(score) in ascending order;

7: Pcandidate = {xi | (score(i) > I(end− λ×
π))};

8: Preal, Nreal = manually check(Pcandidate);
9: Nadd = {xi | (score(i) < I(λ))};

10: Ω(N ′) = Ω(N ′) ∪Nadd ∪Nreal;

11: Ω(P ′) = Ω(P ′) ∪ Preal

12: Ω(U ′) = Ω(U ′)−Nadd −Nreal − Preal;

13: Model M = Random Forest Model(Ω(P ′),
Ω(N ′));

14: score = predict(M, Ω(U ′));
15: end for
16: return Ω(P ′),Ω(U ′),Ω(N ′)

Fig. 6: Expected results of active learning-based self-training

shown in line 6. For the unlabeled samples with the highest

scores, PUAD sets them as candidate positive samples. Next,

operators manually label them to guarantee that the samples

labeled as positive are truly positive. For the unlabeled samples

with the lowest scores, PUAD labels them as negative samples

directly. After that, as shown from lines 10 to 13, PUAD
updates Ω(P), Ω(N), and Ω(U), and then start the next

iteration until enough unlabeled samples are labeled.

Finally, as shown in Fig. 6, we can guarantee that there

are few misclassified negative samples in the set of updated

positive samples. These reliable positive samples ensure the

accuracy of the anomaly detection model. Evaluated in Sec-

tion IV-C1, the proposed active learning method significantly

improves the accuracy of PUAD.

IV. EVALUATION

A. Experimental Design

1) Dataset: We obtained a total of 208 KPI streams from

a large-scale software service provider. Moreover, we selected

128 of them for clustering and the other 80 KPI streams as

newly emerging KPI streams.

In PUAD, we apply ROCKA [23] to cluster the 128 his-

torical KPI streams firstly. As evaluated in Section IV-D, ε is

chosen with a higher F1-score, i.e., 9. Then, manually labeling

several potential anomalies and extracting the features of the

9 cluster centroids. Finally, we assign the 80 new KPI streams

into the existing clusters and extract their features meanwhile.

In summary, we have 128 time series for clustering, 9 cluster

centroids with random labels, and 80 streams for evaluation

(the former 40% with its entire cluster centroid for training,

the latter 60% for testing).

2) Evaluation Metrics: PUAD uses a simple strategy fol-

lowing [14]. If any data point in an anomalous segment can

be detected by a chosen threshold, it is said that this segment

can be detected correctly. The points outside the anomalous

segment are treated as normal. The F1-score, precision, and

recall can be computed accordingly [11]. We apply this

strategy because operators usually do not care about point-wise

metrics, and it is acceptable for a method to issue an alarm

for any time point in a contiguous anomalous segment when

the delay is not too long. The best F1-score indicates the best

performance of the model on a specific test set. Therefore, we

evaluate the effectiveness of anomaly detection methods using

the best F1-score.

In addition to the F1-score, we also apply Matthew’s cor-

relation coefficient (MCC), which takes true negatives into

account, to evaluate every methods’ effectiveness [30]. The

value of MCC ranges from -1 to 1, and a larger value

represents higher effectiveness.

3) Baseline Methods: To examine the performance of

PUAD, we selected several commonly-used anomaly detection

algorithms as baseline methods, summarized in Table III.

(1) For supervised learning based methods, Opprentice utilizes

the labels to train a random forest classifier. EGADS uses a

collection of anomaly detection and forecasting models with

an anomaly filtering layer for detection.

(2) For unsupervised learning based methods, Donut [14] and

iForest [31] are chosen as baseline methods. Donut is a VAE-

based method for seasonal KPI streams with local variations.

iForest detects anomalies based on isolation forest.

(3) For semi-supervised learning based methods, ADS [18].

enables the rapid deployment of anomaly detection models for

a large number of emerging KPI streams, through clustering

and semi-supervised learning.

(4) Compared with the methods that also reduce the amount

of labeling, we select ATAD [11], which combines transfer

learning with active learning and achieves a balance between

labeling effort and performance.

4) Experimental Settings: In the experiment, we set

PUAD’s hyper-parameters experimentally (more details can

108

TABLE II: The detailed information of the dataset collected from a large-scale software service provider

Process number of KPI streams Interval (minute) Total points Anomaly points Anomaly ratio (%)
Clustering 128 5 1024664 8318 0.81%

Anomaly Detection 80 5 643593 6839 1.06%

TABLE III: The detailed information of the baseline methods

Name Context Dataset Algorithm Performance Labeling effort

Opprentice Internet-based service PV, #SR, SRT Random Forest
recall≥0.66,

precision≥0.66
Full labels

EGADS
A Universal Anomaly
Detection System of

Yahoo

Yahoo Membership
Login (YML) data,

Synthetic data

A collection of anomaly detection and
forecasting models with an anomaly

filtering layer
between 0 and 0.8 Full labels

Donut Internet-based service
KPI streams from
Internet companies

VAE
range from 0.75 to

0.90
None labels

iForest
General anomaly
detection scenario

11 natural datasets, a
synthetic dataset

A binary tree structure called
isolation tree (iTree)

0.67≤AUC≤1.0 None labels

ADS Internet-based service
KPI streams from
Internet companies

Rocka and CPLE
the average best
F1-score is 0.92

Cluster centroids
full labels

ATAD Cloud service systems NAB, Yahoo
CORrelation ALignment(CORAL)

and active learning
between 0.5 and 1 1%-5% labels

Fig. 7: The effectiveness of different methods

be seen in Section IV-D). In the clustering process, we set

the cluster radius as 0.05 following ROCKA [15] and set the

number of clusters, i.e., ε = 9. For feature extraction, we

set the length of each sliding window, i.e., w = 6. In the

PU learning process, we set the number of initially labeled

samples, i.e., θ = 8, the positive class prior, i.e., π = 0.015,

with an estimation of 0.01, the speed, i.e., λ = 200, the

proportion of samples for initializing Ω(N), i.e., s = 0.200,

and the overall proportion of labeled samples by PU learning,

i.e., p = 0.90.

5) Implementation: PUAD is implemented using Python.

We conduct the evaluation experiments on a PowerEdge R730

server with 48 Intel Xeon E5-2650 CPUs and 128GB memory.

B. Evaluation of The Overall Performance

1) Effectiveness.: Fig. 7 shows the average precision, recall,

and best F1-score of all 80 new KPI streams using the above

seven methods. We can see that both PUAD and Opprentice

perform superior in KPI anomaly detection, with the average

best F1-score of 0.833 and 0.840, respectively. In contrast,

ADS performs a little worse than them whose average best

F1-score is 0.647. The performance of the above three models

is much better than that of ATAD, Donut, iForest, and EGADS,

for the following reasons: (1) The clustering method of ATAD

is based on time data points rather than time series, and it only

pays attention to KPIs’ diversity but ignores the similarity of

KPI streams. Besides, ATAD requires a high anomaly labeling

ratio (ranges from 1% to 5%), but this ratio is not that high

(< %1) in the dataset. (2) Donut is a deep Bayesian model

requiring a long period of training data (say six months’ worth

of data). However, the period of the KPI streams in the dataset

is not that long, which affects the effectiveness of Donut. (3)

iForest cannot effectively extract features from KPI streams,

and it is sensitive to noises, which is not rare in the dataset.

(4) EGADS heavily relies on high-quality labels and could be

biased towards certain data sets [32]. Furthermore, it proves

that PUAD is significantly better than ADS. The reason is

that we adopt active learning to check samples and ensure

label correctness. It can be seen that the average best F1-

score of PUAD is close to that of Opprentice, a state-of-the-art

supervised model.

Fig. 7 shows the average MCC of PUAD and the six baseline

methods on the 80 new KPI streams. We can find that the

MCCs of PUAD and Opprentice are significantly higher than

those of other methods, which is consistent with the evaluation

results measured through the F1-score.

2) Computational efficiency.: The complexity is analyzed

by comparing the time required to detect each data point

online. When a data point is generated online, PUAD, ADS,

ATAD, and Opprentice need to extract its features firstly.

The complexity of these algorithms is mainly reflected in

the feature extraction process. According to statistics, it takes

0.501s for PUAD, 0.488s for ADS, 3.243s for ATAD, and

0.488s for Opprentice. The prediction time of other baselines

is 1.219s for Donut, 0.009s for iForest, and 0.011s for EGADS.

Since the data point arrives at an interval of 5 minutes

online, each baseline can complete the detection within this

time. Furthermore, PUAD can achieve a satisfactory detection

result by only labeling a small number of samples, which is

competitive considering both effectiveness and labeling cost.

109

TABLE IV: The detailed information of the NAB dataset

Dataset Interval
(minute)

Total
points

Anomaly
points

Anomaly
Ratio (%)

AWS 5 67740 3097 4.57%
Artificial 5 16128 624 3.87%
Twitter 5 142765 217 0.15%

Fig. 8: The effectiveness of different methods on the NAB

dataset

3) Generality.: To further evaluate the generality of PUAD,

we apply an open-source dataset, Numenta anomaly bench-

mark (NAB) [33], which consists of the time series data

collected from different scenarios including AWS, Twitter,

and Artificial, etc. All the data points have been manually

labeled. We select AWS, Artificial, and Twitter datasets in

our experiments as they are large in scale and contain more

anomalies than other datasets [11]. The detailed information of

the dataset is listed in Table IV. Fig. 8 shows the effectiveness

of all methods on the NAB dataset, and PUAD outperforms

the six baseline methods in terms of F1-score and MCC.

We can observe that when the best F1-scores are achieved,

the recall values of PUAD, ADS, Opprentice are high. It is

because PUAD, ADS, Opprentice all can easily detect most

of the anomalous segments for the following two reasons. (1)

The labeled anomalies in the NAB dataset all have significant

patterns. (2) As mentioned in Section IV-A2, we apply a

practical strategy for calculating precision, recall, and F1-

score following [11], [14], [15], where if a data point of

an anomaly segment labeled by operators is detected by a

method, we determine this segment is accurately detected.

However, both ADS and Opprentice generate much more

false alarms and thus suffer from low precision. Overall, the

evaluation experiments demonstrate that PUAD is general to

other scenarios.

C. Ablation Study

In this section, we evaluate the effectiveness of active learn-

ing, clustering, and semi-supervised learning, respectively, to

examine the contributions of the three methods.

1) Active learning: During active learning, we label the

samples that are likely to be anomalies instead of those are

near the classification boundary. We believe that this strategy

is more effective. To evaluate the effectiveness of this strategy,

we conduct the following experiments:

• Remove active learning from PUAD.

TABLE V: The best F1-scores on 9 clusters

Clusters W/o active
learning

With random
labels

Label
boundary PUAD

1 0.612 0.697 0.812 0.920
2 0.545 0.576 0.667 0.967
3 0.819 0.850 0.860 0.851
4 0.745 0.720 0.860 0.872
5 0.596 0.714 0.785 0.839
6 0.458 0.664 0.638 0.737
7 0.871 0.900 0.872 0.921
8 0.714 0.762 0.793 0.812
9 0.587 0.589 0.673 0.675

Average 0.636 0.719 0.772 0.833
Increase

ratio
31.0% 15.9% 7.9% –

Fig. 9: The effectiveness of PUAD, PUAD without clustering

(overall training and separate training), and PUAD without

semi-supervised learning

• Remove active learning from PUAD, and add the same

number of random labels as that used for active learning.

• Label the same number of positive samples (i.e., λ× π)

that are near the classification boundary in each iteration

during active learning.

TABLE V lists the best F1-scores on the nine clusters using

these three baseline methods and PUAD. We can observe that

active learning indeed improves the effectiveness of PUAD
(the second and third columns), and labeling the samples that

are likely to be anomalies is more effective than labeling the

samples near the classification boundary (the fourth column).

2) Clustering: Utilizing clustering to preprocess the his-

torical KPI streams as the first step because: (1) If training

only one model for all KPI streams, the detection result will

be inaccurate because of the diversity of KPI streams. (2) If

training an anomaly detection model separately for each KPI

stream, the overhead of anomaly detection is huge when facing

large-scale data.

To verify the effectiveness of clustering, we design the

following two methods:

(1) Train one model for all new KPI streams. We randomly

select nine (consistent with the number of clusters in PUAD)

of all historical KPI streams as the training set, called overall
training. For a new KPI stream, we randomly select one of

the nine streams together with its former 40% data points to

constitute the training set and apply its latter 60% data points

as the testing set.

(2) Train a model for each new KPI stream separately. We

utilize the former 40% data points of each new KPI stream

to train a model separately and detect anomalies for its latter

110

Fig. 10: The effectiveness of PUAD when replacing its cluster-

ing methods with K-medoids and HAC, respectively, and its

semi-supervised learning methods with co-training and self-

training, respectively

60% data points called separate training.

Fig. 9 shows the best average F1-scores of the above two

methods. We find that clustering indeed improves the effec-

tiveness of PUAD in terms of precision, recall, and F1-score.

This is because: (1) KPI streams are diverse in the pattern.

If we train only one model for all KPI streams, the pattern

of the KPI streams in the training set may be completely

different from that of the new KPI streams. Therefore, the

trained model cannot be used for the new KPI streams. (2)

If we train a separate model for each new KPI stream, it is

computationally inefficient.

As mentioned in Section III-A1, the choice of a clustering

method for PUAD is flexible. To verify this point, we replace

the clustering method, ROCKA [23], with K-medoids [34],

and Hierarchical Agglomerative Clustering (HAC) [35], re-

spectively, and evaluate the effectiveness, respectively. The

evaluation results are shown in Fig. 10, and we can find that

both K-medoids and HAC achieve approximate F1-scores to

ROCKA, respectively, showing that PUAD is robust to various

clustering methods.

3) Semi-supervised Learning: Each cluster centroid KPI

stream consists of labeled and unlabeled samples after PU

learning. When a new KPI stream is assigned to a particular

cluster, the semi-supervised learning component is applied to

train the anomaly detection model. To evaluate the effective-

ness of the semi-supervised learning component, we remove

it and only utilize the existing labeled samples to train the

anomaly detection model. The average best F1-score is shown

in Fig. 9. We can find the removal degrades the performance

of PUAD because it leads to the unlabeled samples cannot be

fully utilized.

As mentioned in Section III-A4, PUAD is also robust to

different semi-supervised learning methods. To demonstrate

this point, we replace CPLE, which is the semi-supervised

learning method used in PUAD, with co-training [36] and self-

training [37], respectively, and evaluate their effectiveness. As

shown in Fig. 10, when co-training or self-training is applied

for semi-supervised learning, PUAD achieves close F1-scores

to when CPLE is applied. It proves that the choice of semi-

supervised method for PUAD is indeed flexible.

D. Evaluation of Hyper-Parameters

To evaluate the effectiveness of PUAD’s hyper-parameters,

we calculate the average best F1-score of PUAD as the values

(a) The number of clusters (b) The length of the sliding window
in feature extraction

(c) The number of initially labeled
samples

(d) The class prior of positive

(e) The speed of PU learning (f) The ratio of pre-training

(g) The proportion of labeled sam-
ples by PU learning

Fig. 11: The F1-scores of PUAD as its parameters vary

of these hyper-parameters vary, as shown in Fig. 11. More

specifically, we increase ε from 3 to 12, w from 4 to 10, θ
from 4 to 18, π from 0.005 to 0.025, λ from 200 to 1000,

s from 0.05 to 0.40, and p from 0.60 to 0.95. We can find

that PUAD achieves approximate average best F1-scores when

these hyper-parameters vary, and it is robust to all of these

parameters. Specifically, we can observe that the value of π
does not significantly impact PUAD’s performance. Therefore,

when fewer positive samples are labeled by operators during

active learning, PUAD’s performance will not significantly

change. Therefore, considering both effectiveness and effi-

ciency, we set their parameters when PUAD achieves relatively

higher average best F1-score, i.e., ε = 9, w = 6, θ = 8, π =
0.015, λ = 200, s = 0.20, p = 0.90.

111

E. Threats to Validity

Data quality. In this work, we use two datasets, one is

public and another is collected from a real Internet company.

The ground truth is based on performance issues and incident

reports. Although operators have a wealth of experience,

manual labeling of anomalous points may still contain a small

degree of noise. We believe that the noise in these labels is

only a small percentage. Besides, we adopt widely used evalu-

ation indicators (e.g. [14], [18]) to detect continuous abnormal

segments instead of point-wise anomalies, eliminating part of

the label noise.

Granularity influence. In our experiment, the granularity

of the time series is 5 minutes, but the effectiveness of the

algorithm is not affected by the granularity. For fine-grained

data, we believe that the algorithm can still work without extra

effort. Of course, the amount of data in our experiments is

still limited. We will experiment PUAD with a larger scale of

datasets on more software service systems in the future.

V. RELATED WORK

A. Clustering KPI streams

According to [38], widely used clustering algorithms can

be roughly divided into several groups, including Partitioning,

Hierarchical, Grid-based, Model-based, and Density-based al-

gorithms.

Hierarchical-based algorithms require that the time series

have the same length, and they are difficult to get a satisfactory

result [39] when the data length is too long. Partitioning

algorithms such as K-Means [40] and K-Medoids [41] need

some hyper-parameters like the number of clusters, which

are hard to be predetermined definitely. Grid-based methods

are rarely used in time series clustering because they either

run very slowly or they are inaccurate on large datasets

[38]. Model-based methods assume that they include statistical

methods (e.g., COBWEB [42]) or neural network methods

(e.g., ART [43]) for each cluster and find the data that best

fits the models. However, these methods often follow strong

assumptions (e.g., a Gaussian mixture can model the time

series [44]), which are difficult to apply on complex datasets.

Density-based clustering algorithms (e.g., DBSCAN [25]) are

carried out according to the density distribution of samples.

These algorithms do not need to specify the number of clusters

and are more suitable for our scenario.

B. PU Learning Method

Traditionally, PU learning is suitable for lots of applications

such as text detection [45]–[47] and bioscience [48], [49].

[50] proposes UPTAN (Uncertain Positive Tree Augmented

Naive Bayes), a Bayesian network algorithm, to utilize the

dependence information among uncertain attributes to create

a classifier. [51] views pattern detection through PU learning,

analyzes time series to learn relevant indirect contexts, and

then creates a probabilistic model.

C. Anomaly Detection Algorithms

Over the years, various algorithms have been applied to

KPI anomaly detection, including supervised learning, unsu-

pervised learning, and semi-supervised learning methods.

Supervised learning methods: EGADS [12] uses Ad-

aBoost [52] to select anomalies, whose architecture mainly in-

cludes three components: forecasting, anomaly detection, and

alerting. Opprentice [10] ensembles 14 widely-used statistical

algorithms to extract features for data points and then trains a

classifier using a Random Forest. Such methods need a fully-

label dataset. However, manual labeling for a large number of

emerging KPI streams is not feasible.

Unsupervised learning methods: The iForest [31] model

assumes that anomalies are few and different, and it constructs

a tree structure to separate data points. For the points, the

closer to the root of the tree, the more anomalous. Donut

[14], Buzz [16] and Bagel [15] are VAE based models,

which focus on learning the patterns of normal data rather

than anomalies and computing reconstruction probabilities

for detection. Although these algorithms do not require data

labels, they cannot achieve satisfactory effectiveness.

Semi-supervised learning methods: [53] trained a stacked

LSTM network on non-anomalous data and used it as a predic-

tor over a number of time steps. ADS [18] used clustering and

CPLE (Contrastive Pessimistic Likelihood Estimation) [28]

to detect anomalies in time series. Semi-supervised learning

methods use unlabeled data to modify either parameters or

models obtained from labeled data alone to maximize the

learning performance. They do reduce the cost of manually

labeling, however, it is still difficult for operators to label and

examine all anomalies in those specified time series segments.

VI. CONCLUSION

This paper proposes PUAD, a PU learning-based method

to accurately detect anomalies with a small number of partial

labels for large-scale KPI streams. Clustering, PU learning,

active learning, and semi-supervised learning are combined to

achieve accurate anomaly detection and small labeling effort at

the same time. PUAD applies a novel transfer learning strat-

egy to avoid false alarms. Extensive evaluation experiments

using real-world KPI streams from a top-tier software service

provider demonstrate that PUAD achieves close accuracy to

supervised methods, and significantly outperforms existing

semi-supervised learning-based, transfer learning-based, and

unsupervised learning-based methods. In the future, we will

evaluate PUAD in more real-world scenarios and gain more

insights from case studies.

VII. ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable

feedback. The work was supported by the National Key

R&D Program of China (Grant 2019YFB1802504), National

Natural Science Foundation of China (Grant No. 61902200

and 62072264), The China Postdoctoral Science Foundation

(2019M651015), and Beijing National Research Center for

Information Science and Technology (BNRist).

112

REFERENCES

[1] S. Zhang, Y. Liu, D. Pei, Y. Chen, X. Qu, S. Tao, Z. Zang, X. Jing, and
M. Feng, “Funnel: Assessing software changes in web-based services,”
IEEE Transactions on Services Computing, vol. 11, no. 1, pp. 34–48,
2018.

[2] M. Ma, S. Zhang, D. Pei, X. Huang, and H. Dai, “Robust and rapid
adaption for concept drift in software system anomaly detection,” in
IEEE International Symposium on Software Reliability Engineering
(ISSRE), 2018.

[3] M. Ma, J. Xu, Y. Wang, P. Chen, Z. Zhang, and P. Wang, “Automap:
Diagnose your microservice-based web applications automatically,” in
Proceedings of The Web Conference 2020, 2020, pp. 246–258.

[4] M. Ma, W. Lin, D. Pan, and P. Wang, “Self-adaptive root cause
diagnosis for large-scale microservice architecture,” IEEE Transactions
on Services Computing, 2020.

[5] J. Lin, P. Chen, and Z. Zheng, “Microscope: Pinpoint performance issues
with causal graphs in micro-service environments,” in International
Conference on Service-Oriented Computing. Springer, 2018, pp. 3–
20.

[6] Z. He, P. Chen, X. Li, Y. Wang, G. Yu, C. Chen, X. Li, and Z. Zheng,
“A spatiotemporal deep learning approach for unsupervised anomaly
detection in cloud systems,” IEEE Transactions on Neural Networks
and Learning Systems, 2020.

[7] H. Ren, B. Xu, Y. Wang, C. Yi, C. Huang, X. Kou, T. Xing, M. Yang,
J. Tong, and Q. Zhang, “Time-series anomaly detection service at
microsoft,” in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2019, pp. 3009–
3017.

[8] Z. Li, Q. Cheng, K. Hsieh, Y. Dang, P. Huang, P. Singh, X. Yang,
Q. Lin, Y. Wu, S. Levy et al., “Gandalf: An intelligent, end-to-end
analytics service for safe deployment in large-scale cloud infrastructure,”
in 17th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 20), 2020, pp. 389–402.

[9] A. Gartziandia, “Microservice-based performance problem detection in
cyber-physical system software updates,” in 2021 IEEE/ACM 43rd Inter-
national Conference on Software Engineering: Companion Proceedings
(ICSE-Companion). IEEE, 2021, pp. 147–149.

[10] D. Liu, Y. Zhao, H. Xu, Y. Sun, D. Pei, J. Luo, X. Jing, and M. Feng,
“Opprentice: towards practical and automatic anomaly detection through
machine learning,” in Proceedings of the 2015 ACM Conference on
Internet Measurement Conference. ACM, 2015, pp. 211–224.

[11] X. Zhang, Q. Lin, Y. Xu, S. Qin, H. Zhang, B. Qiao, Y. Dang,
X. Yang, Q. Cheng, M. Chintalapati, Y. Wu, K. Hsieh, K. Sui,
X. Meng, Y. Xu, W. Zhang, F. Shen, and D. Zhang, “Cross-dataset
time series anomaly detection for cloud systems,” in 2019 USENIX
Annual Technical Conference (USENIX ATC 19). Renton, WA:
USENIX Association, Jul. 2019, pp. 1063–1076. [Online]. Available:
https://www.usenix.org/conference/atc19/presentation/zhang-xu

[12] N. Laptev, S. Amizadeh, and I. Flint, “Generic and scalable framework
for automated time-series anomaly detection,” in Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM, 2015, pp. 1939–1947.

[13] G. Yu, Z. Cai, S. Wang, H. Chen, F. Liu, and A. Liu, “Unsupervised
online anomaly detection with parameter adaptation for kpi abrupt
changes,” IEEE Transactions on Network and Service Management,
vol. 17, no. 3, pp. 1294–1308, 2019.

[14] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao, D. Pei,
Y. Feng et al., “Unsupervised anomaly detection via variational auto-
encoder for seasonal kpis in web applications,” in Proceedings of the
2018 World Wide Web Conference on World Wide Web. International
World Wide Web Conferences Steering Committee, 2018, pp. 187–196.

[15] Z. Li, W. Chen, and D. Pei, “Robust and unsupervised kpi anomaly de-
tection based on conditional variational autoencoder,” in 2018 IEEE 37th
International Performance Computing and Communications Conference
(IPCCC). IEEE, 2018, pp. 1–9.

[16] W. Chen, H. Xu, Z. Li, D. Peiy, J. Chen, H. Qiao, Y. Feng, and Z. Wang,
“Unsupervised anomaly detection for intricate kpis via adversarial train-
ing of vae,” in IEEE INFOCOM 2019-IEEE Conference on Computer
Communications. IEEE, 2019, pp. 1891–1899.

[17] Y.-L. Zhang, L. Li, J. Zhou, X. Li, and Z.-H. Zhou, “Anomaly detection
with partially observed anomalies,” in Companion of the The Web
Conference 2018 on The Web Conference 2018. International World
Wide Web Conferences Steering Committee, 2018, pp. 639–646.

[18] J. Bu, Y. Liu, S. Zhang, W. Meng, Q. Liu, X. Zhu, and D. Pei, “Rapid
deployment of anomaly detection models for large number of emerging
kpi streams,” in 2018 IEEE 37th International Performance Computing
and Communications Conference (IPCCC), 2018, pp. 1–8.

[19] J. Zhang, Z. Wang, J. Yuan, and Y.-P. Tan, “Positive and unlabeled
learning for anomaly detection with multi-features,” in Proceedings of
the 25th ACM International Conference on Multimedia, ser. MM ’17.
New York, NY, USA: Association for Computing Machinery, 2017, p.
854–862. [Online]. Available: https://doi.org/10.1145/3123266.3123304

[20] G. He, Y. Duan, Y. Li, T. Qian, J. He, and X. Jia, “Active learning
for multivariate time series classification with positive unlabeled data,”
in 2015 IEEE 27th International Conference on Tools with Artificial
Intelligence (ICTAI), 2015, pp. 178–185.

[21] M. Huijser and J. C. van Gemert, “Active decision boundary annotation
with deep generative models,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 5286–5295.

[22] N. Zhao, J. Zhu, R. Liu, D. Liu, M. Zhang, and D. Pei, “Label-less: A
semi-automatic labelling tool for kpi anomalies,” in IEEE INFOCOM
2019 - IEEE Conference on Computer Communications, 2019, pp. 1882–
1890.

[23] Z. Li, Y. Zhao, R. Liu, and D. Pei, “Robust and rapid clustering of
kpis for large-scale anomaly detection,” Quality of Service (IWQoS),
pp. 1–10, 2018.

[24] J. Paparrizos and L. Gravano, “k-shape: Efficient and accurate clustering
of time series,” in Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data. ACM, 2015, pp. 1855–1870.

[25] J. Shen, X. Hao, Z. Liang, Y. Liu, W. Wang, and L. Shao, “Real-
time superpixel segmentation by dbscan clustering algorithm,” IEEE
Transactions on Image Processing, vol. 25, pp. 5933–5942, 2016.

[26] O. Trull, J. C. Garcı́a-Dı́az, and A. Troncoso, “Initialization methods for
multiple seasonal holt–winters forecasting models,” Mathematics, vol. 8,
no. 2, p. 268, 2020.

[27] L. Kegel, M. Hahmann, and W. Lehner, “Feature-based comparison
and generation of time series,” in Proceedings of the 30th International
Conference on Scientific and Statistical Database Management, ser.
SSDBM ’18. New York, NY, USA: Association for Computing
Machinery, 2018. [Online]. Available: https://doi.org/10.1145/3221269.
3221293

[28] M. Loog, “Contrastive pessimistic likelihood estimation for semi-
supervised classification,” IEEE transactions on pattern analysis and
machine intelligence, vol. 38, no. 3, pp. 462–475, 2016.

[29] P. A. Traganitis, Y. Shen, and G. Giannakis, “Network topology infer-
ence via elastic net structural equation models,” 2017 25th European
Signal Processing Conference (EUSIPCO), pp. 146–150, 2017.

[30] K. A. Alharthi, A. Jhumka, S. Di, F. Cappello, and E. Chuah, “Sentiment
analysis based error detection for large-scale systems,” in 2021 51st
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 2021, pp. 237–249.

[31] R. Wang, F. Nie, Z. Wang, F. He, and X. Li, “Multiple features and
isolation forest-based fast anomaly detector for hyperspectral imagery,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 9,
pp. 6664–6676, 2020.

[32] T. Buda, B. Caglayan, and H. Assem, DeepAD: A Generic Framework
Based on Deep Learning for Time Series Anomaly Detection, 06 2018,
pp. 577–588.

[33] A. Lavin and S. Ahmad, “Evaluating real-time anomaly detection
algorithms – the numenta anomaly benchmark,” 2015 IEEE 14th Inter-
national Conference on Machine Learning and Applications (ICMLA),
pp. 38–44, 2015.

[34] M. Tiwari, M. J. Zhang, J. Mayclin, S. Thrun, C. Piech, and
I. Shomorony, “Banditpam: Almost linear time k-medoids clustering
via multi-armed bandits,” in Advances in Neural Information Processing
Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and
H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020, pp. 10 211–
10 222. [Online]. Available: https://proceedings.neurips.cc/paper/2020/
file/73b817090081cef1bca77232f4532c5d-Paper.pdf

[35] S. Naumov, G. Yaroslavtsev, and D. Avdiukhin, “Objective-based
hierarchical clustering of deep embedding vectors,” Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 35, no. 10, pp.
9055–9063, May 2021. [Online]. Available: https://ojs.aaai.org/index.
php/AAAI/article/view/17094

[36] W. Zhan and M.-L. Zhang, “Inductive semi-supervised multi-
label learning with co-training,” in Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and

113

Data Mining, ser. KDD’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 1305–1314. [Online]. Available:
https://doi.org/10.1145/3097983.3098141

[37] J.-C. Feng, F.-T. Hong, and W.-S. Zheng, “Mist: Multiple instance self-
training framework for video anomaly detection,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2021, pp. 14 009–14 018.

[38] S. Aghabozorgi, A. Seyed Shirkhorshidi, and T. Ying Wah, “Time-series
clustering – a decade review,” Information Systems, vol. 53, pp. 16
– 38, 2015. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0306437915000733

[39] K. Putri and S. Halim, “Currency movement forecasting using time
series analysis and long short-term memory,” 2020.

[40] J. Zhu, Z. Jiang, G. D. Evangelidis, C. Zhang, S. Pang, and Z. Li,
“Efficient registration of multi-view point sets by k-means clustering,”
Information Sciences, vol. 488, pp. 205–218, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0020025519302221

[41] C. Oktarina, K. A. Notodiputro, and I. Indahwati, “Comparison of k-
means clustering method and k-medoids on twitter data,” Indonesian
Journal of Statistics and Its Applications, vol. 4, no. 1, pp. 189–202,
2020.

[42] D. Fisher, “Knowledge acquisition via incremental conceptual cluster-
ing,” Machine Learning, vol. 2, pp. 139–172, 09 1987.

[43] G. A. Carpenter and S. Grossberg, “A massively parallel architecture
for a self-organizing neural pattern recognition machine,” Computer
Vision, Graphics, and Image Processing, vol. 37, no. 1, pp. 54 – 115,
1987. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0734189X87800142

[44] M. Marbac and M. Sedki, “Variable selection for model-based clustering
using the integrated complete-data likelihood,” Statistics and Computing,
vol. 27, pp. 1049–1063, 2017.

[45] J. Han, W. Zuo, L. Liu, Y. Xu, and T. Peng, “Building text classifiers
using positive, unlabeled and ‘outdated’examples,” Concurrency and
Computation: Practice and Experience, vol. 28, no. 13, pp. 3691–3706,
2016.

[46] K. Ren, H. Yang, Y. Zhao, W. Chen, M. Xue, H. Miao, S. Huang, and
J. Liu, “A robust auc maximization framework with simultaneous outlier
detection and feature selection for positive-unlabeled classification,”
IEEE transactions on neural networks and learning systems, vol. 30,
no. 10, pp. 3072–3083, 2018.

[47] M. Li, S. Pan, Y. Zhang, and X. Cai, “Classifying networked text
data with positive and unlabeled examples,” Pattern Recognition Letters,
vol. 77, pp. 1–7, 2016.

[48] M. Claesen, F. De Smet, J. A. Suykens, and B. De Moor, “A robust
ensemble approach to learn from positive and unlabeled data using svm
base models,” Neurocomputing, vol. 160, pp. 73–84, 2015.

[49] J. Hernández-González, I. Inza, and J. A. Lozano, “Learning from
proportions of positive and unlabeled examples,” International Journal
of Intelligent Systems, vol. 32, no. 2, pp. 109–133, 2017.

[50] H. Gan, Y. Zhang, and Q. Song, “Bayesian belief network for posi-
tive unlabeled learning with uncertainty,” Pattern Recognition Letters,
vol. 90, pp. 28–35, 2017.

[51] V. Vercruyssen, W. Meert, and J. Davis, “Now you see it, now you
don’t!” Detecting Suspicious Pattern Absences in Continuous Time
Series, 01 2020, pp. 127–135.

[52] S. Zhu, X. Dong, and H. Su, “Binary ensemble neural network: More
bits per network or more networks per bit?” 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 4918–4927,
2019.

[53] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, “Long short term
memory networks for anomaly detection in time series,” in ESANN,
2015.

114

