
CTF: Anomaly Detection in High-Dimensional
Time Series with Coarse-to-Fine Model Transfer

Ming Sun∗, Ya Su∗, Shenglin Zhang†, Yuanpu Cao†, Yuqing Liu†, Dan Pei∗,
Wenfei Wu∗, Yongsu Zhang‡, Xiaozhou Liu‡, Junliang Tang‡

∗Tsinghua University †Nankai University ‡ByteDance

Abstract—Anomaly detection is indispensable in modern IT
infrastructure management. However, the dimension explosion
problem of the monitoring data (large-scale machines, many
key performance indicators, and frequent monitoring queries)
causes a scalability issue to the existing algorithms. We propose
a coarse-to-fine model transfer based framework CTF to achieve
a scalable and accurate data-center-scale anomaly detection. CTF
pre-trains a coarse-grained model, uses the model to extract
and compress per-machine features to a distribution, clusters
machines according to the distribution, and conducts model
transfer to fine-tune per-cluster models for high accuracy. The
framework takes advantage of clustering on the per-machine
latent representation distribution, reusing the pre-trained model,
and partial-layer model fine-tuning to boost the whole training
efficiency. We also justify design choices such as the clustering
algorithm and distance algorithm to achieve the best accuracy.
We prototype CTF and experiment on production data to show
its scalability and accuracy. We also release a labeling tool for
multivariate time series and a labeled dataset to the research
community.

I. INTRODUCTION

Anomaly detection always plays an important role in IT
infrastructure management, which helps operators identify
the misbehaving machines and reduce corresponding revenue
loss [1]–[3]. A recent trend is to introduce deep learning
(DL) based algorithms for anomaly detection (as a typical
scenario of AIOps [4]). Compared with rule-based algorithms,
such DL-based ones (e.g., OmniAnomaly [1], LSTM-VAE
[5], and DAGMM [6]) have demonstrated the advantages of
automation, robustness, and operability (i.e., less dependency
on the operators’ experience).

However, the DL-based algorithms are facing the challenge
of dimension explosion when being applied to modern large-
scale infrastructures. The dimension increasing is threefold.
First, (machine domain) the scale of a modern data center
increases fast in the past few years, and it can consist of a
few million servers now. Second, (KPI domain) each machine
in the infrastructure is monitored at a fixed period with many
key performance indicators (KPIs), i.e., 10X KPIs about CPU,
memory, and network statistics; each KPI can be formulated
as a univariate time series, and thus, each machine can
be represented as a multivariate time series (MTS). Third,
(time domain) each machine is monitored in a fine-grained
frequency, e.g., with a 30-second monitoring interval, there
would be 2880 time points to monitor a machine each day.

Wenfei Wu is the corresponding author.

Typical DL algorithms [1], [2], [5]–[11] train an anomaly
detection model for each machine. However, they face the
scalability issue when being applied to a data center with 1X
million machines. Applying the DL algorithms to individual
machines and training per-machine models could result in
unacceptable time (10X minutes per model × 1X million
machines); training one DL model for all machines would
bound the accuracy by nature (one model is not expressive
enough for diverse machines).

For anomaly detection of large-scale machines, some so-
lutions propose to cluster machines first [12], and conduct
anomaly detection within each cluster. However, the high
dimension of the KPI and time domains makes the clustering
algorithms inefficient: they need to compute the pairwise
distance of 1X million machines’ MTS, each of which has
100K dimensions (10X KPIs × 1X thousand time points),
and thus, it could not be complete in practical time.

We observe that a class of unsupervised DL algorithms
[1], [5] — Recurrent Neural Network - Variational Auto
Encoder (RNN-VAE) — usually transforms the original MTS
input into low-dimensional latent representations (details in
§II-A), which actually compresses the dimensions in the KPI
domain. While these RNN-VAE based algorithms use latent
representations to improve the accuracy and robustness (i.e.,
denoise [1]), we got the inspiration to use the low-dimensional
latent representations for clustering to solve the dimension
explosion issue. Our approach synthesizes an RNN-VAE based
algorithm and a clustering algorithm so that it takes both
algorithms’ advantages in handling high-dimensional KPIs and
large-scale machines.

We further overcome three challenges to build the synthetic
framework. First, there is a logical dependency between RNN-
VAE model training and the clustering — clustering on the
latent representations requires a trained RNN-VAE model to
transform the original MTS into the latent representations,
but training an RNN-VAE model (before clustering machines)
based on the non-clustered large-scale multi-machine MTS can
hardly be accurate and efficient (as discussed in paragraph
3). We propose a coarse-to-fine model transfer framework,
avoiding this dilemma (§II-B).

Second, we still face the challenge in the time domain — the
latent representation is still a high-dimensional time sequence
(2880 time points per day), which is not friendly for clustering.
We propose to transform the time sequence into a distribution,
which improves both efficiency and accuracy (§II-B).

Third, we need to make several design choices under the
synthetic framework, including a model transfer method (e.g.,
fine-tuning strategy), a clustering algorithm (e.g., DBSCAN,
Hierarchical Agglomerative Clustering), and a distance metric
(e.g., KL divergence, JS divergence, or Wasserstein distance).
We carefully reason the properties of the operational dataset
and the advantages of each option and make the design
choice (§II-C). Specifically, we are the first to apply a fine-
tuning strategy during model transfer for RNN-VAE models,
validating its usefulness in improving efficiency and accuracy.
We also validate the design choices in experiments (§V-C).

The final synthetic framework is named CTF. CTF’s offline
model training has four steps. First, it samples an all-machine
dataset to train a coarse-grained model; second, it uses the
coarse-grained model to transform per-machine MTS to low-
dimensional latent representations; third, it clusters machines
based on the distribution of latent representations; finally, it
copies the coarse-grained model to each cluster and fine-
tunes a per-cluster model. CTF’s online anomaly detection
uses per-cluster models to generate an anomaly score for per-
machine real-time MTS and uses POT [13] to decide the
threshold whether to report an anomaly. Moreover, CTF is
generic to unsupervised DL algorithms whose model learns a
low-dimensional time-specific latent representation [8].

We architect the CTF framework and use it for a state-
of-the-art well-performed RNN-VAE algorithm OmniAnomaly
[1]. We deploy CTF in an Internet company; the whole system
preprocesses monitoring data, executes offline model training,
and performs online real-time anomaly detection. We also
build a labeling tool for network engineers to label MTS
data as the ground truth and verify the accuracy of CTF’s
results. Our evaluation shows that when applying CTF to
OmniAnomaly, CTF can reduce the model training time from
about two months (estimated by the number of machines
× per model training time) to 4.40 hours for one hundred
thousand machines within a data center using six computing
servers; it achieves an F1-Score (accuracy) of 0.830, with only
0.012 performance loss (compared to per-machine models).
The contributions of this paper can be summarized as follows.

• We propose a coarse-to-fine model transfer based frame-
work, which can perform anomaly detection on a huge
operation dataset with high dimensions on machine, KPI,
and time domains. Its core techniques are as follows.
– It first synthesizes model training and machine clustering

and accelerates both of them.
– It first uses the distribution of the latent representations

for clustering, which accelerates the pairwise distance
computation.

– It first applies a fine-tuning strategy to RNN-VAE models,
validating its benefits to both accuracy and efficiency.

• We implement and evaluate CTF with a state-of-the-art
anomaly detection algorithm on a large-scale dataset from
a top global Internet company, demonstrating CTF’s effec-
tiveness and scalability in practical infrastructure.

TABLE I
DETAILED INFORMATION OF THE 49 KPIS OF MACHINES WHICH ARE

CLASSIFIED INTO FIVE CATEGORIES.

KPI categories
/ counts KPIs

CPU / 15 CPU idle rate, CPU busy rate, CPU utilization at
user or system level, CPU load, etc.

Memory / 10 Memory usage or free or available rate, etc.
Sockets / 6 Sockets established or closed or orphaned, etc.

UDP / 7 count of UDP packets sent or received, count of
UDP buffer errors sent or received, etc.

TCP / 11
TCP retransmisstion rate, TCP listen drops, TCP
listen overflows, TCP delayed ACK locked, etc.

TABLE II
SYMBOLS AND THEIR CORRESPONDING MEANINGS AND VALUES.

Symbols Meanings Values
M No. of machine entities, indexed by i 105

L No. of KPI vector’s dimensions, indexed by j 49
T No. of collected KPI vectors during a period (e.g.,

13 days in our dataset), indexed by t
37440

K No. of clusters (§III-B) 50
C No. of a latent representation’s dimensions (§III-B) 3
T0 The length of time window in anomaly detection 100
Tm The time of model training per machine 315s
Tf The time of feature extraction per machine 0.3s

xi,j,t The i-th machine’s j-th KPI at time t —
Pi The latent representation distribution of the i-th

machine entity
—

• We release a labeling tool for MTS* and a labeled dataset†

to the community for research and deployment.

II. BACKGROUND

A. Problem Statement

Data Format. In the infrastructure, each machine is moni-
tored on several KPIs (in Table I, about CPU, memory, etc.),
and these KPIs are collected at a fixed interval (e.g., 30s in
our system). Thus, each machine’s behavior is formulated as
an MTS, which is also named a machine entity.

One time monitoring of the KPIs would generate a vector of
L dimensions (Table I). The monitoring system would generate
T KPI vectors during a period (e.g., T = 2880 for one day,
and T = 20160 for one week). We denote xi,j,t as the i-th
machine’s j-th KPI at time t. Then, the i-th machine entity
xi,:,: is a L× T matrix (xi,:,: ∈ RL×T , and symbols in Table
II). Fig. 1 visualizes a few examples of machine entities.

An anomaly refers to KPI vector at a time point that
significantly differs from the normal data [1], [2]. We use
T0 to denote the number of consecutive KPI vectors within a
time window. For example, {xi,:,t−T0+1,xi,:,t−T0+2, ...,xi,:,t}
denotes the KPI vectors at time t. We also name these T0 KPI
vectors as a “data instance” in the following context.

RNN-VAE Based Algorithms for Anomaly Detection.
In this paper, we focus on RNN-VAE based anomaly detec-
tion algorithms, which are unsupervised Deep Learning algo-
rithms. They need less operators’ experience compared with

*https://github.com/NetManAIOps/label-tool
†https://github.com/NetManAIOps/CTF data

2

Fig. 1. Examples of machine entities from three classes, each of which is
a 14-metric 3-day-long multivariate time series. The anomalous regions are
marked in the rectangles.

statistical-based solutions [14], need no manual data labeling
compared with supervised solutions [15], and outperform other
unsupervised solutions (e.g., DAGMM [6]) [1] (details in §VI).

In a dataset, most KPI vectors are usually normal, and
minority ones are anomalous (i.e., outliers). RNN-VAE based
algorithms train a model to remember the features of majority
and denoise the minority. For time series modeling, a data
instance (containing the historical values) is input to the model
for understanding the last KPI vector, and the model would
reconstruct another data instance as output. After training, as
the model remembers the majority (normal points) features,
the model output represents a normal behavior — if the input
significantly differs from the output, the last KPI vector is
identified as an anomaly; otherwise, it is normal.

RNN-VAE models have an encoder and a decoder (Fig. 2).
At a time point, a KPI vector is input to the encoder. The
encoder uses RNNs (storing states from predecessor KPI
vectors) to extract the temporal features and dense layers to
compress them to a latent space (i.e., from xt to zt). The
decoder reverses the process — it uses RNNs to recover the
sequence in the latent space and dense layers to recover the
dimensions (i.e., from zt to x′t). The probability density of the
input (i.e., xt) in the output’s distribution (i.e., x′t distribution)
is defined as the reconstruction probability. The loss function
used for model training, the evidence lower bound (ELBO), is
composed of the reconstruction probability and regularization
[16]. Its mathematical format is as follows, and the first term
corresponds to the reconstruction probability.

L(xt) = Eqφ(zt|xt)[log pθ(xt|zt)]−DKL[qφ(zt|xt)||pθ(zt)]

During the training stage, data instances are input to an
RNN-VAE algorithm, and it trains the model by maximizing
ELBO. During the prediction stage, a real-time data instance
is an input to the RNN-VAE model, and the reconstruction
probability is used to judge whether the current KPI vector is
an anomaly.

RN
N

D
ense layers

	"# $# "#%

RN
N

D
ense layers

Fig. 2. The network architecture of RNN-VAE models at time t. Latent
representation zt and reconstruction x′

t are stochastic variables. RNNs are
frozen, and dense layers are fine-tuned when training fine-grained models.

Scalability Challenge. As discussed in §I, the dimensions
in the domains of machine, KPI, and time explode. The
dimensions and their values in operation are listed in Table I
and Table II. Such high dimensions make the following
three approaches with existing solutions hard to scale. (1) As
training a model usually takes 10X minutes, training individual
models for each machine entity would cost about two months
(i.e., 10X minutes per model × 1X million machines). (2)
Using a subset of the whole machine’s population (e.g.,
sampling) would bound the training time, but training one
model to represent and detect diverse machine entities can
hardly achieve accuracy. Fig. 1 shows that different machines
have different anomaly patterns (e.g., there are short-term
anomalies in Machine-3, Machine-5, and Machine-6, a long-
term anomaly in Machine-2, and “stepped” anomalies‡ in
Machine-1 and Machine-4), and one model can hardly de-
scribe the diverse behaviors accurately. (3) Naively clustering
machines and training per-cluster models face the difficulty in
the clustering stage because the pairwise distance computation
in the clustering needs to handle high-dimensional data in KPI
and time domains (about 100K dimensions).

Goal. Thus, our goal is to devise a framework for anomaly
detection in high-dimensional time series, and with the frame-
work, the anomaly detection should be complete (especially
the training time) within an acceptable time and sacrifice
limited accuracy.

B. Intuition and Analysis

Intuition. We observe that the RNN-VAE based algorithms
could compress each high-dimensional KPI vector (L) into
a low-dimensional latent representation (C) using the dense
layer, a typical structure from VAE.

With the KPI domain compressed, pairwise distance com-
putation on the latent representations zt could be faster than
that on the original input xt. Thus, we take the approach of
clustering machines and training a per-cluster model. There
are still three more challenges to overcome for this approach.

Challenge 1: The mutual dependency between the clus-
tering and the model training. Clustering on the latent
representations depends on a trained model to transform xt

to zt, but without clustering, we face the dilemma of training
per-machine models (costly) and training one model for all
machines (inaccurate).

‡KPIs’ distribution changes significantly.

3

Solution (reducing M and reusing partial results):
We design a synthetic framework, where we consider the
efficiency in each step and gradually improve the total ac-
curacy. (1) We first sample the all-machine dataset to pre-
train a coarse-grained model. (2) Then we use the coarse-
grained model to transform per-machine MTS to the latent
representations. (3) And then, we use the distribution of the
latent representations to classify machines into K clusters. (4)
Finally, we transfer the coarse-grained model to each cluster
and fine-tune the per-cluster fine-grained models. Clustering
machines in Step 3 reduces M models to K models, and
model transfer in Step 4 reuses the pre-trained model, both
of which improve the efficiency.

Challenge 2: The high dimension of the time domain.
Even each KPI vector is compressed, each machine entity is
still a long series of latent representations. If the clustering
algorithm computes the distance of two long series, the
execution time is still not practical.

Solution (reducing T): We sample the latent represen-
tation sequence to get distribution and use the distribution
for distance computation in clustering. Specifically, we use
Wasserstein distance [17] to compute the pairwise distance.
Using distribution to represent a machine entity is intuitive:
the whole company has relatively fixed businesses to run
on the machines, and each machine usually executes one
kind of business (corresponding programs); thus, samples can
represent the whole time series, and distribution is more
suitable than a temporal sequence of latent representations for
clustering (analysis in §III-B).

Challenge 3: The design choices of the neural network
(NN) training methods. We transfer the coarse-grained model
to train per-cluster models, but model transfer has several
choices, e.g., training all NN layers of the old model in a new
dataset, training partial layers of the old model on the new
dataset (i.e., fine-tuning). We should make the right choice to
guarantee efficiency and accuracy (or make the tradeoff).

Solution (faster training): Inspecting the NN architecture
in Fig. 2, we find that the RNN layers are shallow and
deterministic, which extract the general time-series features. In
contrast, the dense layers are deep and stochastic for learning
better representations of a new dataset. Thus, we conduct
the first fine-tuning strategy for RNN-VAE networks: freezing
RNNs for feature generalization [18] [19] and tuning the dense
layers for better latent representation and reconstruction. It
further saves the model training time (freezing RNNs) and
improves accuracy (feature generalization).

C. Preliminaries

The text above briefly describes concepts of RNN-VAE used
in CTF; we further list details of the other methods in CTF.

Wasserstein Distance. Most clustering algorithms need
to compute pairwise distances. In CTF, a machine entity is
transformed into distribution in §II-B; thus, we need a metric
to measure the distance between distributions. Wasserstein
distance is a suitable choice for CTF. Its intuition is to
measure the least distance of “moving” one distribution to

the other. Compared with other choices (e.g., Kullback-Leibler
divergence or Jensen-Shannon divergence), Wasserstein dis-
tance is particularly useful when there is less or no overlap
between two distributions (the other two would degenerate to
meaningless constants). Its mathematical format is below [17].

W (P1,P2) = inf
γ∈

∏
(P1,P2)

E(z1,z2)∼γ [||z1 − z2||],

where P1 and P2 are the two distributions of random variable
z1 and z2,

∏
(P1,P2) denotes the set of all possible joint

distributions, and γ(z1, z2) is one distribution in the set whose
marginals are P1 and P2.

Hierarchical Agglomerative Clustering. In CTF, we adopt
hierarchical agglomerative clustering (HAC) [20]. Based on
the distance matrix, HAC iteratively merges the closer pair of
clusters and moves up the hierarchy until all machine entities
are merged into one cluster. The final clustering result can be
determined according to the number of required clusters or
per-cluster observations. Compared to other clustering algo-
rithms DBSCAN [12] and K-medoids [21], the HAC algorithm
has three advantages. First, it needs no initial parameters (e.g.,
the number of clusters or distance thresholds). Second, it is
not sensitive to the distance measurement algorithms because
it clusters on the rank of distances rather than the value. Third,
the relationships among different hierarchies are apparent, so
it is convenient for us to visualize the clustering results.

Model Transfer. If a model is trained on an old dataset and
needs to be applied to a new dataset, the model needs to be
further trained using the new dataset. This process is called
model transfer. Model transfer can have the model preserve
previous training results to avoid training from scratch and
adapt to a new dataset to improve accuracy [22]. In this
paper, we use the whole dataset (all machine entities) as the
old dataset to get a coarse-grained model and the per-cluster
dataset to fine-tune a per-cluster fine-grained model.

III. DESIGN

We apply the CTF framework to an RNN-VAE algorithm,
and it has three steps — data preprocessing, offline model
training, and online anomaly detection. The offline model
training synthesizes the methods in §II-B as a whole workflow.

A. Data Preprocessing

In the infrastructure, each machine is monitored periodically
(30 seconds), and the per-machine KPIs are collected and
stored. These raw data cannot be used directly in the later
model training and anomaly detection, and they need to be
preprocessed with two steps.

Filling in missing data. In practical operation, some data
could be missing because of the problems of data collection
or transmission in the monitoring system. When a value is
missing, we use its previously observed value to fill in its
position.

Data normalization. Different KPIs have different units
(e.g., GB for memory, % for CPU) and different ranges. DL
algorithms usually perform better when the values in different
dimensions are within an approximate range. Thus, we conduct

4

�
� �
:0��:�4�4�2��30�.��:�0�

2:�4�0�����0�

�
0�� :0 0!�:�.�4��

� ���.34�0�.� ��0:4�2
"��4��:4- �4��� �1 � ��.34�0�

���0��

� ����0���:���10:	�14�0�� �4�2���
14�0�2:�4�0�����0���0:�.� ��0:

�

� .� ��0:�

(M)

���0��

���0�� ���0�� (K<<M)

�����0 1:�� ��:�4�� ��.34�0�

Fig. 3. The workflow of CTF’s offline model training.

data normalization. In detail, the i-th machine’s j-th KPI at
time t is normalized by the mean and standard deviation of
the same machine and KPI dimension (µi,j and σi,j), i.e.,

x̂i,j,t =
xi,j,t − µi,j

σi,j
,

where µi,j and σi,j are updated periodically using recently
collected data.

B. Offline Model Training

The synthetic model training has the following four steps.
Fig. 3 depicts the workflow of the offline training.

Step 1: Pre-training Coarse-grained Model M0. CTF
pre-trains a coarse-grained model for clustering and model
training. As the whole dataset contains M ×T data instances,
CTF samples a portion of them to train the model. CTF follows
two principles to make the samples representative of the whole
dataset.

First, we consider the extra physical attributes of machines,
e.g., physical racks, running applications, and machine models,
and sample data instances from each group of machines.
Second, in the time domain, we uniformly randomly sample
data instances from each machine’s time series.

The sampled data instances are fed into an RNN-VAE
algorithm for model training; the parameters in the RNN-VAE
model are initialized and updated and converge to a coarse-
grained model M0. This pre-training is efficient because the
sampled dataset is much smaller (0.0001X) than the whole
original dataset.

Step 2: Feature Extraction. With M0, each machine entity
is transformed into a briefer representation distribution in
the latent space, named zt distribution. Each machine has
T KPI vectors, and each KPI vector corresponds to a data
instance. For each machine entity, CTF first samples a portion
of the KPI vectors from the whole time series, and then uses
the encoder of the RNN-VAE model to transform the KPI
vector to its latent representation (a vector of size C, and
C < L, see Table II). Thus, a per-machine KPI vector series is

transformed into distribution of fewer low-dimensional latent
representations, i.e., zt distribution.

There is a subtle argument that we should pay more atten-
tion to the distribution of the latent representations than the
temporal order of that. For infrastructure operation data, the
distribution is more suitable than time series. For example,
machine-one may execute tasks A and B sequentially, and
machine-two executes the two tasks in reverse order; in
practice, the two tasks are probably affiliated to the same
application/service, the two machines should belong to the
same cluster; in this case, two time series would be different
but their distributions would be the same. Furthermore, our
experimental results §V-C validate this hypothesis.

Step 3: Machine Clustering. The machine clustering is
executed on the machines’ latent representation distributions,
i.e., their zt distributions. First, CTF computes the pairwise
Wasserstein distance of zt distributions among machine en-
tities and gets a distance matrix of all machine entities. The
distance measures the similarities between entities — closer
distributions should more likely belong to the same class. Then
CTF uses HAC to cluster machines based on the distance
matrix, and each machine would finally belong to one specific
cluster.

In our practice, the number of machine entities is still too
large to compute the pairwise distance (M = 105), and we
further improve the clustering algorithm based on [12]. We
randomly sample a subset (about 10K) of the machine entities,
and run HAC on the subset to get the classes. For each of the
remaining machine entities, we compute the distances from it
to all clustered machine entities, calculate the average distance
within each class, and assign it to the class with the least
average distance.

Step 4: Model Transfer. The coarse-grained model M0

is copied to each cluster; within each cluster, the model is
further trained (i.e., fine-tuned) using the per-cluster data. The
data sampling is the same as that in Step 1, but the training
procedures are customized in this step.

In the model fine-tuning, the RNN layers are frozen, and
the model parameter update is only on the dense layers.
The reason is that RNN layers are shallow and deterministic,
and thus, they extract general time-series features in the
coarse-grained model, which could contribute to the model
generalization (similar to BERT [23] for text feature extraction
and VGG [24] for image feature extraction); but the dense
layers are deep and stochastic, and thus, they need to be fine-
tuned to learn a better latent representation for each cluster.
Moreover, freezing RNN layers also saves the training time in
this step. Finally, the M0 would evolve to individual models
Mi for each cluster.

C. Online Anomaly Detection

In the runtime, each machine’s data instance is input to the
machine’s cluster model, and the model outputs a reconstruc-
tion data instance. As the model remembers the majority be-
havior, the output indicates the “normal” behavior of machines.
The reconstruction probability between xt and x′t indicates the

5

Data API Online Anomaly
Detection (III-C)

Offline Data

Online Data

Offline Model
Training (III-B)

Model Score

Outlier Alerting
(V-B)

Results &
Visualization

Data Preprocessing
(III-A)

Monitored
machine entities

Fig. 4. System architecture. The blue modules with solid lines denote offline
model training, and the orange modules in dash lines represent online anomaly
detection, while the green ones with dot-dash lines show the notification
system.

probability of the input KPI vector approaching the normal
behavior. A smaller reconstruction probability would imply
that the input is anomalous.

In operation, the reconstruction probability is also named
anomaly score. The online module of CTF compares the
anomaly score with a threshold — for each real-time KPI
vector, an anomaly score lower than the threshold would be
considered as an anomaly; otherwise, it is normal.

In the threshold selection, CTF uses Peaks-Over-Threshold
(POT) [13]. Given a set of historical anomaly scores (also
called samples in the following text), POT has two steps
(details in [13]): first, POT filters out the samples below
a certain ”low quantile” of the whole population, fits these
samples with a Generalized Pareto Distribution (GPD), and
gets the GPD function; second, it uses the function and an
anomaly quantile among the whole population (denoted as q)
to identify the threshold.

Compared with other choices of threshold selection methods
(e.g., state-based thresholding [5], Dynamic Error Thresholds
[7]), POT has three advantages. First, it makes no assumption
of the whole population’s distribution, because it filters out
the low quantile samples and fits them with GPD. Second,
it requires only two parameters (low quantile and q), which
is robust in parameter selection. Third, POT is efficient in
practical operations (0.015 seconds for each machine’s one
week’s historical score).

In CTF operation, we apply the same POT parameters to
each cluster and use the historical scores of each machine
within the cluster to fit the GPD. Because the statistical
features of machines’ scores in the same cluster are similar,
they can share the same parameters, avoiding unnecessary
parameter tuning.

IV. IMPLEMENTATION

A. System Architecture

The architecture of CTF with an anomaly detection algo-
rithm is shown in Fig. 4. CTF fetches monitoring data via
the Data API and preprocesses the KPI data, as described in
§III-A. The offline module runs the logic in §III-B and stores
the per-cluster model and historical scores. The online model
runs the logic in §III-C and outputs the result (anomalous or
not) to the notification system (alerting and visualization). The

Fig. 5. The interface of the labeling tool.

online and offline modules are implemented in Python with
Tensorflow, which has about 500 lines of code (mainly about
the CTF framework); the visualization system is implemented
based on Grafana.

B. A Labeling Tool for Experiment

While CTF with an anomaly detection algorithm is un-
supervised, which does not need labeled data, we still need
ground truth (i.e., a dataset with data labeled anomalous or
normal) to validate its accuracy. We develop a labeling tool
with graphical user interface (GUI) for network engineers to
label a multivariate time series. The labeling tool is illustrated
in Fig. 5, and it has the following functions. (1) It can load,
visualize, drag, zoom in/out the time series so that the user
can overview the shape of the whole sequence and locate the
details of a segment. (2) It can fold and unfold a few KPI
dimensions, providing a better view to the users. (3) It can
label or cancel anomalies. Users can select the beginning and
end of an interval and save it as an anomaly. (4) It collects and
updates statistics of anomaly intervals (e.g., count, percentage)
in real-time. This labeling tool is implemented in Python with
PyQt and matplotlib, with about 600 lines of code.

V. EVALUATION

Combining with a state-of-the-art well-performed RNN-
VAE based algorithm (i.e., OmniAnomaly [1] in this paper),
we set up experiments (dataset and environment) to evaluate
CTF’s performance (scalability and effectiveness). We com-
pare CTF with its variants to validate its synthetic framework,
compare CTF with other baselines to validate the design
choices (e.g., clustering objects, clustering algorithms), and
show the deployment results.

A. Experiment Setup

Dataset. We collect a dataset from a top global Internet
company, where geo-distributed data centers serve global
users. The businesses running on the infrastructure are typical
Internet services (e.g., news, advertisement, videos).

The experimental dataset contains 533 machine entities, and
each is monitored with 49 KPIs. KPIs are collected every
30s spanning 13 days (from April 18th to April 30th). In the

6

TABLE III
THE EXECUTION TIME OF EACH STEP UNDER DIFFERENT NUMBERS OF

MACHINE ENTITIES.

M 533 103 104 105 105(6 servers)
Pre-training 5493 5493 5493 5493 5493

Feature extraction 166 311 3113 31130 5292
Clustering 3 6 232 576 576

Model transfer 2238 2238 4475 22375 4475
Total 7900 8048 13313 59574 15836

Average 14.822 8.048 1.331 0.596 0.158

experiment, we use the first five days’ data for training and
the latter eight days’ data for testing.

Performance Metrics. The online module of CTF would
output the detection result, which is compared with the labeled
results. We denote false positives (FP) as the normal KPI
vectors that are reported as anomalies by the algorithm, false
negatives (FN) as anomalous KPI vectors reported as normal
ones, true positives (TP) and true negatives (TN) as the
anomalous or normal KPI vectors reported correctly. We use
Precision, Recall, and F1-Score (F1 for short) to evaluate the
anomaly detection accuracy, where

Precision = TP/(TP + FP), Recall = TP/(TP + FN)

F1 = 2× Precision×Recall/(Precision+Recall)

F1 is a performance indicator with considering both Precision
and Recall, and it is more important than Precision and Recall.
In this paper, all scores (i.e., F1, Precision, and Recall) are
the average of all machine entities. In the experiment, we also
measure the execution time of CTF and other methods, which
denotes the efficiency. All the time is in seconds.

Hyper-parameters of models. In the experiment, we keep
the original hyper-parameters of OmniAnomaly as [1]. The
offline module of CTF would sample 100 machine entities
and 10% data instances per-machine series in Step 1, and 30
and 10% in Step 4. The number of clusters in Step 2 is 5. In
the offline module, we use empirical values of low quantile
0.01, 0.02, and 0.03 and q = 10−5.

Environment. All the experiments are run on a server with
a 64-core Intel(R) Xeon(R) Gold 6130 CPU @2.10GHz and
376GB RAM.

B. Overall Performance

Scalability. We deploy the CTF framework, vary the num-
ber of machine entities, and measure the execution time of
each step, and the results are in Table III. The numbers of
clusters (an empirical value) for 103, 104, and 105 machines
are 5, 10, and 50, respectively. For the case of 105 machines,
we use six CPU servers for the model training (Step 2 and 4)
and list the accumulated time and the actual parallel execution
time of six servers. We got the following observations.

First, the pre-training time is a marginal fixed time (5493s).
Second, the feature extraction time is proportional to the
number of machines (311s for 103 and 3113s for 104),
but this step can be paralleled among machine entities. On

TABLE IV
F1, PRECISION, AND RECALL SCORES OF CTF WITH OMNIANOMALY

WITHOUT AND WITH ALERTING.

Methods F1 Precision Recall
Without alerting 0.830 0.785 0.881

With alerting 0.892 0.907 0.877

TABLE V
COMPARISON WITH MODEL VARIATIONS.

Methods F1 Precision Recall Training time
CTF 0.830 0.785 0.881 7900

One model/machinea 0.842 0.820 0.864 168150
One model for all 0.796 0.791 0.802 5493
CTF w/o transfer 0.798 0.758 0.843 8413

a We evaluate 10% machine entities in this method.

average, it takes 0.3s for each machine. Third, the clustering
algorithm needs first to compute the pair-wise distance and
then run HAC. However, this step is significantly smaller
(0.1X, e.g., 576s v.s. 4000+s for 105) than other steps. Using zt
distribution in the latent space to represent a machine entity is
efficient in accelerating the clustering speed (comparison with
other methods are in §V-C). Finally, the fine-tuning time is
proportional to the number of clusters (Table III), but it can
also be paralleled among clusters. Overall, CTF is scalable to
process data of the size of a data center (about 1X million
machines).

Effectiveness and Operational Tuning. Applying CTF
with OmniAnomaly to the dataset, we got F1/Precision/Recall
of 0.830/0.785/0.881, which can significantly reduce the op-
erators’ workload.

In practical operation, we observe that some anomalies
lasted for a short time (e.g., less than 2 minutes). Thus, we tune
alerting policy cross-time: at least N consecutive anomalous
points will be considered as anomalies (e.g., N = 5 in our
scenario). With this alerting policy, the Precision of CTF is
further improved (F1 from 0.830 to 0.892, see Table IV).

Validating the choice of the Synthetic Framework. CTF
uses a synthetic framework to conduct machine clustering
and model training. We compare it with a few other model
variations and list the results in Table V. “One model/machine”
denotes training one model for each machine. We use all five
days’ data for model training because the sampled data is
insufficient. This method can fit the machine’s behavior to
the best and is the most effective one, but its training time
is not acceptable. In the experiment, we could evaluate only
10% machine entities on our test dataset, and the training time
of 100,000 machines is estimated to be about two months.
In practice, it could be hardly paralleled on each machine
because it costs many computing resources and may affect
more important business tasks. The time complexity of this
approach is O(M ·Tm), where Tm is per-model training time,
and that of CTF is O(M · Tf) + O(K · Tm), where Tf is
feature extraction time, and K is the number of clusters. With
Tf � Tm and K �M , the total time is significantly reduced.
In practice, CTF needs 15,836s (i.e., 4.40h) with six servers

7

Fig. 6. F1 and training time under different numbers of epochs for CTF w/o
transfer.

Fig. 7. The clustering time of CTF and baseline algorithms.

to train models for 100,000 machines (0.158s per machine).
“One model for all” indicates training one model for all

machine entities. It is equivalent to the pre-trained coarse-
grained model M0 in CTF. It costs the least training time, but
its anomaly detection accuracy is the lowest. Because the ma-
chine entities are diverse, one single model can hardly extract
features from their mixed patterns (the latent zt distribution
and reconstruction x′t may be inaccurate).

“CTF without (w/o) transfer” is similar to CTF in the
workflow, and the difference is in Step 4: each cluster retrains
a model from scratch (not from M0). Note that CTF freezes
the RNNs in Step 4, but “CTF w/o transfer” needs to train
RNNs from scratch. “CTF w/o transfer” performs worse in
both effectiveness and efficiency compared with CTF. Fig. 6
shows the F1 and training time of “CTF w/o transfer”, and
we can observe that more epochs can achieve higher F1 but
need more time. However, even if training 25 epochs (19,417
seconds), the F1 is still lower than that of CTF. Because in
CTF, the pre-trained M0 in CTF captures the general features
[19], its RNNs do not need to be trained further, and CTF
benefits from model generalization; but in “CTF w/o transfer”,
the initialization of network parameters is easier to disturb
the per-cluster model in Step 4 (ineffectiveness), and training
RNNs costs extra time (2238s v.s. 2751s).

C. Validating Design Choices

Choice of Clustering Objects. The clustering object of
CTF is zt distribution, and we compare this choice with other

state-of-the-art algorithms: SPF [25] and ROCKA [12] with
the original input, and DCN [26] with AE latent representa-
tion (§VI). They cannot handle matrix input, and we flatten
the matrix to a vector [27]. After clustering, we train one
OmniAnomaly [1] model within each cluster. Fig. 7 represents
the clustering time and Fig. 8(a) shows the effectiveness.

Overall, CTF’s clustering object (zt distribution) outper-
forms the other three on both efficiency and effectiveness.

(1) ROCKA’s execution time increases at a square of the
number of machines, and DCN, SPF, and CTF increase
linearly. CTF has a marginal cost (i.e., the coarse-grained
model training time), but the time to machine ratio is small.
When the number of machines is 5000 or more, CTF costs the
least clustering time. Thus, CTF is able to handle the anomaly
detection of millions of machines.

(2) CTF has a higher F1 score than the other three al-
gorithms. SPF and ROCKA are not resistant to noises in
the dataset; DCN theoretically could resist noises, but it is
hard to fully converge (its NN has a few billion parameters),
and thus its latent representation may be inaccurate. CTF’s
zt distribution is robust to noises and low-dimensional to
converge in the experiment, which is thus the most accurate.

Choice of Distance Measures. We compare CTF’s
Wasserstein distance algorithm with other distance measures:
Kullback-Leibler (KL) divergence (between distributions),
Jensen-Shannon (JS) divergence (between distributions), and
mean squared error (between sequences). We replace the dis-
tance algorithm with the other three and run CTF experiments
again. The results are shown in Fig. 8(b).

Wasserstein distance outperforms the other three. Compared
with MSE, we conclude that distribution is a better represen-
tation than sequence for machine clustering (as analyzed in
§III-B). Compared with KL and JS divergences, we conclude
that the distance between neighboring values (in Wasserstein)
is a better measure than the binary 0/1 indicator of whether
two values overlap (in KL and JS divergences).

Choice of Clustering Algorithms. We also compare the
HAC algorithm with other popular clustering algorithms: K-
medoids and DBSCAN. We replace HAC with each of them
in CTF, fine-tune their parameters, and show the results in
Fig. 8(c). HAC performs best because it is based on the rank
of distances and robust to extreme values. However, the other
two algorithms are sensitive to extreme values in the distances’
distribution and parameters, especially for DBSCAN. Thus,
the HAC algorithm is more suitable in real scenarios.

VI. RELATED WORK AND DISCUSSION

A. Anomaly Detection Algorithms

The anomaly detection algorithms for time series can be
roughly classified into three classes — statistical-based algo-
rithms and machine learning algorithms (supervised and unsu-
pervised) [28]. They have different advantages in scalability,
operability, efficiency, and accuracy.

Statistical-based algorithms rely on extensive domain
knowledge (e.g., parameter selection). A classic one is K-
Sigma algorithm [14], which used the values deviating K times

8

(a) (b) (c)

Fig. 8. F1, Precision, and Recall scores under (a) algorithms for different clustering objects, (b) different distance measures, (c) different clustering algorithms.

the standard derivation from the average as thresholds and
conducted anomaly detection. This kind of algorithms can be
efficient and scalable, but usually need experienced operators
to set parameters (e.g., anomaly threshold).

Supervised algorithms [3], [15], [29] require manual label-
ing. The famous one is EGADS in Yahoo [15], which used a
collection of machine learning methods and threshold selection
algorithms for anomaly detection on large-scale univariate
time series. When there are no tremendous labors to devote
to labeling, this class of algorithms can hardly be applied to
millions of machines.

Unsupervised algorithms [1], [5]–[9] aim to find “outliers”
among all data instances. Among them, RNN-VAE based algo-
rithms, combining RNN for time-series feature extraction and
VAE for learning a robust latent representation, demonstrate
the best potential [1]. CTF is a framework that scales them to
millions of machines.

B. Clustering Algorithms

The clustering algorithms can be categorized according to
their clustering objects.

Cluster on univariate time series. ROCKA [12] aims to
detect anomalies for large-scale univariate time series. It clus-
tered them using DBSCAN with normalized cross-correlation
distance and trained one anomaly detection model DONUT [2]
per cluster. Symbolic Pattern Forest (SPF) [25] is the state-
of-the-art algorithm on univariate time series clustering. It
extracted the symbolic patterns from time series, clustered on
them using different trees, and finally assembled the clustering
results. They do not contain mechanisms to compare the
importance of KPI dimensions in an MTS and cannot be
directly applied.

Cluster on multivariate time series (MTS). Multi-
dimensional dynamic time warping (MDDTW) [30] measures
the shape similarity among MTS. Then a clustering algorithm
(e.g., DBSCAN) is combined with it for clustering. However,
its computational complexity of one pairwise distance is
O(LT 2), higher than O(LT log T) of ROCKA [12]. Thus, it
costs more time than zt distribution clustering (§V-C).

Cluster on the latent representation (e.g., z) in Auto
Encoder (AE) models. DCN [26] combines AE for di-
mensionality reduction and K-means on the encoded z for
clustering and trains the whole model end-to-end. CTF is
inspired by this approach. It uses distribution instead of the

whole latent representation, improving both effectiveness and
efficiency.

C. Model Transfer Strategies

During model transfer, the old model is trained on a new
dataset. This process has several choices, e.g., continuing to
train all NN layers, training partial layers (namely fine-tuning,
e.g., Convolution layers or RNN layers). Jason, et al. [18]
studied the transferability of different layers in deep neural
networks. They find that the shallow layers contain more
general information and benefit for diverse data. In contrast,
the deep layers are specific, which need more fine-tuning to fit
new tasks. Moreover, Long, et al. [19] applied this method to
image classification. In the infrastructure operation domain, we
are the first to exercise the fine-tuning on RNN-VAE models.
The evaluation results show that this is the right choice in our
scenario.

D. Lessons Learned

We learn the following lessons. (1) Our coarse-to-fine
framework synthesizes clustering and model training in large-
scale infrastructure, which could also be applied to other
scalable scenarios, e.g., large-scale time series prediction or
classification. (2) For anomaly detection methods with the
CTF framework, data within a shorter time window (a few
days instead of months) may be sufficient to train models for
more machine entities, e.g., CTF with OmniAnomaly uses five
days’ data to train models and achieves equally high F1-Score
compared with eighteen days’ data in OmniAnomaly only.

VII. CONCLUSION

We built CTF to perform anomaly detection for large-
scale and high-dimensional data center infrastructures. CTF
is a synthetic framework with four steps — pre-training,
feature extraction, machine clustering, and model transfer. The
synthetic framework takes advantage of low-dimensional zt
distribution clustering, model reuse, and fine-tuning in model
transfer to boost the training efficiency. We carefully justify the
design choices, such as the clustering algorithm and distance
measure, to improve the accuracy to the best. We exercise CTF
prototype on production data and demonstrate the scalability
and effectiveness of its design. We also release a labeling tool
for MTS and a labeled dataset to the research community.

9

ACKNOWLEDGMENT

This project is supported by National Natural Science
Foundation of China Grant No. 61802225, the Zhongguancun
Haihua Institute for Frontier Information Technology, National
Natural Science Foundation of China Grant No. 61902200 and
China Postdoctoral Science Foundation (2019M651015).

REFERENCES

[1] Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei, “Robust anomaly
detection for multivariate time series through stochastic recurrent neural
network,” in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2019, pp. 2828–
2837.

[2] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao,
D. Pei, Y. Feng, J. Chen, Z. Wang, and H. Qiao, “Unsupervised
anomaly detection via variational auto-encoder for seasonal kpis in web
applications,” in WWW, 2018.

[3] D. Liu, Y. Zhao, H. Xu, Y. Sun, D. Pei, J. Luo, X. Jing, and
M. Feng, “Opprentice: Towards practical and automatic anomaly de-
tection through machine learning,” in Proceedings of the 2015 Internet
Measurement Conference, 2015, pp. 211–224.

[4] Y. Dang, Q. Lin, and P. Huang, “Aiops: real-world challenges and
research innovations,” in 2019 IEEE/ACM 41st International Conference
on Software Engineering: Companion Proceedings (ICSE-Companion).
IEEE, 2019, pp. 4–5.

[5] D. Park, Y. Hoshi, and C. C. Kemp, “A multimodal anomaly detector
for robot-assisted feeding using an lstm-based variational autoencoder,”
IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1544–1551,
2018.

[6] B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu, D. Cho, and
H. Chen, “Deep autoencoding gaussian mixture model for unsupervised
anomaly detection,” in International Conference on Learning Represen-
tations, 2018.

[7] K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and T. Soder-
strom, “Detecting spacecraft anomalies using lstms and nonparametric
dynamic thresholding,” in Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
2018, pp. 387–395.

[8] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and
G. Shroff, “Lstm-based encoder-decoder for multi-sensor anomaly de-
tection,” arXiv preprint arXiv:1607.00148, 2016.

[9] C. Zhang, D. Song, Y. Chen, X. Feng, C. Lumezanu, W. Cheng, J. Ni,
B. Zong, H. Chen, and N. V. Chawla, “A deep neural network for
unsupervised anomaly detection and diagnosis in multivariate time series
data,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, 2019, pp. 1409–1416.

[10] H. Ren, B. Xu, Y. Wang, C. Yi, C. Huang, X. Kou, T. Xing, M. Yang,
J. Tong, and Q. Zhang, “Time-series anomaly detection service at
microsoft,” in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2019, pp. 3009–
3017.

[11] S. M. Erfani, S. Rajasegarar, S. Karunasekera, and C. Leckie, “High-
dimensional and large-scale anomaly detection using a linear one-class
svm with deep learning,” Pattern Recognition, vol. 58, pp. 121–134,
2016.

[12] Z. Li, Y. Zhao, R. Liu, and D. Pei, “Robust and rapid clustering
of kpis for large-scale anomaly detection,” in 2018 IEEE/ACM 26th
International Symposium on Quality of Service (IWQoS). IEEE, 2018,
pp. 1–10.

[13] A. Siffer, P.-A. Fouque, A. Termier, and C. Largouet, “Anomaly detec-
tion in streams with extreme value theory,” in Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2017, pp. 1067–1075.

[14] E. W. Grafarend, Linear and nonlinear models: fixed effects, random
effects, and mixed models. de Gruyter, 2006.

[15] N. Laptev, S. Amizadeh, and I. Flint, “Generic and scalable framework
for automated time-series anomaly detection,” in Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2015, pp. 1939–1947.

[16] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[17] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” arXiv
preprint arXiv:1701.07875, 2017.

[18] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?” in Advances in neural information
processing systems, 2014, pp. 3320–3328.

[19] M. Long, Y. Cao, J. Wang, and M. Jordan, “Learning transferable
features with deep adaptation networks,” in International Conference
on Machine Learning, 2015, pp. 97–105.

[20] F. Murtagh and P. Legendre, “Ward’s hierarchical agglomerative clus-
tering method: which algorithms implement ward’s criterion?” Journal
of classification, vol. 31, no. 3, pp. 274–295, 2014.

[21] H.-S. Park and C.-H. Jun, “A simple and fast algorithm for k-medoids
clustering,” Expert systems with applications, vol. 36, no. 2, pp. 3336–
3341, 2009.

[22] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey on
deep transfer learning,” in International conference on artificial neural
networks. Springer, 2018, pp. 270–279.

[23] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[24] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[25] X. Li, J. Lin, and L. Zhao, “Linear time complexity time series clustering
with symbolic pattern forest,” in Proceedings of the 28th International
Joint Conference on Artificial Intelligence. AAAI Press, 2019, pp.
2930–2936.

[26] B. Yang, X. Fu, N. D. Sidiropoulos, and M. Hong, “Towards k-
means-friendly spaces: Simultaneous deep learning and clustering,” in
Proceedings of the 34th International Conference on Machine Learning-
Volume 70. JMLR. org, 2017, pp. 3861–3870.

[27] S. Basu, K. Wagstyl, A. Zandifar, L. Collins, A. Romero, and D. Precup,
“Analyzing alzheimer’s disease progression from sequential magnetic
resonance imaging scans using deep 3d convolutional neural networks.”
NIPS, 2018.

[28] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM computing surveys (CSUR), vol. 41, no. 3, pp. 1–58, 2009.

[29] X. Zhang, J. Kim, Q. Lin, K. Lim, S. O. Kanaujia, Y. Xu, K. Jamieson,
A. Albarghouthi, S. Qin, M. J. Freedman et al., “Cross-dataset time
series anomaly detection for cloud systems,” in 2019 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 19), 2019, pp. 1063–1076.

[30] J. Mei, M. Liu, Y.-F. Wang, and H. Gao, “Learning a mahalanobis
distance-based dynamic time warping measure for multivariate time
series classification,” IEEE transactions on Cybernetics, vol. 46, no. 6,
pp. 1363–1374, 2015.

10

