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LogClass: Anomalous Log Identification and
Classification With Partial Labels

Weibin Meng

Abstract—Logs are imperative in the management process of
networks and services. However, manually identifying and classi-
fying anomalous logs is time-consuming, error-prone, and labor-
intensive. Additionally, rule-based approaches cannot tackle the
challenges underlying anomalous log identification and classifi-
cation resulting from new types of logs and partial labels. We
propose LogClass, a framework to automatically and robustly
identify and classify anomalous logs for network and service
based on partial labels. LogClass combines a word representa-
tion method, a positive and unlabeled learning (PU learning)
model, and a machine learning classifier. Besides, we propose a
novel Inverse Location Frequency (ILF) method to weight the
words of logs in feature construction properly. We evaluate the
performance of LogClass based on 18 million+ real-world switch
logs and six public log datasets. It achieves 99.56% and 98% F1
scores in anomalous log identification on switch logs and publicly
available supercomputer logs, respectively, and very-close-to-one
F1 score in anomalous log classification. Moreover, we have con-
ducted extensive experiments to demonstrate LogClass’ superior
performance in addressing partial labels and new types of logs.

Index Terms—AIOps, service management,
anomaly identification, anomaly classification.
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I. INTRODUCTION

ITH the rapid development of the Internet, Web
Wservices have penetrated all aspects of society. With
the explosion of the number of Web services, the stability
of network and service is becoming more and more impor-
tant. Since network and service anomalies can significantly
impact user experience and/or company income, operators
continuously monitor their status [1]-[4]. Accurate and timely
anomaly identification and classification can help operators
quickly mitigate any outage and locate its root cause, which
is crucial for network and service.

Logs (as shown in Table I) are one of the most valu-
able data for network and service management. Although key
performance indicator (KPI, e.g., CPU utilization, memory
utilization) curves can indicate whether a service is anoma-
lous [1]-[4], they are of little help for anomaly classification
and localization when they are used in isolation [5], [6],
for the reason that KPI curves usually contain too little
information. For example, an anomaly (say a level shift) in
the curve of CPU utilization only indicates that the CPU uti-
lization increases sharply, but it cannot tell why it happens.
On the contrary, logs describe a vast range of (anomalous)
events, which are quite valuable for anomaly classification and
localization. For example, when a switch generates a log of
“System is rebooting now”, operators can determine that the
switch is anomalous, classify this anomaly into the category
of “SYSTEM_REBOOT”, and conclude that this anomaly is
caused by a system reboot.

The rich information and the pervasiveness of logs enable
a wide variety of management and diagnostic tasks, such
as monitoring service status [7], understanding network
events [8], identifying anomalies [9] and predicting network
device failures [10]. As for log-based anomaly identification,
there are many categories, such as anomalous individual log
identification, which aims to identify the anomalous individ-
ual logs, anomalous log sequence identification [7], [9], [11]
tries to capture the sequential patterns of anomalous logs,
quantity anomaly identification of a single type of logs [12],
and anomalous log quantitative relationship identification [13],
which is based on the natural quantitative relationship of logs.
In this article, we focus on single log anomaly identification
and classification.

Generally, operators identify and classify anomalous
individual logs using rule-based approaches (e.g., regular
expressions [14]), which are usually manually maintained by
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TABLE I
EXAMPLES OF LOGS

Source Timestamp Message Type Detailed Message
Switch Jun 12 19:03:27 SIF Interface te-1/1/59, changed state to down
Supercomputer Jun 13 20:22:03 ERROR EDRAM 0x0157 identified and corrected over 27362 seconds
~t. dfs.DataNodePacketResponder: PacketResponder 1
HDES Jun 18 05:21:03 INFO for block blk_-1608999687919862906 terminating
Router Jun 15 13:46:43 OSPF Neighbour(rid:10.231.0.43, addr:10.231.39.61) on vlan23,

changed state from Exchange to Loading

operators. They classify logs into healthy logs and (multiple
categories of) anomalous logs. However, the increasing scale
and complexity of modern network and service make the vol-
ume of logs explode, and tens of millions of logs are generated
in a large datacenter. Rule-based techniques, suffering from
inflexibility and labor intensiveness, are thus not effective,
scalable and applicable to such a scale.

In this work, we aim to automatically and accurately iden-
tify and classify anomalous logs, as shown in Fig. 1. However,
it faces three main challenges as follows.

1) Partial labels: In spite of those labor-intensive rule-
based methods being used by operators, many anoma-
lous logs remain unidentified because some anomalies
can fly under operators’ radar. Therefore, a large number
of anomalous logs are unlabeled. In addition, operators
usually do not label healthy logs because of their huge
number and triviality. Consequently, traditional machine
learning approaches, needing fully labeled samples as
input, cannot address this partially labeled challenge.

2) New types of logs: Operators continuously conduct soft-
ware/firmware upgrades on network and service to intro-
duce new features, fix bugs or improve performance,
which can generate new types of logs [15]. The manually
maintained regular expressions, which are not updated
frequently, cannot identify or classify these new types
of logs.

3) Feature construction: In classical methods for construct-
ing feature vectors from texts, e.g., bag-of-words, a log
(text) is represented as a vector of its words. In general,
each element in the vector denotes the estimated impor-
tance (weight) of a word [16]. Existing word weighting
methods such as TF-IDF [17], assuming that frequently
occurring words are not important, are not suitable in
our scenario because the assumption is not always true
for logs [18].

To address the above challenges, we propose LogClass, a
framework to identify and classify anomalous logs based on
partial labels. The core idea of LogClass is that most logs are
semi-structured texts “printf”’-ed by network and service, and
logs of the same anomaly category share common patterns
in terms of the word combination. In addition, the intuitions
and methods in natural language processing can be applied or
improved for anomalous log classification. LogClass consists
of two main components, i.e., the offline learning component
and the online identification and classification component. In
the offline learning component, LogClass preprocesses logs

First category of
anomalous logs

Anomalous logs

Anomaly

classification

Anomaly

intl

identification

Second category of
anomalous logs

M

Logs Healthy logs

Fig. 1. Problem definition of anomalous log identification and classification.

and generates feature vectors weighting with TF-ILF (term
frequency-inverse location frequency). Then LogClass applies
positive and unlabeled learning (PU Learning), a classification
model based on positive and unlabeled data [19], to train an
anomaly identification model, and a machine learning clas-
sifier to train an anomaly classification model, respectively.
Similarly, in the online identification component, using the
trained anomaly identification/classification model, LogClass
determines whether a new log is anomalous, and if so, it
determines its anomaly category.

We evaluate LogClass based on both real-world switch
logs collected from a top global search engine and public
log datasets [20] collected from BGL (Blue Gene/L super-
computer). For anomalous log identification, the accuracies
(in terms of F1 Score) of LogClass are 99.56% and 98%
on switch logs and the BGL dataset, respectively. Moreover,
LogClass achieves very-close-to-one accuracy (in terms of
Micro-F1 Score and Macro-F1 Score) in anomalous log classi-
fication. Because the introduction of PU learning, the accuracy
of LogClass remains stable as the ratio of unlabeled logs
increases, demonstrating its superior performance in handling
partial labels. In addition, LogClass achieves very-close-to-one
F1 Score even when new types of logs appear. In the end, we
have evaluated the importance of TF-ILF.

The contributions of this article can be summarized as
follows:

1) We use the framework of PU learning to address the

challenges introduced by partial labels.

2) LogClass automatically and robustly measures the simi-
larity of the word combination between a given log and
labeled anomalous logs, which successfully addresses
the challenge of new types of logs.

3) We propose TF-ILF, a novel, simple yet effective method
to properly weight the words of logs in feature vector
construction.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on June 23,2021 at 06:57:21 UTC from IEEE Xplore. Restrictions apply.



1872

TABLE 11
EXAMPLES OF RULES FOR LABELING ANOMALOUS LOGS

¥Power.*recovered.*
* ISIS: Neighbor.*Down. *
neighbor.* Down Interface flap.*

4) We have performed extensive evaluation experiments on
LogClass using real-world switch logs and public log
datasets. Moreover, we have open-sourced! the imple-
mentation of LogClass, and hope that it will be useful
for future researches.

The rest of this article is organized as follows. Section II
provides the background and motivation of our problem. The
design of LogClass is presented in Section III. The evaluation
experiments are described in Section IV, followed by a brief
review of related works in Section V. Finally, we conclude
our work in Section VI.

II. BACKGROUND

In this section, we first describe the characteristics of logs
in Section II-A, followed by the introduction of rule-based
approaches in Section II-B. In the end, log identification and
classification are formulated in Section II-C.

A. Logs

Logs are imperative in the management process of network
and service. They record detailed runtime information that
allows operators to monitor network and service status.
Additionally, logs are so general that almost all network
devices and services generate them. A log message is essen-
tially a semi-structured text “printf”’-ed by network and ser-
vice. Table I lists four examples of log messages. As the table
shows, a log message usually has a primitive structure con-
taining at least four fields, including the source of logs, a
timestamp indicating when this message is generated, a mes-
sage type describing its rough characteristics, and a detailed
message depicting the details of the event that this log repre-
sentation. The message type field, on the one hand, is too
rough and ambiguous to be used to identify and classify
anomalous logs [10] accurately. On the other hand, the detailed
message field describes the runtime status of network and ser-
vice in detail, and thus operators pay the most attention to this
field. In this article, we also focus on the detailed message
field. Henceforth, we use “log” or “log message” for short, to
denote the detailed message field of a log.

B. Rule-Based Approaches

Typically, operators need to manually define the rules of
anomalous logs in order to automatically identify and classify
anomalous logs in the future. The simplest rule is to match
keywords including “loss”, “lost”, etc. However, this method
can lead to false alarms. For instance, when a network device
tries to PING another one, a log message, e.g., “packets :

lLogClass is available on Github: https://github.com/NetManAIOps/
LogClass.
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Fig. 2. Four types of logs: anomalous, healthy, labeled, and unlabeled logs.

sent = 5, received = 5, lost = 0 (0% loss)”, will be generated
to record this event. Although this log message contains the
word “loss”, it is not anomalous. As listed in Table II, another
popular way to add rules is to manually configure regular
expressions that match with anomalous logs based on domain
knowledge. However, it has several drawbacks as follows:

1) Inflexibility: Regular expressions are too rigorous for
matching anomalous logs. That is, a regular expres-
sion cannot match an anomalous log when the log is
not in its exact format, even if the difference is only
a trivial word, a whitespace, or a symbol (see Table X
for more details). Besides, the anomalous logs belong-
ing to the same anomaly category but from different
types of network devices or services are likely to have
some minor differences. More specifically, the anoma-
lous logs generated by two different types of devices are
very similar in semantics but different in syntax [21].
Therefore, the similar anomaly events from different
devices, although different in syntax, have similar pat-
tern in semantics. Regular expression, however, cannot
capture these patterns. Therefore, the rule-based method
is not flexible and generic for anomalous log identifica-
tion and classification. Note that the inflexibility is not
a problem induced by regular expressions but resulting
from regular expressions produced from partial labels of
historical logs.

2) Labor intensive: All the regular expressions are manually
configured and updated by operators. Because a large
number of new types of anomalous logs (thousands of
per day) are generated, and operators have to configure
regular expressions for these logs, manually configuring
regular expressions costs huge amounts of work. Besides,
Kabinna et al. [22] found that 20%-45% of the logging
statements in many applications change throughout their
lifetime. Although some template extraction methods [20]
can be applied to assist operators in generating regular
expressions, the generated regular expressions should be
further manually labelled (anomalous or not) by operators.
Considering the large number of regular expressions, it
is still labor expensive.

C. Log Identification and Classification

As mentioned above, there are three log anomaly detec-
tion/identification scenarios: anomalous individual log iden-
tification, anomalous log sequence identification [9] and
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TABLE III
TWELVE EXAMPLES OF ANOMALY CATEGORY

FAN_RECOVERED OSPF_NEIGHBOR_CHANGE  FAN_FAILED
BOARD_DISABLE BGP_NEIGHBOR_CHANGE POWER_DOWN
SYSTEM_REBOOT INTERFACE_DOWN PORT_DOWN
PROTOCOL_DOWN  OSPF_DOWN MODEL_OUT

anomalous log quantitative relationship identification [13].
There are many types of anomalies in logs, such as
sequential anomaly (LogAnomaly [7], LogRobust [11] and
Deeplog [9]), quantitative relation anomaly (Invariants min-
ing, [23], LogCluster [13]), quantity anomaly of a single
template (ADELE [12]), and so on. Most of them ignore vari-
ables (parameter values), because the monitoring data of these
variables can form metric streams, the anomaly of which can
be detected by time series based anomaly detection methods,
such as Donut [4] and Buzz [2]. In our paper, we focus on
single log anomaly detection/identification, e.g., the logs with
the pattern “** power down**” are anomalous and every time
they appear represents a device anomaly.

In our scenario, there are four types of logs as shown
in Fig. 2: anomalous logs, healthy logs, unlabeled logs and
labeled logs, defined as follows.

o Anomalous log: An anomalous log indicates that an
anomaly occurs on the network/service. Each anomalous
log belongs to a specific anomaly category.

e Healthy log: A healthy log is the one that does not denote
any anomaly. That is, it describes a healthy event or
status.

o Unlabeled log: As aforementioned, operators are not able
to label (identify) all the anomalous logs. The anomalous
logs that remain unidentified together with the healthy
logs constitute the set of unlabeled logs.

e Labeled log: The identified anomalous logs are the
labeled logs. Generally, operators manually configure reg-
ular expressions to label logs. They do not configure
regular expressions for healthy logs because it does not
benefit detecting anomalous logs.

If a log is anomalous, it can be classified into a specific
anomaly category, which is based on the event it repre-
sents. Table III shows 12 examples of anomaly categories.
For example, the anomalous log “Interface te-1/1/59, changed
state to down” (L; in Table I), which denotes that the
interface is down, can be classified into the anomaly category
“INTERFACE_DOWN?” (in Table III).

Typically, operators label anomalous logs using regular
expressions (see Table II). However, due to its inflexibility
and labor-intensiveness as mentioned in Section II-B, opera-
tors cannot configure the regular expressions for all anomalous
logs, and a large number of anomalous logs are flying under
operators’ radar. More specifically, only a fraction of anoma-
lous (positive) logs are labelled, and neither the remaining
anomalous (positive) logs nor the normal (negative) logs are
labelled. PU leaning is designed for the scenario where only
a fraction of positive samples are labeled, and the remain-
ing positive samples as well as all the negative samples are
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unlabeled [24]-[28]. PU learning is different from supervised
learning in that the later needs to obtain the labels of all the
positive and negative samples of the training set. Furthermore,
it is distinguished from semi-supervised learning by that the
later needs a part of positive samples as well as a part of
negative samples to be labeled [29]. Therefore, PU learning
methods, rather than supervised learning nor semi-supervised
learning methods, can be applied for our scenario. Therefore,
we try to design an automatic and robust anomalous log iden-
tification and classification method to identify and classify all
anomalous logs.

III. DESIGN OF LOGCLASS

In this section, we present the framework of LogClass. The
main objective of LogClass is to automatically and accurately
identify and classify anomalous logs for network and service
using partial labels. We first introduce the design overview of
LogClass in Section III-A, and then explain how to preprocess
logs in Section III-B. Feature extraction of LogClass is elab-
orated in Section III-C, followed by the description of offline
learning and online classification in Section III-D.

A. Design Overview

As aforementioned, a log is a semi-structured text “printf”-
ed by network and service. After extensive investigations on
real-world logs, we have the following observations:

1) Anomalous logs of the same anomaly category usu-
ally share common patterns. Specifically, they share a
common combination of “important” words. If we can
accurately obtain this combination, we can easily deter-
mine whether a log belongs to some anomaly category.
If the log does not belong to any anomaly category, it
is a healthy log.

2) To get the above combinations of “important” words,
we need to identify which words in a log are “impor-
tant” and assign higher weights to these words. If a word
frequently appears in a log, it is likely an “important”
word. However, if it appears in different logs with differ-
ent “locations”, it is likely an article (say, “a”, “the”),
or a preposition (say, “in”, “on”), or a conjunction (say,
“and”, “but”), and thus it is not an “important” word.

Based on the above observations, we design LogClass as
shown in Fig. 3. LogClass consists of two main compo-
nents: an offline learning component and an online classifica-
tion component. In the offline learning component, LogClass
first preprocesses logs and filters parameters (Section III-B).
Then LogClass constructs features using the bag-of-words
model, which is weighted by our novel TF-ILF method
(Section III-C). Finally, LogClass trains a PU learning based
binary classifier, and an SVM-based multiclass classifier
(Section III-D). Similarly, in the online classification com-
ponent, LogClass preprocesses real-time logs and extracts
features, after which LogClass determines whether a log
is anomalous using the trained binary classifier, and if so,
classifies it into an anomaly category using the multiclass
classifier.
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Fig. 3. The Framework of LogClass.

TABLE IV
FORMAT RULES OF TEXT WORDS AND PARAMETER WORDS

Category  Format rules Example

Text Letters change
Symbols and letters Vlan-interface
Symbols (@ &

Parameter Numbers 1512028952
Numbers and symbol 192.168.64.107
Numbers and letters ~ vlan23

B. Log Preprocessing

In general, simple log preprocessing using domain knowl-
edge, e.g., removing IP addresses, is able to improve the
performance of log parsing and in turn increases anoma-
lous log identification and classification [30]. Therefore, we
preprocess logs before extracting features from them.

As is with [31], we classify the words of logs into fext
words and parameter words. Text words are those depicting
the events occurring on network and service. On the con-
trary, parameter words are those variables (say, IP address,
interface ID, device ID) that are usually vary from one log
to another. It is quite difficult for the log-based anomaly
detection/identification/classification methods to capture pat-
terns from these parameter words. Consequently, in this article
we ignore these parameter words following popular log-
based anomaly detection methods, e.g., Invariants Mining [23],
PCA [32], LogRubust [11], and LogAnomaly [7].

We classify text words and parameter words using simple
format rules based on operators’ domain knowledge. Table IV
lists the format rules and some examples of text words and
parameter words, respectively. Based on these rules, we fil-
ter parameter words and preserve text words for each log.
Note that operators can change these rules based on their own
domain knowledge.

C. Feature Construction

Since logs are semi-structured texts, they cannot be directly
input into machine learning-based classifiers. In this work, we
apply the bag-of-words model [16], one of the most popular
methods in natural language processing, to construct features

from documents. In this model, a log is represented as a vec-
tor of its words, and the value of each element in the vector
denotes the estimated importance (weight) of a word [16].
Given that the classical weighting method, TF-IDF, is not suit-
able for our scenario, we propose a novel method, TF-ILF, to
properly weight the words of logs based on domain knowledge
as follows.

1) TF-ILF: TF-IDF, a simple yet effective weight model,
is the most widely used weighting scheme for the bag-of-
words representation [33]. As the term implies, TF refers to
term frequency. The IDF (inverse document frequency) is a
measure of how much information the word provides, namely,
whether the term is common or rare across all documents.
Formally, the IDF value of word w is IDF, = log(nﬂw), where
N is the total number of documents, and n,, is the number of
documents in which w appears. This model suggests that the
more documents (logs in this case) a word appears in, the less
important this word is, which is inconsistent with the second
observation mentioned in Section III-A. For example, both L
and L4 in Fig. 4 indicate the same event — an interface of the
switch changes its state to down. If this type of events occur
frequently in a period of time (this often happens because of
interface flap), it will generate lots of logs like L1 and Ly.
As a result, a large number of the words “Interface” will be
generated, and in turn, the word “Interface” will be assigned
a low weight in TF-IDF. However, the word “Interface” is
a significant word for log classification based on operators’
domain knowledge.

Motivated by the above observations, we propose a novel
method, TF-ILF, to weight every word of device logs for
the bag-of-words representation. It consists of TF and ILF as
follows.

TF refers to term frequency. The more times a word appears
in a log, the more significant this word is estimated to be.

ILF measures how many different locations a word appears
in. Specifically, a location I, € L of a word, where L is the
longest length of all the logs, is defined as the ordinal position
(the kth word) where this word appears. We define the ILF of
word w as

ILF,, = 10g< ()

N
Shoy wOl,
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T3 — # total # logs “Interface” IDF value of
Ly | Interface | te:tf1/59 | changed | state | to down logs (rows) appearing in “Interface”
L, | Vlaninterface \:v]anzizx changed | state | to up 3 1 (L1) log(3/1)
Ly Neighbour :\Zlan’z:i changed | state | from | Exchange | to | Loadingl - " - "
Z > # total locations  # locations “Interface ILF value of
(columns) appearingin “Interface”
Anewl m - —
ew log comes 7 1 (the first position) log(7/1)
L, Interface ‘Eé-yad'g,’s' changed| state | to down # total # logs “Interface” IDF value of
v vz logs (rows) appearingin “Interface”
L, | Vlaninterface vlan22 |changed|state | to up
e 3 4 2 (Ly, Ly) log(4/2)
Ly Neighbour y]:n23\ changed| state | from |Exchange| to | Loading
# total locations  # locations “Interface”  ILF value of
o T e T . - (columns) appearing in “Interface”
L, Interface te-£/£/17 Ichanged! state | to down pp g
| ISSEAEEESSNRRSNEEN, LA T [ ES— p— — — ] . e
— 7 1 (the first position) log(7/1)

Fig. 4. An example of adding a new log in offline learning.

where wl, is

WOl — {1, word w appears in [, of some log @)

0, w does not appear in I, of any log

As shown in the bottom of Fig. 4, there are four logs con-
taining the word “to”. It is the fifth word in L1, Lo and Ly
(“to” ©ls = 1), and the seventh word in Lg (“to” <l = 1).
That is, the word “to” appears in two different locations. On
the contrary, the word “Interface” appears in the first loca-
tion of all the logs (“Interface” <l = 1). Intuitively, the
fewer number of different locations where a word appears, the
more important it is to anomaly identification/classification.
We get this argument based on our investigation on tens of
thousands of real-world device logs and it is confirmed by
experienced operators. Therefore, the weight of the word w in
a log message is

TF — ILF,, = TF,, * ILF,, 3)

where TF,, is the frequency of word w in a log.

As discussed in [34], although a large number of new types
of logs can be generated at running time, the new words in
these new types of logs are mainly variable word, which are
filtered out in the preprocessing procedure. Therefore, the TF-
IDF model, which is applied after the preprocessing procedure,
does not need to calculate features for many new words at
running time, making sure that LogClass is scalable to the
large number of new types of logs.

2) Why Does TF-ILF Work Better Than TF-IDF?: For a
given word, IDF cares about the number of different logs it
appears in, while /LF counts the number of different locations
where it appears within logs. In the training procedure, for an
“important” text word (see Section III-B for definition), its
IDF value will become smaller when a new log containing it
is added, while its ILF value will likely remain unchanged.
Fig. 4 shows an example of how the IDF and ILF value of an
important text word changes when a new log is added. At first,
the longest length of all the logs is £ = 7 (after preprocessing
logs and filtering parameter words), and the word “Interface”
appears only in the first position of L. Therefore, the IDF
value of the word “Interface” is 1og(%), and the ILF value is
1og(%). When L4 is added, we find that the word “Interface”
appears in the first position of L. As a result, the IDF value

of the word “Interface” changes to IDF = log(%) which is
smaller than log(%), while the ILF value remains unchanged.
As more and more logs with the same format of Ly and Ly
are added, the IDF value will become smaller and smaller.
Eventually, TF-IDF will assign a very small weight to the word
“Interface”, which is inconsistent with the fact that this word is
really important to anomalous log identification/classification
(based on operators’ domain knowledge). On the contrary, the
ILF value of the word “Interface” remains unchanged when
new logs (with the same format of L; and L4) are added.
Therefore, TF-ILF always assigns an important weight to this
word.

We can see that the TF-ILF approach considers the
words and structures of log messages. Although it does
not consider abbreviations, or words with similar seman-
tics, it performs really well in practice, as shown in
Section IV-E. It demonstrates that, in real-world logs,
words and structures, rather than abbreviations or seman-
tics, are important to the log-based anomaly identification and
classification.

D. Binary and Multiclass Classification

In the offline learning procedure, after obtaining the feature
vectors, we apply the PU learning model [19] to train a binary
classifier based on partial labels (namely, unlabeled anomalous
logs and healthy logs, as well as labeled anomalous logs).
After that, we train a multiclass classifier to classify anoma-
lous logs into different categories in an interpretable manner.
Similarly, in the online classification procedure, we use the
trained binary classifier to determine whether a real-time log
is anomalous. If yes, we then apply the trained multiclass
classifier to infer its category.

In this section, we first introduce how PU learning is used in
our scenario, after which we depict the binary and multiclass
classifiers.

1) PU Learning-Based Binary Classification: Under the
assumption that labeled examples are selected randomly from
positive examples, PU learning is trained on positive and
unlabeled examples, and predicts the probabilities of being
positive, which differ by only a constant factor from the true
conditional probabilities [35].
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TABLE V
DETAILS OF THE SWITCH LOG DATASET

Duration # switches # switch types

# labeled (anomalous) logs

# unlabeled (anomalous and healthy) logs

2 weeks 6574 58

1,758, 458

16,702, 547

Let x be a log and let y € {1,0} be a binary label (anoma-
lous or not). Let s = 1 if x is labeled, and s = 0 if not. Only
anomalous logs are labeled, and thus s = 0 (an unlabeled log)
is certain when y = 0 (a healthy log), which can be stated
formally as

p(s=1z,y=0)=0 “4)
We have

p(s=1lz,y=1)=p(s=1y=1) (5)

For a traditional probabilistic classifier, the goal is to learn a
function f(x) such that f(x) = p(y = 1]x) as closely as possible.
Similarly, PU Learning needs to learn a function g(x) such
that g(x) = p(s = 1|x) approximately. After that, a traditional
classifier f(x) can be learned from g(x) as

Fla) = 22 ©
c
where ¢ = p(s = 1|y = 1) is the constant probability that an
anomalous log is labeled.
Let V be such a validation set that follows the distribution
p(x, y, s), and P be the subset of logs in V that are labeled.
As shown in [36], a simple yet effective estimator of ¢ is

c= 23 g(o) (7)

" xEP
where n is the number of different logs in P.

So far, we transform a traditional binary classifier to a
PU Learning classifier, which is trained based on labeled
(anomalous) and unlabeled (anomalous and healthy) logs.

In general, the number of labeled logs is much smaller than
that of unlabeled logs (see Table V for more information). As
discussed in [10], [37], since random forest makes decisions
based on the outcome of the majority voting by its many deci-
sion trees, the imbalance of positive and negative samples has
little impact on the accuracy of random forest. Therefore, we
apply random forest to train the binary classifier.

2) Multiclass Classification: In the online classification
procedure, when the above binary classifier determines a real-
time log to be anomalous, the multiclass classifier will then
decide which anomaly category this log belongs to. As shown
in Fig. 3, the multiclass classifier is trained based on the
labeled anomalous logs that have been well investigated and
classified by operators. Note that any robust machine learning
classifier can be used to train the multiclass classifier. We com-
pare the performance of four classifiers, i.e., Support Vector
Machine (SVM) [38], Decision Tree (DT) [39], Naive Bayes
(NB) [40], and Logistic Regression (LR) [41], in Table VIII,
and find that LogClass is robust to multiple machine learning
classifiers.

In addition to which category an anomalous log belongs
to, operators are also eager to understand why it happens.
Therefore, we can get the coefficient assigned to each fea-
ture (word) from the trained machine learning classifier.
Consequently, the top n important words (keywrods) can be
obtained by sorting these coefficients. Operators can further
understand every category by its top n important words (see
Table IX for more details).

IV. EVALUATION

In this section, we first describe the details of experi-
ment settings in Section IV-A, followed by the introduction
of how the overall performance of LogClass is evaluated in
Section IV-B. The evaluation of LogClass’ performance in
addressing partial labels and new types of logs are respec-
tively depicted in Section IV-C and Section IV-D. In the end,
we demonstrate the importance of TF-ILF in Section IV-E.

A. Experiment Setting

1) Datasets: To evaluate the performance of LogClass, we
use a real-world switch log dataset and six public log datasets.
The switch log dataset is collected from the datacenters of
a top global search engine. At first, considering the huge
number of all switch logs (millions per day), we randomly
selected 6574 switches (of 58 types) deployed in 10+ data-
centers. These switches are of three manufacturers (Huawei,
H3C, and Cisco). Then, we collect all the switch logs of
the above switches over a 2-week period. Table V lists the
detailed information of the dataset, including its duration, as
well as the number of switches/switch types/labeled anoma-
lous logs/unlabeled logs. These anomalous logs belong to 12
different anomaly categories as listed in Table III. Regarding to
the labeled anomalous logs, they are all labeled and classified
using the regular expressions manually configured and con-
firmed by experienced operators (see Section II-B for more
details). As Table V shows, a large number of logs remain
unlabeled, which brings great challenges to LogClass.

In addition to switch logs, we also use six public
datasets [20], which are the logs collected from BGL
(Blue Gene/L supercomputer), HDFS (Hadoop distributed file
system), Proxifier (Proxifier software), Zookeeper (ZooKeeper
service), Hadoop (Hadoop map/reduce job), HPC (High
performance cluster), respectively. All the six datasets have
released their classification results of logs, which are used as
the ground truth for log classification. Besides, each log of the
BGL dataset is labeled as anomalous or not, which is suitable
to evaluate the performance of anomalous log identification.

2) Evaluation Metrics: For anomalous log identification,
let the set of labeled anomalous logs be L, the set of unla-
beled logs be U. Apparently, U consists of the set of unlabeled
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healthy logs H, and the set of unlabeled anomalous logs A.
That is, U = H 4 A. Therefore, LogClass is trained based on
L and U, and aims to classify the whole dataset into L 4+ A
(anomalous logs) and H (healthy logs). We use precision,
recall, F1 score to evaluate the performance of the PU
learning-based binary classifier. We label LogClass’s outcome
as true positive (TP), true negative (TN), false positive (FP)
and false negative (FN). True positives are the anomalous logs
(belonging to L or A) that are accurately determined as such by
the method. True negatives are the healthy logs (belonging to
H) that are accurately determined. If the method determines a
log as anomalous (belonging to L or A), but in fact it is healthy
(belonging to H), then this outcome is a false positive. The
rest are false negatives. We calculate precision, recall and F1

. sl _ TP _ TP
score as follgws. precision 117 TPLFP> recall = TPLFN >
Flscore = %, all metrics are calculated on

the testing dataset.

A multiclass classification method’s capability is usually
assessed by Micro-F1 Score and Macro-F1 Score [42]. For
anomalous log classification, we also use Micro-F1 Score
and Macro-F1 Score to evaluate its performance. For a given
anomaly category i, we label an outcome as TP;, TN;, FP;
and F'N;. TP; is a log belonging to i that is accurately deter-
mined as such by the method. T'N; is a log not belonging
to i that is accurately determined. If the method determines
a log belonging to i, but in fact it does not, we label the
outcome as F'P;. The rest are FN;s. Based on TP;, TN;,,
FP; and FN;, we then calculate precision; and recall; as
precision; = #P}?Pn recall; = % We then obtain
precision,,, ,.r, and recallpgero as

1
precision,,gerp = — precision; (®)
1=1
1 n
recallmacro = — Zrecalli 9)
n =1

After that, we calculate Macro-F1 as

2 x precision,, 4ero X recallmacro

Macro — F1 = — (10)
precision,, 4cro + recallmacro
Similarly, we first calculate
o 21 TP
I = 11
precision, ;. o TTP, + Y, FP, (11
and
2ie1 TP
Npnicro = 1= 12
recallmiero 2?21 TP, +Z?:1 FN, (12)
Then we get
Micro — F1 — 2 X precision, ;.o X recallicro (13)

precision,; .., + recallycro

From the above definitions, we can conclude that Macro-F1
assigns an equal weight to each class, while Micro-F1 weights
a class based on its number of samples (logs). The combination
of Micro-F1 and Macro-F1 provides us a global view of a
classification method’s accuracy.
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3) Baselines: For anomalous log identification, we com-
pare LogClass with five log-based anomaly identification
methods, i.e., principal component analysis (PCA) [43],
Invariant Mining (IM) [23], LogCluster [13], Deeplog [9],
LogAnomaly [7] and Labeled-LDA(L-LDA).

4) Experimental Setup: We conduct all the experiments
on a Linux server with Intel Xeon 2.40 GHz CPU and 64G
memory. We implement LogClass, DeepLog, LogAnomaly, L-
LDA, and FT-tree with Python3. In order to help researchers
further understand LogClass, we have open-sourced its imple-
mentation.> As for LogCluster, PCA and IM, we use a popular
open-source toolkit implemented in [44].

B. Evaluation of The Overall Performance

Recall that the objective of LogClass is to automatically
and accurately identify and classify anomalous individual logs.
Here we evaluate the performance of LogClass in anoma-
lous identification and classification based on switch logs and
public datasets.

Considering the huge number (16,702, 547) of unlabeled
logs, manually classifying them into healthy and anomalous
logs is infeasible. We thus request operators to label 0.1%
of randomly sampled unlabeled logs, which are still 16,702
logs. Each anomalous log is then manually classified into
a specific anomaly category serving as the ground truth for
anomalous log classification. Among these 16,702 sampled
unlabeled logs, 12 logs are anomalous, and the rest 16,691 are
healthy. Note that although the sample ratio is relatively small,
manually classifying more than 16,000 logs indeed consumes
operators a lot of time. To construct the testing set, we also
randomly sample 0.1% of labeled anomalous logs (i.e., 1,758
logs). Moreover, although there are only 12 anomalous logs
in the sampled unlabeled dataset, there are 1770 anomalous
logs in total in the training set, which combines the sampled
unlabeled dataset with the sampled labeled anomalous dataset.
The sampling ratio is suggested by operators. Therefore, the
1,758 sampled labeled logs together with the 16,702 sampled
unlabeled logs constitute the testing set (we call the testing
set [E henceforth). The training set (we call the training set
T henceforth) consists of the entire dataset of switch logs,
including the labeled logs and the unlabeled ones, as listed
in Table V.

The second row of Table VI (Experiment#1) lists the
experiment results of anomalous log identification in terms
of precision, recall and F1 score. LogClass achieves very-
close-to-one precision and recall, demonstrating its superior
performance in anomalous log identification.

We also apply the BGL dataset, which has released the
anomalous label for every log, to demonstrate LogClass’
performance in anomalous log identification. Specifically, we
compare LogClass with PCA, IM, LogCluster, DeepLog and
LogAnomaly, as shown in Fig. 5. Overall, LogClass achieves
the best F1 score among the six methods, achiving an F1
score of 0.98. Although these baseline methods have good
performance on anomalous log sequential and/or quantitative
relationship identification [7], they do not perform as good as

2LogClass is available on github: https://github.com/federicozaiter/LogClass.
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TABLE VI
THE EVALUATION RESULTS OF LOGCLASS IN ANOMALOUS LOG IDENTIFICATION
No. Training set Testing set Precision ~ Recall FI1 score
1 Training set T Testing set E 99.13%  99.99%  99.56%
Logs of 53 types of switches in the T Logs of 5 types of switches in the E = 99.25%  99.18%  99.21%
104 098 TABLE VIII
' 0.91 093290 PCA THE EVALUATION RESULTS OF LOGCLASS WITH DIFFERENT
IM MULTICLASS CLASSIFIERS AND L-LDA IN ANOMALOUS LOG
Q0.8 CLASSIFICATION ON THE BGL DATASET. T.T. DENOTES TRAINING TIME
S LogCluster (), AND C.T. DENOTES CLASSIFICATION TIME(S)
(7]
2069 gse 0.57 Deeplog
2 LogAnomaly Methods Macro-F1 ~ Micro-F1 T.T. C.T.
0.4 E=A LogClass LogClass w/ SVM  69.21% 99.30% 0224 0303
LogClass w/ NB 69.24% 98.63% 0.097 0.366
Fig. 5. The evaluation results of LogClass and baseline methods in anomalous LogClass w/ LR 69.28% 99.28% 0.110 0.304
log identification on the BGL dataset. LogClass w/ DT 68.20% 99.21% 0.138 0.180
L-LDA 59.16% 94.20%  517.060 3.767
TABLE VII
TABLE IX

THE EVALUATION RESULTS OF LOGCLASS AND L-LDA IN ANOMALOUS
LoG CLASSIFICATION ON SWITCH LOGS

Methods  Macro-F1 ~ Micro-F1 T(aining Clas§iﬁcati0n
Time(s) Time(s)

LogClass 99.57% 99.96% 216.2 8.442 x 1072
L-LDA 89.68% 93.53% 4436 0.5280

LogClass in anomalous individual log identification. In addi-
tion, they cannot be used for anomalous log classification.
Therefore, they are not suitable for our scenario.

After identifying anomalous logs, LogClass then classi-
fies these logs into different categories. Firstly, we compare
LogClass with L-LDA [45] based on T and [E. Table VII lists
the comparison results on switch logs. LogClass achieves bet-
ter performance than L-LDA in terms of both Macro-F1 and
Micro-F1. LogClass improves 9.89% and 6.87% over L-LDA
in Macro-F1 Score and Micro-F1 Score, respectively. In addi-
tion, the training time on T (containing 1,758,458 labeled logs
and 16,702,547 unlabeled logs), and the classification time on
E (containing 1,758 labeled logs and 16,703 unlabeled logs),
of LogClass and L-LDA, are also listed in Table VII, respec-
tively. Compared to L-LDA, LogClass respectively improves
the training and classification efficiency by 19.51 and 5.25
times. Operators are quite satisfactory with the computational
efficiency of LogClass in online anomalous log classification.

The experiments on BGL logs, as listed in Table VIII, also
demonstrate LogClass’ superior performance in accuracy and
efficiency. Moreover, we show the performance of LogClass
using four machine learning methods, i.e., SVM [38], DT [39],
NB [40], and LR [41], as multiclass classifiers in Table VIII.
The results show that all the four classifiers achieve simi-
lar accuracy, and LogClass is general to different multiclass
classifiers.

As described in Section III-D, LogClass extracts the top-
n important words (keywords) for each anomaly category, in
oder to help operators better understand every anomaly cate-
gory. In Table IX, we list the top 5 important words of the

THE TOP 5 IMPORTANT WORDS OF THE CATEGORY
“INTERFACE_DOWN”

Interface TenGigabitEthernet 1/0/30 is down.

Logs Interface te-1/1/56, changed state to down
GigabitEthernet 1/0/22: changed status to down
Top-5 “interface”, “down”, “state”
words “GigabitEthernet”, “link”
1.0 2 2 ‘ ‘ :
0 87 '\
0
—
O 0.6}
O
%]
— 0.4f
L 0.2l| *® LogClass
|| #=a LogClass w/o PU Learning
0.0

1% 2% 3% 4% 5% 6% 7% 8% 9%
The ratio of sampled labeled logs

Fig. 6. The evaluation results of LogClass with/without PU learning as the
ratio of sampled labeled logs increases on switch logs.

anomaly category “INTERFACE_DOWN” (see Table III for
more details). Based on an on-site interview with operators,
we find that the top-n important words really help operators
further comprehend every anomaly category.

C. Evaluation of Address Partial Labels

LogClass adopts the PU learning model to address the
challenge of partial labels. In order to show PU learning’s
performance, we adjust the training set as follows. For the
training set T, we randomly sample some fixed ratio (say 5%)
of labeled anomalous logs, and move them to the unlabeled
logs. That is, we “pretend” that the sampled labeled (anoma-
lous) logs are unlabeled. Then, we train LogClass using the
new training set, and test it based on E.

Fig. 6 compares the accuracy (in terms of F1 score) of
LogClass with and without PU learning as the ratio of sampled
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TABLE X
AN ACTUAL CASE OF ANOMALOUS LOG IDENTIFICATION BY LOGCLASS

Log No. Switch log Labeled or not
L1 Interface TenGigabitEthernet 1/0/12 is link down. unlabeled
L2 Interface TenGigabitEthernet 1/0/30 is protocol down. labeled (anomalous)

1.0 =
0.8f .
o -
S 0.6/ ** PU Learning
b #=—  Semi-supervised
— 0.41| ~=a RF (supervised)
L 0.2l == LR (supervised)
|| == DT (supervised)
0.0 n n n L L L =
1% 2% 3% 4% 5% 6% 7% 8% 9%
The ratio of sampled labeled logs
Fig. 7. The comparison results of LogClass with PU learning, semi-

supervised learning, and three supervised learning methods as the ratio of
sampled labeled logs increases on the BGL dataset.

labeled switch logs increases. The accuracy of LogClass with
PU learning remains stable as the ratio increases. That is
because the PU learning model properly transforms the tra-
ditional binary classifier to a classifier that is trained based
on labeled (anomalous) logs and unlabeled (anomalous and
healthy) logs. Without the transformation, the accuracy of
LogClass without PU learning drops sharply when the ratio is
larger than 4%, and becomes 0.0 when 9% of labeled logs are
sampled and moved to the unlabeled dataset. This experiment
demonstrates that PU learning greatly improves LogClass’s
accuracy.

To demonstrate the performance of PU learning, we replace
PU learning of LogClass with Self Training [46] (a semi-
supervised learning method) and three supervised learn-
ing methods including Random Forest (RF) [10], (Logistic
Regression) LR [41], and (Decision Tree) DT [39]. Fig. 7
shows the comparison results on the BGL dataset. The ratio
of the number of anomalous logs to that of healthy logs is
1:8. In the beginning, we suppose that all the healthy logs are
unlabeled. Then, we gradually sample some ratio of anomalous
logs and move them to the unlabeled set. For the self-training
model, we kept the number of positives in its training set con-
sistent with the number of other experiments, and label 50%
of the unlabeled samples as negatives. As the anomalous logs
takes a larger part of the unlabeled dataset and the number of
labeled logs decreases, LogClass with PU learning maintains
its superior accuracy while the performances of LogClass with
semi-supervised/supervised decrease dramatically.

To intuitively demonstrate how LogClass performs in
addressing partial labels, we randomly sampled 1,000,000
unlabeled logs from T (because manually investigating all
the anomalous logs among the unlabeled logs of E will con-
sume operators too much time), and apply LogClass to identify
anomalous logs from the above unlabeled dataset. 710 anoma-
lous logs are identified by LogClass, all of which are manually
investigated and confirmed by operators. Table X shows a case
of anomalous log identified by LogClass. L1 is an unlabeled

log in the unlabeled dataset, and it is determined as anomalous
by LogClass. We find that LogClass believes L1 is anoma-
lous because a similar log in the training set T, L2, is labeled
anomalous. LogClass extracts the similarities between L1 and
L2, and applies these similarities to determine whether L1 is
anomalous.

D. Evaluation of Addressing New Types of Logs

To demonstrate how LogClass performs in addressing the
challenge of new types of logs, we randomly select 53 types
of switches and use their logs in the training set T to train
LogClass.3 That is, 1,582,612 labeled logs and 15,032,292
unlabeled logs constitute the new training set. Moreover, we
use the logs that are collected from the rest five types of
switches in the original testing set E to construct the new
testing set, which consists of 175 labeled and 1,670 unla-
beled logs. The third row of Table VI (experiment #2) lists
the precision, recall and F1 score. The LogClass trained using
the logs of 53 types of switches achieves a very-close-to-one
F1 score in identifying anomalous logs for the other five types
of switches. This demonstrates LogClass’s good performance
for new types of logs.

Then, we prove that using rules (i.e., regular expressions/log
templates) and their similarities to identify and classify anoma-
lous logs cannot address the challenges imposed by new types
of logs. As mentioned above, the performance of LogClass
in anomalous log identification and classification is superior
even when the training set and testing set have different types
of logs. It is because the PU learning of LogClass can well
learn the patterns of anomalous logs even when the labeled
logs and unlabeled logs are of different types, i.e., having dif-
ferent “rules”. To demonstrate the above point, similar to the
experiment introduced in Section IV-C, we first suppose that
all the healthy logs are unlabeled in the BGL dataset. We
then gradually (based on logs’ generation order) sample the
anomalous logs covering some ratio (say 50%) of anomalous
categories (anomaly category coverage ratio), and move them
to the unlabeled dataset. Fig. 8 shows the F1 Scores (blue and
orange curves), and the ratio of anomalous logs to unlabeled
logs (green curves), when the anomaly category coverage
ratio increases from 0% to 90%. As the ratio increases, the
accuracy of LogClass remains stable. However, the LogClass
without PU learning suffers from a sharp drop when the
anomaly category coverage ratio becomes higher than 86% and
the ratio of anomalous logs to unlabeled logs reaches 3.2%.
Consequently, PU learning helps LogClass successfully deal
with new anomaly categories.

3Different types of switches usually generate different types of logs that
are different in syntax.
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Fig. 8. The evaluation results of LogClass with/without PU learning as the

ratio of sampled anomalous categories increases on the BGL dataset.

TABLE XI
THE EVALUATION RESULTS OF LOGCLASS WITH TF-ILF,
WiTH TF-IDF SWITCH LOGS

Methods Macro-F1  Micro-F1  # of FP
LogClass with TF-ILF 99.57% 99.96% 72
LogClass with TE-IDF  96.32% 99.74% 615

E. Evaluation of TF-ILF

As described in Section III-C, we propose a novel, sim-
ple yet effective method, TF-ILF, to assign a weight for
each word in feature construction. TF-ILF is motivated by
TF-IDF - it preserves “term frequency (TF)” and improves
from “document frequency” to “location frequency”. To show
the performance of TF-ILF, we compare the accuracy (mea-
sured by Micro-F1 and Macro-F1) of LogClass (with TF-ILF)
in anomalous log (multiclass) classification, with that of
LogClass with TF-IDF. Note that the parameters of the later
two methods are set best for Macro-F1. Similarly, we train the
above methods using the training set T, and test them using
the testing set E.

Table XI shows the comparison results of the above meth-
ods. Although LogClass with TF-ILF and that with TF-IDF
achieve comparable Micro-Fls, the former one has a higher
Macro-F1. Specifically, TF-ILF improves the Macro-F1 of
LogClass from 96.32% (with TF-IDF) to a very-close-to-
one value. That is, the false alarm rate (roughly denoted
as 1 — Macro-F1) of TF-IDF (3.68%) is 7.6 times larger
than that of TF-ILF (0.43%), demonstrating that TF-ILF
greatly reduces the false alarm rate of LogClass. That is
because TF-IDF is not robust to all anomaly categories, while
the domain knowledge-based TF-ILF method fits for every
anomaly category.

F. How Does Log Preprocessing Impact The Performance of
LogClass?

To show how log preprocessing impacts the performance of
LogClass, we compare the performance of LogClass with that
of LogClass without log preprocessing. We use 10% and 50%
logs of the BGL dataset to train LogClass, and use the remain-
ing logs in the dataset to test the performance, respectively.
Table XII lists the comparison results in terms of accuracy
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TABLE XII
THE ANOMALY IDENTIFICATION ACCURACY OF LOGCLASS
WITH/WITHOUT PREPROCESSING ON THE BGL DATASET

Training logs  Preprocessing ~ F1 score Training time
10% w/o preprocessing  0.9911 11.70
v w/ preprocessing  0.9918 3.27
50% w/o preprocessing  0.9999 32.34
v w/ preprocessing  0.9999 8.55

(measured by F1 score) and training efficiency (measured by
training time). We can see that log preprocessing impacts little
on the accuracy of LogClass. Therefore, the log preprocessing
rules, which are predefined by operators based on their domain
knowledge, have little effect on the accuracy of LogClass.
However, log preprocessing does improve training efficiency
and shorten training time. More specifically, the preprocess-
ing procedure improves the training efficiency by 258% to
278%. Consequently, preprocessing logs is vitally important
to improve training efficiency, and there is no need to worry
about the quality of preprocessing rules impacting the accuracy
of LogClass.

V. RELATED WORK

Many works have been proposed to apply logs to
detect/identify/classify anomalies for network and service
management [7], [8], [11], [13], [21], [23], [43], [47],
network security [9], [48]-[51], and process control (SCADA
systems) [52]-[54], etc. Existing log-based anomaly identi-
fication can be classified into many categories, i.e., anoma-
lous log sequence identification methods [7], [9], [11], and
anomalous log quantitative relationship identification meth-
ods [13]. For the first category, both DeepLog [9] and
LogRobust [11] proposed to apply long short-term memory
(LSTM) to capture the sequential patterns of normal logs
and use the pattern to identify anomalous log sequences.
However, neither DeepLog [9] nor LogRobust [11] can be
used to detect individual anomalous logs. For those approaches
designed to identify anomalous log quantitative relationship,
a time or session window is defined, and then the count
of each template index (regardless of sequence) within the
window is used as the basis for anomaly identification.
To achieve this goal, [43] applied PCA, LogCluster [13]
and Log3C [8] used clustering algorithms, and Invariants
Mining [23] identified whether some mined invariants hold
true within the window. Moreover, Shang et al. [55] used
the development history to measure the amount of log churn
for every software component. Loglens [56] try to detect
stateful anomalies and stateless anomalies simultaneously.
None of the above methods, however, can accurately per-
form anomaly detection/identification when new types of
anomalous logs appear. In addition, Syer er al. [5] proposed
the first approach on anomalous log identification. It is an
automated approach that combines performance counters and
execution logs to diagnose memory-related issues in load
tests.
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A collection of automatic template extraction approaches
have been proposed, which can be classified into four cat-
egories [20]. The first category include the longest com-
mon subsequence-based methods. For example, Spell [57]
used the longest common subsequence algorithm to parse
logs in a stream. The second category consists of the fre-
quent item mining-based methods. In these methods, e.g.,
FT-tree [58], [59], log templates are seen as a set of con-
stant tokens that occur frequently in logs. The methods
using heuristics to extract templates constitute the third cat-
egory. Compared with general text data, log messages have
some unique characteristics. Consequently, works such as
IPLoM [60] and Drain [61] proposed heuristics-based log pars-
ing methods. Next category, Logram [62] and LogParse [63]
leverages n-gram dictionaries to achieve efficient log parsing.
The last category, which believes that a log template forms
the natural pattern of a group of log messages, applies cluster-
based methods to extract templates. For example, LogSig [64]
modeled template extraction as a clustering problem. Although
the template extraction methods can automatically extract tem-
plates from logs, they are not suitable for anomalous log
identification or classification.

In natural language processing, the topic model is a pop-
ular unsupervised method for text classification. LDA, which
identifies latent topic information in document collections, is
a typical machine learning-based method of topic model [65].
In LDA, each document is represented as a probability dis-
tribution over some topics. In addition, each topic is repre-
sented as a probability distribution over a number of words.
Ramage et al. proposed Labeled LDA, a supervised ver-
sion of LDA [45]. Credit attribution is an inherent problem
because although most documents have labels, the tags do
not always apply with equal specificity across the whole
document. Solving the credit attribution problem requires asso-
ciating each word in a document with the most appropriate
labels and vice versa. Labeled LDA constrains LDA by defin-
ing a one-to-one correspondence between LDA’s latent topics
and user labels. In log analysis domain, [66] applies LDA to
study software logs. However, it is not suitable for short text
and thus cannot be used in the anomalous log identification.

A preliminary six-page version of this article was published
in [67]. This TNSM submission differs a lot from the confer-
ence version (less than 9% of the TNSM version is overlapped
with the conference version), which can be summarized as
follows.

1) We propose a novel, simple yet effective method, TF-
ILF, to accurately weight the words of logs in feature
vector construction. After a careful investigation on real-
world device logs, we observe that both frequency and
position are important to assign a weight to a word.
Therefore, we design TF-ILF, which does not only count
a word’s frequency within a log, but also considers the
number of positions a word appears in across all logs.

2) We identify a new challenge lying in anomalous log
detection and classification, and evaluate how LogClass
address it. Specifically, network and service continu-
ously generate new types of logs at runtime because of
software/firmware upgrades. The manually maintained
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rules, which are not updated frequently, cannot detect
or classify these new types of logs. LogClass learns the
patterns of anomalous individual logs, and uses the sim-
ilarity of a given log and the above patterns to determine
whether this log is anomalous or not. In this way, the
above challenge is addressed. We apply switch logs and
public log datasets to demonstrate the performance of
LogClass in addressing this challenge.

3) We use more datasets and more baseline methods
to evaluate the performance of LogClass. In addition
to switch logs, we also evaluate LogClass using the
public logs collected from BGL (Blue Gene/L super-
computer). To demonstrate LogClass’ performance in
anomalous log detection, we compare LogClass with
existing log-based anomaly detection methods includ-
ing PCA, Invariants Mining, LogCluster, DeepLog, and
LogAnomaly.

4) We have tried our best to improve the presentation qual-
ity of this article. After a careful and thorough revision
of the paper, we tried our best to improve the paper’s
organization and clarity.

VI. CONCLUSION AND FUTURE WORK

Logs describe a vast range of events, which are extremely
valuable for network and service management. However, it
is quite difficult to do anomalous log identification and clas-
sification because of partial labels and new types of logs.
We propose LogClass, a framework to automatically and
accurately identify and classify anomalous logs using par-
tial labels. To address the challenge posed by partial labels,
LogClass introduces PU learning to identify anomalous logs.
LogClass applies a novel, simple yet effective method, TF-
ILF, to weight the words of logs. Extensive experiments using
real-world switch logs and six public log datasets demonstrate
that LogClass achieves superior performance in anomalous log
identification and classification in terms of accuracy. For future
work, we will compare LogClass with enterprise softwares
(e.g., Splunk Enterprise, ANODOT). Moreover, we plan to
use word embedding to represent logs and apply the improved
work for intrusion identification.
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