Jump-Starting Multivariate Time Series

Anomaly Detection for Online Service Systems




Service Reliability is Important
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Real-World Revenue Loss

A study of 584 U.S. based data center professionals found that
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Value A

Univariate Time Series (UTS)

Anomaly Detection
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Building anomaly detectors for
a univariate time series
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Univariate Time Series (UTS)
Value 4 Anomaly Detection

Not feasible for thousands of
monitoring time series

Building anomaly detectors for
l& a single time series
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Univariate Time Series (UTS)
Value 4 Anomaly Detection

Building anomaly detectors for
a single time series

Not feasible for thousands of
monitoring time series

May lead to alert storms [seip20)
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Multivariate Time Series (MTS)
Anomaly Detection

tep. outsegs | | Capture status of the overall
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cpu_user
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[KDD18, KDD19, KDD20, KDD21, AAAI19, AAAI21, NeurlPS20]
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Multivariate Time Series (MTS)
Anomaly Detection

tcpext listendrops

tcp outsegs

cpu_user

cpu_system

load one
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21 2 + 23 24
Alert

tcp attemptfails

Capture status of the overall
service system

Intuitive & effective & efficient

[KDD18, KDD19, KDD20, KDD21, AAAI19, AAAI21, NeurlPS20]

¥

Deep learning based approaches
(LSTM, LSTM-VAE, ConvLSTM...)



Initialization Time

Software change (concept drift) -> Anomaly detection -> Initialize
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A service is deployed or updated, and The anomaly detection
anomaly detection approach is launched approach becomes effective
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Deep Learning Based Approaches:
Long Initialization Time

Offline Training . Accumulating training data

TS L Training process
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A service is deployed or updated, and The anomaly detection
anomaly detection approach is launched approach becomes effective
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Deep Learning Based Approaches:
Long Initialization Time

Approach
MSCRED [aaaii9] 7 13 - 10
OmniAnomaly [kbpio) 17 15 17 16.3
LSTM-NDT [xpps) 69 36 - 52.5
Donut™ pwwwis) 102 110 99 103.6

* denotes UTS anomaly detector, which can be used for MTS by combining it with majority vote

Days!

[ Inappropriate for newly deployed or updated systems ]
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Incremental Retraining

Offline Online
5 Time
Retraining Time
[IMC15]
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(For a fair comparison)
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Incremental Retraining Cannot Ensure
Satisfactory Performance
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[ Non-robustness and considerable training cost ]
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Outline

The drawback of deep learning based approaches
=» Long initialization time

Our key idea of compressed sensing and its challenges
JumpStarter approach

Evaluation
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Key Idea: Compressed Sensing (CS)

* CS can reconstruct time series with low energy components.
* Anomalies are always high energy components.

* CS uses a fixed-length window to initialize.
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[First attempt to use CS for multivariate time series anomaly detection]
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Two Strawman Solutions Using CS

Examples of CS-based anomaly detection when the MTS is reconstructed as
a whole matrix (a) or as separate UTS (b)

Time Series  -—--- Reconstructed
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Problem of Random Gaussian Sampling

* The sampled matrix: guarantee Restricted Isometry Property (RIP)

[Information Theory 15]

Time Series

0.81
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[ Sampling from anomalies can degrade the detection performance ]
ITmc
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JumpStarter #

Jump-Starting Multivariate Time Series

Anomaly Detection

for Online Service Systems
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JumpStarter Overview
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JumpStarter Overview
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JumpStarter Overview
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JumpStarter Overview

[ offine | 278

A

Multivariate Processing  ghape-Based
Time Series Clustering
Online For Each
Processing Sliding Group  Outlier-Resistant

Window Sampling

} }
x b
M EVT Em-} « Concatenate E’:

Anomalies | Threshold Anomaly Groups  Compressed Sensing
Score Reconstruction

22



JumpStarter Offline Processing

Multivariate | Processing  ghape-Based
Time Series ' Clustering
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Shape-Based Clustering

* Strawman (a) cannot deal with different shapes of time series

* Shape-based distance (s.n.a151 + hierarchical clustering

Time Series ~ ------ Reconstructed

/Shape #1

(a) As a Whole (b) Separately
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* Strawman (a) cannot deal with different shapes of time series

Shape-Based Clustering

* Shape-based distance sizwoa5) + hierarchical clustering

An example of clustering the MTS into three clusters

Cluster of Univariate Time Series

Explanation

W N -

rx-pkts-eth@, rx-bytes-etho
tcp-insegs, tcp-outsegs, tx-pkts-eth@
cpu-ctxt, cpu-user, cpu-system, cpu-nice

# received packets/bytes
TCP network metrics
CPU utilization metrics
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JumpStarter Online Processing
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Outlier-Resistant Sampling

Domain-specific insights:
* Anomalies are usually outliers in an observation window.

* The value of time series has time locality.
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Outlier-Resistant Sampling
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Outlier-Resistant Sampling
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Outlier-Resistant Sampling
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(c) Results

(b) Sampling

(a) Initialize
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JumpStarter Online Processing

e [ | Y

Multivariate
Time Series

Online @ For Each

Processing Sliding Group " Outlier-Resistant
Window Sampling

} }
x oo
M EVT Y;m-.} Loncatenate E':

Anomalies | Threshold Anomaly Groups  Compressed Sensing
Score Reconstruction

31



Compressed Sensing Reconstruction

 Multivariate time series: X, =[x},x2.., x?|”

* Compressed sensing reconstruction: AX’,=B , calculating x,
e Ais calculated as: A =¢(D®DT), D is the transform of X;
* B is the sampling result

* Calculation: CVXPY (convex optimization tool) iz

* Anomaly score: measuring the differences between X: and X,

* Choosing threshold: Extreme Value Theory (EVT) koo
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JumpStarter Initialization Time: 20 mins

Y omine 3787

Multivariate | Processing  ghape-Based
Time Series Clustering
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A learning-based approach has to exp/icit/y learn the
5 probability distribution of a multivariate time series )
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Our JumpStarter: the reconstructed multivariate time
series /mplicitly inherits the normal behavior
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Outline

The drawback of deep learning based approaches
=>» Long initialization time

Our key idea of compressed sensing and its challenges
=» Reconstruction & Sampling

JumpStarter approach
=» Shape-Based Clustering & Outlier-Resistant Sampling

Evaluation
=>» Company A (28 service systems) & Company B (30 service systems)
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Evaluation: Accuracy

Average F1 Score of JumpStarter and baseline approaches

D1 D2 D3

B RRCF ®WLESINN ®MSCRED ®=OmniAnomaly ™ jumpStarter
[ICML16] [ICDMI15]  [AAAI19] [KDD19]
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Evaluation: Efficiency

The initialization time (IT) and detection time (DT) comparison

Approach | RRCF | LESINN | MSCRED Omni- JumpStarter
Anomaly

IT (min) 20 20 >86400 >86400 20
DT (ms) 41.24 118.63 122.82 191.86 127.13
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Case Study
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(b) Software Change
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Conclusion

To adapt to frequent changes in online service systems, multivariate time
series, anomaly detection should be robust and can be quickly initialized.

JumpStarter adopts the Compressed Sensing technique
* Reconstruction challenge =» Shape-based clustering
* Sampling challenge =» Outlier-resistant sampling

Evaluation

* Real-world online service systems of two Internet companies

* Achieving an average F1 score of 94.1%, initialization time 20 minutes
* https://github.com/NetManAlOps/JumpStarter
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mmhl16@mails.tsinghua.edu.cn
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