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Abstract—Logs are one of the most valuable data sources for
large-scale service (e.g., social network, search engine) mainte-
nance. Log parsing serves as the the first step towards automated
log analysis. However, the current log parsing methods are not
adaptive. Without intra-service adaptiveness, log parsing cannot
handle software/firmware upgrade because learned templates
cannot match new type of logs. In addition, without cross-
service adaptiveness, the logs of a new type of service cannot
be accurately parsed when this service is newly deployed. We
propose LogParse, an adaptive log parsing framework, to support
intra-service and cross-service incremental template learning and
update. LogParse turns the template generation problem into a
word classification problem and learns the features of template
words and variable words. We evaluate LogParse on four public
production log datasets. The results demonstrate that LogParse
supports accurate adaptive template update (increased from
0.559 to nearly 1.0 parsing accuracy), and a trained LogParse
is adaptive for a brand new service’s log parsing. Because of
LogParse’s adaptiveness, we also apply LogParse to an interesting
application, log compression and deployed log compression in a
top cloud service provider. We package LogParse into an open-
source toolkit.

Index Terms—Log Analysis; Text Classification; Service Man-
agement; AIOps

I. INTRODUCTION

Logs (see top half of Fig. 1), which record a vast range of
events of services (e.g., social network, datacenter devices),
are one of the most valuable data sources for large-scale
services maintenance [1]. Logs have been widely applied
for monitoring status [2], [3], understanding events [4], [5],
detecting anomalies [6], [7], and predicting failures [8].

A large-scale service is often maintained by abundant oper-
ators. For example, a social network application includes lots
of softwares and underlying machines. Usually, an operator
has incomplete information on the overall social network, and
none of them is familiar with all logs generated by this social
network. Besides, service logs are usually unstructured texts,

= Shenglin Zhang is the corresponding author.

Histotical logs:

L. Interface ae3, changed state to down

L,. Vlan-interface ¥122, changed state to down
L. Interface ae3, changed state to up

L,. Interface gel, changed state to down
Real-time logs:

L. Interface gel, changed state to up

L, Vlan-interface v122, changed state to up

S

Template extraction:
T,. Interface *, changed state to down
T,. Vlan-interface *, changed state to down
T,. Interface *, changed state to up

Template update:
T,. Vlan-interface *, changed state to up
Template match:
L->T, ,ae3 L,>T, vI22 L,->T,, ae3
L,>Tael L>T; ,ael L->T,,vI22

Fig. 1. Examples of network device logs and their templates

they have to be properly parsed before they can be effectively
used [9]. An unstructured log is essentially “printf”’ed by
services and thus follows some specific format: there is a
template field sketching out the event and summarizing it,
and a vartable field varying from one log to another of the
same template. Take Fig. 1 as an example, in L, “ae3” is a
variable word, whereas the rest, i.e., “Interface ..., changed
state to up”, is the template field. There are some methods of
document sumarization [10], sentence compression [11], [12]
and clustering [13] in NLP domain. However, [14] proves that
NLP methods cannot parse logs accurately. To achieve the goal
of automated log parsing, many rapid and accurate data-driven
template extraction approaches, e.g., Spell [15], LogSig [16]
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Fig. 3. Accuracy of traditional template extraction methods compared to
LogParse when only 10% of logs are used for training

and IPLoM [17] have been proposed. However, the current log
parsing methods are not adaptive. This adaptiveness consists
of two aspects, i.e., intra-service adaptiveness and cross-
service adaptiveness.

For intra-service, operators continuously conduct soft-
ware/firmware upgrades on services and underlying machines
to introduce new features, fix bugs or improve performance
(e.g, a social network service updates its applications), which
can generate new types of logs [18]. These logs, however,
cannot match any existing templates, and thus new templates
have to be learned, which is called template update. To
demonstrate services do generate many new types of logs
at runtime, we set apart 10% of logs from four public log
datasets (described in Section IV-A) and extract log templates
using five template extraction methods. Then, we use these log
templates to match the remaining 90% of logs. Table I shows
the ratio of logs without corresponding existing templates
in the remaining 90% of logs. The template set should be
incrementally learned, otherwise, a new template set has to
be learned from all the logs. Considering the large volume of
the long-period historical logs, this is a vast amount of work.
In Fig. 1, for example, the service generates two new logs
(L5 and Lg). We have to update the template set because Lg
cannot match any existing template.

Cross-service adaptiveness means that a model trained by
service A is also suitable for service B. Log parsing without
cross-service adaptiveness makes it labor intensive and time
consuming to build and maintain a service type specific
template set. In real-world service providers, different types
of services are different in log syntax/semantics. For example,
in the same social network service, “add nodes” and “delete
nodes” functions generate different types of logs and have

different template sets. As a result, current log extraction
methods typically extract templates and build a dedicated
template set for each service type. When a brand new service
goes online, there are usually not enough historical logs to
train accurate templates. For example, Fig. 2 and Fig. 3 show
the accuracy of template extraction results when all logs and
only 10% of logs are used for training respectively (detailed
information is shown in Section IV). We observe that current
template extraction methods achieve terrible accuracy when
trained on a smaller sample of the logs. Nonetheless, as seen
in Fig. 2, current log parsing methods are accurate enough for
historical logs.

Thus, log parsing methods without adaptiveness signifi-
cantly limit many log analysis applications, because many
applications require to have a corresponding template for any
given logs. An example of this is Log compression, which is
a useful application of log analysis. For instance, Google and
Facebook respectively generate 100 Petabyte and 10 Petabyte
of log data per month [19]. These massive logs, if not properly
compressed, will consume immense storage space. However,
traditional compression methods cannot compress and query
specific logs in real-time[20]. Fortunately, unstructured logs
contain many redundant information. We can turn logs into
“template index + variables” (e.g., “Ty + ae3” in Fig. 1), which
saves substantial storage. Log compression based on templates
also require templates for any given logs. In other words, it
needs an adaptive log parsing method.

The key intuition is based on the following observations:
The difference between template words (e.g., “Interface” in
Fig. 1) and variable words (e.g., “ae3”) are obvious, both
within the same service and among different services.

We turn the template generation problem into a word
classification problem to determine whether a word belongs
to template words. Then, we get word labels by using any
existing traditional template extraction methods. Next, we
represent any word by using vectors and learn the features
of template words and variable words. Finally, a new template
can be generated by combining template words from a new
type of log. We face the following three challenges.

1. There is a massive number of words in logs, and many
of these words may appear only once. Representing and
classifying all words accurately is a challenging task.

2. Some words may be present in both template and variable
fields, we need to classify them based on their context.

3. We have to get labels for training a word classifier,
however, there are not labels for each word in raw logs.

To address the above challenges, we propose LogParse, an
adaptive log parsing framework. The contributions of LogParse
are as follows.

o LogParse learns new templates in an incremental man-
ner, and thus only new types of logs generated after
software/hardware upgrades have to be matched to the
updated template set, which greatly reduces the amount
of work comparing with rematching all the historical
logs to templates. LogParse improves parsing accuracy



TABLE I
RATIOS OF UNMATCHED LOGS IN REMAINING 90% OF LOGS

Method HPC HDFS Zookeeper Hadoop
LogSig 0.953 0.478 0.222 0.699
IPLoM 0.025 3e-05 0.199 0.265
Spell 0.940 0.832 0.876 0.992
Drain  0.940 3e-05 0.198 0.173
FT-tree 0.933 7e-05 0.596 0.366

from 0.559 to nearly 1.0 when it updates templates
incrementally.

o Since LogParse is cross-service adaptive, it is general
to diverse types of services/machines. This way, we
build and maintain only one template set for all types
of services/machines, which saves a lot of time and
resources.

o LogParse is able to assign/generate templates for any
given logs, so that we can achieve novel log analysis ap-
plications by adopting LogParse. For example, LogParse
can be easily applied for log compression.

« We have open-sourced' LogParse, and hope that it can
be used for future research.

The rest of the paper is organized as follows: We discuss
related works in Section II and propose our approach in
Section III. The evaluation is shown in Section IV. In Section
V, we introduce LogParse’s applications. Finally, we conclude
our work in Section VI.

II. RELATED WORK

Service logs play an important role in service management.
Log parsing serves as the the first step towards automated log
analysis. To achieve the goal of automated template extraction,
many data-driven approaches have been proposed. There are
many categories of template extraction methods [9]. The first
category is cluster-based methods, which log template forms
a natural pattern of a group of log messages. From this view,
log parsing can be modeled as a clustering problem, such
as LogSig [16]. Next is longest common subsequence. For
example, Spell [15] uses the longest common subsequence
algorithm to parse logs in a stream. Iterative partitioning is
used in IPLoM [17]. Some methods use heuristics to extract
templates. As opposed to general text data, log messages have
some unique characteristics. Consequently, Drain [21] propose
heuristics-based log parsing methods. The final category is
frequent items mining. Log templates can be seen as a set
of constant tokens that occur frequently in logs, such as FT-
tree [22].

However, for the intra-service scenario, most methods only
focus on template extraction while the other two parts of log
parsing, i.e., template matching and update, which are of vital
importance for log analysis, are not being properly combined
to allow for adaptiveness.

LogParse is available on Github: https://github.com/WeibinMeng/LogParse
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Fig. 4. Adaptiveness of LogParse. We train LogParse only by using logs of
service A. Intra-service adaptiveness means that it matches new types of logs
generated by service A. Cross-service adaptiveness means we use it to match
real-time logs from a different service B.

Although FT-tree [22] and Drain [21] support incremental
learning, their performance in such task is bad (shown in Fig.
3). What’s more, there is no template extraction method with
cross-service adaptiveness.

An adaptive log parsing method will improve the per-
formance of many applications of log analysis (e.g., log
compression, anomaly detection, failure prediction base on un-
structured logs). For example, PreFix [8], a failure prediction
system based on switch logs, cannot handle new types of logs.
DeepLog [7] addressed new templates learning by obtaining
operators’ feedback during anomaly detection. LogAnomaly
[6] is a state-of-the-art method to detect anomalies based on
unstructured logs. However, it deals with new types of logs
by merging them into the most similar existing templates.

III. DESIGN
A. Overview

The objective of LogParse is to be adaptive in order to
support intra-service incremental learning and cross-service
learning. LogParse can incrementally update the template set
and thus new types of logs can be matched to the updated
template set, without having to relearn the whole template set
and rematch all the historical logs. In addition, LogParse can
build the template set of a service based on the templates of
another service, which can address the problem that previous
log extraction methods cannot accurately learn templates for
a newly deployed service because of insufficient amount of
logs.

Fig. 4 shows adaptiveness of LogParse. For intra-service
adaptiveness, we get word labels by using any existing tradi-
tional template extraction methods and train LogParse model
in step#1 of Fig. 4. Then, we utilize the trained LogParse to
match online logs of service A. If failed, it will learn a new
template and incrementally update the template set. For cross-
service adaptiveness, we use LogParse trained on service A
directly, and then, match online logs of service B.

We show the detailed design of LogParse in Fig. 5. In
the offline component, LogParse first extracts templates from
historical logs (Section III-B). Then, it distinguishes template
words from variable words based on templates learned from
historical logs. Regarding these word classes as labels for
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Fig. 5. Detailed design of LogParse

training the word classifier, it then classifies words into tem-
plate or variable words using a binary classifier (Section III-D).
When real-time logs are generated, LogParse matches them
to templates (Section III-C). If a real-time log cannot match
any existing template, LogParse constructs vectors for each
word of this log, distinguishes between template words and
variable words based on the trained word classifier, learns a
new template, and adds it to the template set (Section III-D).

B. Template Extraction

Template extraction has been widely studied in previous
works [9], [22], and it is not the main contribution of this
work. Its objective is to learn templates from logs, based on
the observation that a log is “printf”’ed by services, and usually
follows predefined structures. For example, the template of L
in Fig. 1, i.e., “Interface ae3, changed state to down”, is 77,
i.e., “Interface *, changed state to down”.

As shown in Fig. 2, any existing template extraction meth-
ods can accurately learn templates from long-period historical
logs. Therefore, we can use the template set automatically
learned by these methods to distinguish between template
words and variable words.

C. Template Matching

After template extraction, we get a template set from his-
torical logs. Motivated by the extremely efficient performance
of the prefix-tree structure in packet forwarding [23], we
build a prefix-tree for the template set to accelerate template
matching. For example, Fig. 6 shows a prefix-tree for the logs
in Fig. 1, where the templates with solid line boxes are existing
templates. It is constructed as follows.

o We build a null root of a prefix-tree.

o We scan each existing template and sort a word list L by

the order of each word’s appearance in the template.

o« We insert L into the prefix-tree, where each node is

a word. If two templates share a common prefix (e.g.,
“Interface, changed, state, to” in 77 and 73)), we only
create a new subtree for different words.

o Each root-to-leaf path of the prefix-tree is a template.

| null |

[ Vlan-interface ]

[ Interface ]

[down ] [ up ][ down ] ,r___:l:)____l
T, T T, T,

Fig. 6. The prefix tree constructed for the template set in Fig. 1

For example, “Interface, changed, state, to, down” in Fig. 6
is a template. Note that we can incrementally add new tem-
plates to this prefix-tree in case that new templates are learned
from new types of logs. In this way, a log can be represented
with its corresponding template index and variable words. For
example, L; in in Fig. 1 can be represented with its template
index 7% and variable word “ae3”.

A real-time log can match existing template following
Algorithm 1. Firstly, we get the word list of the new log. Then,
according to the order of word list, we find the word nodes
from template tree (if they are in template tree). Finally, if we
find a root-to-leaf path in existing template tree, the path is
the matched template, otherwise, template search algorithm 1
will return “NULL” and we need to generate a new template
for the new log (describe in Section III-D).

D. Template Generation

Learning a template from a new type of log equals to
classifying the words in the log into template words and
variable words. In Fig. 1, for example, “Inter face, changed”
are template words, and “ae3, vlan22” are variable words.



Algorithm 1 Template Search
Input: A template set trie 7'ST of all extracted log templates,
and a sequence LW .S containing each word from a given
log in order
Output: A matched template M7T
1: Let a state S record a matching state up to a given node of
T'ST with the pair RM .S being the remanent sequence of
LW S as each of its words are processed and M N being
the node from T'ST yet to be matched
2: Set the root of T'ST, and the whole LW .S as the initial
state of .S

3: Create a queue ) and enqueue C'S

4: while @ is not empty do

5. Dequeue a state from () as the current state C'S

6: if C'S is valid and M N is a leaf node of T'ST then

7: Let the traceback of M N up to the root of T'ST be

matched template MT

8: return MT

9: end if

10:  for each child C of M'N do

11: if C' in RM S then

12: Create a new current state NC'S with the pair of
the updated RM S by removing its first word and
C

13: Enqueue NCS in Q

14: end if

15:  end for
16: end while
17: return NULL {No existing template was matched}

In this way, we transform the template update problem into
a word classification problem. However, word classification
faces three challenges: (1) Training a word classifier needs a
large amount of labels. (2) New words can appear in new
templates. (3) A variable word can appear in a template
sometimes.

The template update of LogParse, as shown in the orange
modules of Fig. 5, is proposed to address the above three
challenges. It includes four steps, i.e., word labeling, word
representation, word classifier, and new template generation,
as follows. As aforementioned, existing template extraction
methods cannot update templates at runtime. In this paper, we
propose a novel log parse framework, LogParse, which can be
combined with all existing template extraction methods and
enable them to update templates. The update procedures of
LogParse are shown in Fig. 5 (orange modules).

1) Word Labeling: There are tens of thousands of templates
in large service providers, and thus manually classifying
template words and variable words so as to get labels for
training a word classifier is nearly infeasible. To address
this problem, LogParse distinguishes template words from
variable words by combining historical logs and the template
set automatically constructed by existing template extraction
methods. Based on extensive investigations, we find that the
template set learned by these methods are accurate enough

a, b, ..,01,2 .. symbols

[1,,2,1,0,--,0,0 ---, 0, ---, 2]
[0,,0,2,0, -, 1,21, ---,0]
[0,,1,0,1, -,0,0 ---, 0, ---, 1]

bl
Character-level count vectors

previous vector currentvector label

[x,--+,x,x- -, x] [X,++,X,X" - -,X] template
[x,--+,x,x--x] [X, - +,x,X -+ X] variable
[x, -, x,x - X] [%,---,x,%x" - +,X] template

Feature vector of current words

Fig. 7. Example of feature vector

(with an average accuracy of 0.978), as shown in Fig. 2. In
this way, LogParse automatically gets the labels for template
words and variable words without any manual labelling, and
thus solves the first challenge.

2) Word Representation: Most of approaches treat word
representations as the cornerstone in natural language pro-
cessing. Though it is effective, word-level representation (e.g.,
word embedding [24]) is inherently problematic: it assumes
that each word type has its own vector that can vary inde-
pendently [25]. However, new types of logs introduced by
software/firmware upgrades aiming to add new features or fix
previous bugs result in new templates being generated online.
What’s more, most words only occur once in logs and out-of-
vocabulary (OOV) new words could not be addressed online
using a word-level representation.

To address this problem, we represent each word in a log
using a character-level count vector, as shown in Fig. 7. We
assume that words which share common components (prefix,
symbols, numbers) may be potentially related.

Specifically, for a given word, we construct a vector based
on the number of each character in this word. The character-
level count vectors with fixed dimensionality can represent
any word because the set of different characters is fixed (e.g.,
there are 128 different characters in ASCII). In this way, we
address the second challenge. In addition, we can find that
some variable words can also appear in templates. Therefore,
classifying a word into a template word or a variable word
just based on the word itself is not accurate, so the context of
the word should be considered for its classification. Inspired
by the n-gram concept, we classify a word by combining it
with its previous word. For a given word, as shown in Fig. 7,
we concat the count vectors of this and its previous words to
construct its feature vector. Consequently, the third challenge
is addressed.

3) Word Classifier: As mentioned above, LogParse trans-
forms the log template update problem into a word classi-
fication problem. For each word, it constructs a vector by
combining the character-level count vector of this word and
its previous one. We utilize SVM [26], a popular machine
learning method, to train a binary classifier. Note that, other



machine learning methods can also be used to train the binary
classifier. Applying SVM is not one of our contributions.

4) New Template Generation: In the online component,
we search the prefix-tree constructed from the template set
and match real-time logs to existing templates following
Algorithm 1. If the new log matches no existing template,
for each word in this log, we construct a feature vector by
combining the character-level count vector of this and its
previous word. Then, we classify each word by the trained
word classifier. Finally, we construct a template based on the
template words. In Fig. 1, for example, Lg cannot match any
existing template. According to the word classifier, LogParse
finds that the words “Vlan-interface”, “changed”, “state”, “to”,
“up” are template words and thus inserts them into the prefix-
tree to update the template set (74 in Fig. 6).

E. LogParse’s Application in Log Compression

As for log compression, traditional compression tools can-
not decompress specific logs in real-time because they need to
decompress whole file chunks [20]. Considering that when a
failure occurs, operators tend to traceback the logs of similar
failures for quick mitigation, real-time querying is an essential
requirement for the operators.

Usually, the number of different templates are much smaller
than that of different logs, and in a log the number of
variable words are much smaller than that of all the words.
Therefore the unstructured logs contain a lot of redundant
information. A log can be easily compressed (matched) to,
and quickly decompressed (recovered) from, its template and
variables. In order to (de)compress every log, the template set
should be kept up to date. Consequently, log parsing, which
extracts templates from logs, matches logs to templates, and
maintains a template set continuously, is a promising direction
to efficiently and effectively compress logs.

In this paper, we apply LogParse on two storage scenarios:
short-term storage and long-term storage. For short-term stor-
age (e.g., within one year), operators have to query logs in real-
time. Traditional compression methods cannot decompress for
given logs in real-time. They are only suitable to long-term
storage. As is shown in Fig. 1, we utilize log templates
and LogParse to parse real-time logs and save “template
index + variables” to compress original logs. For long-term
storage, we adopt double compression to process logs. That
is, use traditional compression methods to compress “template
index + variables” sequence, which will achieve the highest
compression ratio.

IV. EVALUATION OF LOGPARSE

A. Experiment Setting

In this section, we evaluate the performance of LogParse in
supporting intra-service adaptiveness and cross-service adap-
tiveness. The datasets, template extraction methods, evaluation
metrics and experimental setup of the experiments are as
follows.

TABLE II
DETAIL OF THE DATASETS

Datasets Description # of logs
HPC High performance cluster 433,489

HDFS  Hadoop distributed file system 11,175,629
ZooKeeper ZooKeeper service 74,380
Hadoop Hadoop MapReduce job 394,308

1) Datasets: We conduct experiments over four public
log datasets from distributed systems, which are HPC [27],
HDES [28], ZooKeeper [27], and Hadoop [29]. The detailed
information of these datasets is listed in Table II. For each
dataset, [9] sampled logs and manually labelled each log’s
template, which serves as the ground truth for our evaluation.

2) Template Extraction Methods: As aforementioned, Log-
Parse can incorporate any existing template extraction method,
so template extraction (in the offline component) is not the
main contribution of this work. To demonstrate the perfor-
mance of LogParse regardless of the method used, we have
implemented five template extraction methods: FT-tree [22],
Drain [21], Spell [15], LogSig [16] and IPLoM [17] (see
Section II for more details). The parameters of these methods
are all set best for accuracy.

3) Evaluation Metrics: We apply Rand index [30] to
quantitatively evaluate the accuracy of template extraction.
Rand index is a popular method for evaluating the similarity
between two data clustering techniques or multi-class classifi-
cations. What’s more, Rand index is applied to evaluating
existing template extraction methods in the literature, such
as in [22], [31]. For each template extraction method, we
evaluate its accuracy by calculating the Rand index between
the manual classification results and the templates learned
by it. Specifically, among the template learning results of a
specific method, we randomly select two logs, i.e., x and y,
and define TP,TN,FP,FN as follows. TP: x and y are
manually classified into the same cluster and they have the
same template; T'N: x and y are manually classified into
different clusters and they have different templates; F'P: x
and y are manually classified into different clusters and they
have the same template; F'N: x and y are manually classified
into the same cluster and they have different templates. Then
Rand index can be calculated using the above terms as
follows: Rand index = %.

4) Experimental Setup: We conduct experiments on a
Linux server with Intel Xeon 2.40 GHz CPU and 64G memory.
We implement LogParse with Python 3.6 and have open-
sourced LogParse on github?.

B. Evaluation on Incremental Learning

LogParse can incorporate any existing template extraction
method to learn templates from logs. It generates word repre-
sentations for each word in the logs, and together with their

2LogParse is available on Github: https://github.com/WeibinMeng/LogParse
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labels learned by the template extraction method, it then trains
a word classifier. We find the accuracy of the word classifier
heavily relies on that of template extraction. Fig. 2 shows the
accuracy (in terms of Rand index) of Drain, Spell, IPLoM,
FT-tree and LogSig on the datasets of HPC, HDFS, Zookeeper,
Hadoop, respectively. For each method, it learns templates
from each dataset and then matches each log in the dataset
to a template. The existing template extraction methods are
highly accurate in learning templates from logs. Specifically,
they achieve an average accuracy of 97.80%. Consequently,
we can directly use the automatic template extraction results
of these methods to build word representations and train a
word classifier.

As aforementioned, LogParse can incrementally update its
template set in case that new types of logs are generated
because of software/firmware upgrade. This is important be-
cause otherwise new types of logs cannot match any existing
templates, and the long period (large volume) of historical logs
have to rematch the new template set, which costs tremendous
amounts of time and resources.

To demonstrate the performance of LogParse in supporting
incremental learning and simulate the launch of new services,
for each dataset, we apply each template extraction method
to learn templates from 10% of their logs. Based on these
templates, LogParse distinguishes template words and variable
words, builds word representations, and trains a word classifier
(see Fig. 5 for more details). After that, for the remaining 90%
logs, LogParse first matches them to the existing templates,
and if failed, it then builds their word representations, updates
templates based on the trained word classifier, and matches
them to the updated template set. If we only utilized template
extracting methods without update, as shown in Fig. 3, the
average template extraction accuracy is 0.559. However, Fig. 3
also shows that, when LogParse is applied to update templates,
the template extraction accuracy on the remaining 90% logs
of each dataset is relatively high. Note that, the accuracy of
LogParse in Fig. 3 is the average accuracy obtained on each
dataset as it is shown in Fig. 8. Clearly, the average template
extraction accuracy of each method on each dataset is 0.958.
In other words, LogParse improves the template extraction
accuracy by 71.5% when new types of logs are generated.

To demonstrate how robust LogParse is to the scale of
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Fig. 9. The template extraction accuracy of LogParse as the percentage of
training data changes

training data, Fig. 9 shows the template extraction accuracy
(in terms of Rand index) of LogParse on the four datasets,
as the percentage of training data increases from 10% to
90%, respectively. Henceforth, LogParse incorporates FT-tree
as the log extraction method since FT-tree is robust to diverse
types of logs. With LogParse automatically and continuously
updating templates for new types of logs, the accuracies
of template extraction are quite stable as the percentage of
training data changes. In other words, LogParse is robust to
different scales of training logs, and can achieve high template
extraction accuracy when trained based on a small scale of
training data.

C. Evaluation on Supporting Cross-service Adaptiveness

LogParse is cross-service adaptive, which enables it to
accurately learn templates from logs when a new type of
service is newly deployed. Based on these templates, an
anomaly detection/prediction method can be trained, and the
logs can be compressed, soon after the new type of service
is deployed. Since different datasets are usually different in
syntax, we conduct a cross-dataset experiment to demonstrate
the performance of LogParse in the cross-syntax scenario. We
therefore train LogParse based on the logs of one dataset
(as shown in the upper part of Fig. 5) and match the logs
of another dataset (as shown in the lower part of Fig. 5)
based on the trained model. Table III shows the accuracy
(in terms of Rand index) of LogParse for the cross-dataset
template learning and matching. LogParse achieves close-
to-one Rand index for all the cases. For example, when
LogParse is trained based on the HPC dataset and applied
to match the logs of the HDFS dataset, the Rand index is
0.983. On average, LogParse achieves a cross-dataset accuracy
of 0.980, which strongly demonstrates that LogParse is cross-
service adaptive.

V. APPLICATION IN LOG COMPRESSION

As aforementioned, LogParse, which is cross-service adap-
tive and supports incremental learning, can be used to com-
press logs and quickly query (decompress) specific logs after
compression.



TABLE III
THE ACCURACY OF LOGPARSE IN CROSS-DATASET TEMPLATE LEARNING
AND MATCHING

Training Testing data
data HPC HDFS ZooKeeper Hadoop
HPC - 0983 0.999 0.923
HDFS 0982 - 0.993 0.974
Zookeeper 0.993 1.0 - 0.937
Hadoop 0.983 0.999 0.999 -

A log can be represented by its template and variable words.
Since typically many logs share the same template, this repre-
sentation can greatly save storage space, and thus effectively
compress logs. Then the log can be quickly recovered from
this representation. In this section, we show the performance of
LogParse in log (de)compression, with the public HPC, HDFS,
Zookeeper, and Hadoop datasets, and the logs collected from a
top-tier global cloud service provider. We compare LogParse
with three commonly used compression methods, i.e., bzip
[32], 7zip [33], zip [34]. In addition, we apply the compression
ratio, i.e., ”;"Zsfo Jfogff;f;ﬁog’sgs, to evaluate the performance
of each log compression method. Note that, accuracy of log
parsing doesn’t impact the log compression. This is because
even if some templates are wrong, as variables are also saved
together with template indexes, we can recover all compressed
logs completely.

A. Evaluation on Public Datasets

Table IV shows the comparison ratios of LogParse-enabled
compression approach, bzip, 7zip, zip, and their combinations.
In LogParse-enabled compression, we simply apply LogParse
to compress template components, which can be quickly
decompressed. Then, we combine LogParse and traditional
compression approaches to achieve double compression. The
LogParse-enabled compression approach achieves an average
compression ratio of 22.7%. Since logs in the HPC and
Hadoop datasets usually have more variables, which are not
compressed in LogParse-enabled compression (using “tem-
plate + variable words” to represent a log), it has bad compres-
sion ratios on these datasets. After a long time, historical logs
become less likely to be queried, and thus we can store them
by combining LogParse-enabled compression approach with
the commonly used compression methods. For example, when
we combine it with bzip, 7zip, or zip, the combination achieves
much smaller compression ratios than these commonly used
methods, as shown in Table IV.

B. Deployment Experience

Considering the superior performance of LogParse in log
compression, we have deployed it in a top tier cloud service
provider to effectively parse and compress logs for network
devices and firewalls. With LogParse, the service provider has
represented (compressed) logs using the format of “template +
variable words” since September 2018. The compression ratios

TABLE IV
THE COMPRESSION RATIOS OF LOGPARSE-ENABLED COMPRESSION
APPROACH, BZIP, 7ZIP, ZIP AND THEIR COMBINATIONS

Method HPC HDEFS ZooKeeper Hadoop Average
LogParse 234% 14.1% 109% 424% 22.7%
bzip 57% 93%  3.0% 56% 6.1%
LogParse w/ bzip 3.4% 32%  24% 36% 32%
7zip 70% 85%  3.1% 50% 5.9%
LogParse w/ 7zip 3.7% 6.3% 2.8% 34% 4.1%
Zip 8.6% 11.4% 4.8% 8.0% 8.2%
LogParse w/ zip 4.4% 7.8% 2.8% 5.0% 5.0%
TABLE V

COMPARISON OF THE QUERY TIME FOR ONE HUNDRED LOGS FROM THE
DATASET COMPRESSED FROM 1 TB LOGS

Method LogParse 7zip Zip

0.212 ms 20.27 hours 1.12 hours 1.91 hours

bzip

Time

of LogParse for switch and firewall logs are 16.4% and 23.3%,
respectively. If LogParse is combined with bzip, the above
compression ratios drop to 3.13% and 5.07%, respectively.
This service provider usually compresses the logs every day,
which we believe, is not rare for other cloud service providers.
In addition, the provider generates TBs of logs every day, and
operators usually have to query hundreds of logs to traceback
a similar historical failure when a failure occurs. Therefore,
we compare the time needed for querying 100 specific logs
from a dataset compressed from 1TB of logs. Table V shows
the comparison results. LogParse dramatically speeds up the
decompression and decreases the time from hours to 0.212 ms.

VI. CONCLUSION AND FUTURE WORK

Logs play an important role in service maintenance and
log parsing which is the first step of automated log analysis.
However, current log parsing methods are not adaptive. We
propose a novel log parsing framework, LogParse, to parse
logs adaptively both in an intra-service and a cross-service
manner. Our evaluation on four public production log datasets
demonstrates LogParse improves parsing accuracy from 0.559
to nearly 1.0 when new types of logs are generated. A trained
LogParse is also adaptive for a brand new service’s log parsing.
We have open-sourced LogParse, and hope that it can be used
for future research. Besides, we demonstrate the power of
LogParse when applied to log compression, enabling real-time
querying of compressed logs. Other interesting log analysis
applications (e.g., log classification, log-based anomaly detec-
tion, log-based failure prediction, log summary) with similar
requirements, where a template should always be assigned for
a given log, could now be enabled using LogParse. We will
utilize LogParse to improve more log analysis applications in
the future.
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