
Received January 12, 2020, accepted February 6, 2020, date of publication February 10, 2020, date of current version February 18, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2972691

Efficient and Robust Syslog Parsing for Network
Devices in Datacenter Networks
SHENGLIN ZHANG 1, (Member, IEEE), YING LIU 2,3, (Member, IEEE), WEIBIN MENG 3,4,
JIAHAO BU 3,4, SEN YANG 5, YONGQIAN SUN 1, DAN PEI 3,4, (Senior Member, IEEE),
JUN XU 6, (Senior Member, IEEE), YUZHI ZHANG 1, LEI SONG 7, AND MING ZHANG 8
1College of Software, Nankai University, Tianjin 300071, China
2Institute for Network Sciences and Cyberspace, Tsinghua University, Beijing 100084, China
3BNRist, Beijing 100084, China
4Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
5Facebook, Inc., Menlo Park, CA 94025, USA
6School of Computer Science, Georgia Institute of Technology, Atlanta, GA 30332, USA
7Baidu, Inc., Beijing 100085, China
8China Construction Bank, Beijing 100033, China

Corresponding author: Yongqian Sun (sunyongqian@nankai.edu.cn)

This work was supported by the National Key Research and Development Program of China under Grant 2018YFB0204304.

ABSTRACT Syslog parsing is of vital importance for the detection, diagnosis and prediction of network
device failures in a datacenter. A common approach to syslog parsing is to extract templates from historical
syslogs, after which syslogs are matched to these templates. To address the problems in the existing syslog
parsing techniques, we propose a novel framework, Craftsman, which identifies frequent combinations of
(syslog) words and then applies them as templates. Craftsman empirically extracts templates accurately,
is extremely efficient in template matching, and naturally supports incremental learning. To compare the
performance of Craftsman and three other template learning techniques designed for network devices,
we experiment them on two-years’ worth of syslogs collected from network devices deployed across 10+
datacenters of a tier-one service provider. The experiments demonstrate that Craftsman achieves a close-to-
one accuracy (as measured by rand index), and improves the computational efficiency by 6.88 to 10.25 times
in template matching, and by 730 to 6847 times in syslog parsing. It also improves the accuracy (as measured
by F1 measure) of failure prediction by 13.07% to 188%. In addition, we demonstrate Craftsman’s superior
generality by comparing it with three widely-applied log parsing methods over five large log datasets
collected from servers, distributed systems and applications.

INDEX TERMS Syslog parsing, network device, prefix tree, datacenter network, frequent pattern.

I. INTRODUCTION
Nowadays, cloud service providers employ a large number
of network devices in their datacenter networks, and net-
work device failures are not rare any more. For example,
Microsoft’s datacenter networks have deployed tens of thou-
sands of network devices [1], and there occur more than 400
network device failures per year [2]. Since a network device
failure can dramatically degrade the the performance of a
datacenter, researchers have paidmuch attention on the detec-
tion/diagnosis/prediction of network device failures [3]–[7].
Network device syslogs have been recognized as a rich source
of information for failure detection, diagnosis, and predic-
tion [4], [5], [8]–[12]. However, since syslogs are usually

The associate editor coordinating the review of this manuscript and

approving it for publication was Yulei Wu .

unstructured texts, they have to be properly parsed before
they can be effectively used [13]–[15]. In this paper, we focus
on syslog parsing techniques that can lead to more accurate
and efficient network device failure detection, diagnosis and
prediction.

The current approach to parsing network device syslogs
is to learn message templates from syslogs and then match
the syslogs to the templates [4], [8], [9]. Therefore, sys-
log parsing includes template learning and template match-
ing. For example, in the syslog message OSPF Neigh-
bor 10.231.44.249 (Vlan-interface18) from Exstart to
Exchange, 10.231.44.249 and Vlan-interface18 are param-
eters that vary from one message to another and are not parts
of a template, whereas the rest, i.e.,OSPFNeighbor . . . from
Exstart to Exchange, sketches out the event and hence is a
template that summarizes this and other similar syslogs.

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 30245

https://orcid.org/0000-0003-0330-0028
https://orcid.org/0000-0002-4919-1130
https://orcid.org/0000-0002-9384-9016
https://orcid.org/0000-0002-0943-1814
https://orcid.org/0000-0001-8084-7233
https://orcid.org/0000-0003-0266-7899
https://orcid.org/0000-0002-5113-838X
https://orcid.org/0000-0002-0046-8119
https://orcid.org/0000-0002-6729-925X
https://orcid.org/0000-0001-7912-9242
https://orcid.org/0000-0002-4214-9423
https://orcid.org/0000-0003-0801-8443

S. Zhang et al.: Efficient and Robust Syslog Parsing for Network Devices in Datacenter Networks

Despite the crucial role that syslog parsing plays in net-
work device failure detection, diagnosis and prediction as
aforementioned, existing syslog parsing techniques for net-
work devices, e.g., Statistical Template Extraction (STE) [9]
and LogSimilarity [4], have low accuracy in learning the
‘‘correct’’ set of templates, and are inefficient in matching
syslogs to templates. The large number of network devices
(say more than 10 thousand) in modern datacenter networks
generate tens of millions of syslogs everyday. Therefore,
a syslog parsing method which is inefficient in matching
a syslog message to its template will consume too much
computational resources.

Some syslog parsing techniques, e.g., the signature tree
based method1 [8] and STE [9], do not support incremental
learning in the sense that the entire set of templates has to be
re-parsed (i.e., relearn templates and rematch all the syslogs
to them) when a new template is added. Typically, the syslog
based failure detection/diagnosis/prediction method applies
machine learning methods to learn the failure patterns from
historical syslogs and failures [4], [9], [16]–[21]. The under-
lying detection/diagnosis/prediction model, which is trained
based on the template library, has to be retrained every once
in a while to kept up-to-date. It is highly desirable for the
template library to be incrementally retrainable for the fol-
lowing reason. Network operators frequently conduct soft-
ware or firmware upgrades on network devices to introduce
new features, or fix bugs in the previous version [22]. These
updates can generate new subtypes of syslogs that cannot
match any existing template, thus requiring new templates
to be learned from these new messages and added to the
template library. Consequently, new templates have to be
learned from these new syslogs and then added to the template
library. Only the syslogs that arrive after the previous upgrade
need to match the new template library if the log parsing
model is incrementally retrainable. Otherwise, the log parsing
method has to re-parse all historical syslogs based on the
new template library. The unincrementally retrainable man-
ner, which STE and SignatureTree fall into, is prohibitively
expensive computationally. That is because a large datacenter
usually deploys tens of thousands of network devices, and
detects/diagnoses/predicts failures based on historical syslogs
and failures for a long period (e.g., two years).
We propose a novel framework, Craftsman, which has

high accuracy in identifying the ‘‘correct’’ templates, and
is incrementally retrainable and computationally efficient in
template matching. Usually, a ‘‘correct’’ message template
is a combination of words that occur frequently in syslogs.
Therefore, Craftsman dynamically builds a prefix-tree struc-
ture of these frequent words, and applies the prefix-tree to
construct the template library. Because this prefix-tree struc-
ture as well as the template library dynamically and incre-
mentally evolve with the arrival of new syslogs (may be of the
new message subtypes), Craftsman is incrementally retrain-
able in nature. Moreover, thanks to the prefix-tree structure,

1We refer to this method as SignatureTree hereafter

Craftsman is extremely efficient in matching a syslog mes-
sage to its template. Craftsman also empirically guarantees
that the template learned from a given syslog accurately
characterizes the event that the syslog represents. Craftsman
is, to the best of our knowledge, the first framework that
leverages the idea of prefix-tree and frequent patterns to
achieve an accurate, efficient, and incrementally retrainable
log parsing method.

To compare the performance of Craftsman to those of
SignatureTree, STE, and LogSimilarity, we apply the sys-
logs collected from 2, 223 network devices over a two-year
period. These network devices are deployed across more than
10 datacenters owned by a tier-1 cloud service provider.
We evaluate the accuracy of the four techniques based on
manual classifications of syslogs. Craftsman achieves close-
to-one accuracy in template learning, and it respectively
improves the computational efficiency of template matching
by 6.88 and 10.25 times compared to LogSimilarity and
STE. In addition, STE and SignatureTree consume 6847 and
730 times more computational resources than Craftsman in
log parsing (i.e., template learning and matching), respec-
tively, as neither of them is incrementally retrainable. More-
over, Craftsman improves the prediction accuracy by 13.07%
and 35.42% (using PreFix [5] as the failure prediction
method), or 155% and 188% (using Hidden Semi-Markov
Model (HSMM) [16] as the failure prediction method), com-
pared to LogSimilarity and STE, respectively. The evalua-
tion experiment results clearly demonstrate the benefits of
Craftsman: highly accurate, incrementally retrainable, and
extremely efficient in matching a syslog message to its tem-
plate. The implementation of Craftsman is publicly available
now at [23], and we hope that this can help researchers
further understand the intuition, framework and performance
of Craftsman.

In addition, to demonstrate how Craftsman is general
in parsing syslogs for other types of logs, we com-
pare Craftsman with log parsing methods designed for
servers (supercomputers), distributed systems and applica-
tions. These methods include Iterative Partitioning Log Min-
ing (IPLoM) [24], Log Key Extraction (LKE) [25] and
LogSig [26]. The comparison experiments are conducted
over five large log datasets ranging from supercomput-
ers (Blue Gene/L and High Performance Cluster) to stan-
dalone software (Proxifier) to distributed systems (HDFS
and Zookeeper). Craftsman achieves an averaged accuracy
of 96.25% across the five datasets, which is better than
the above three methods. Moreover, Craftsman has a much
smaller log parsing (i.e., template learning and matching)
time (4.98s) per day than the other three methods (35 min
to 5.38 day), and it consumes much less memory space
(32.4 MB) compared with these methods (90.6 MB to
23.5 GB). The experiment results show Craftsman’s superior
generality on diverse types of logs.

A preliminary version of this paper appears as [27]. The
rest of the paper is organized as follows. We provide an
introduction to datacenter network architecture and network

30246 VOLUME 8, 2020

S. Zhang et al.: Efficient and Robust Syslog Parsing for Network Devices in Datacenter Networks

FIGURE 1. Typical datacenter network architecture.

device syslog in Section II, followed by the intuition of
Craftsman in Section III. The design of Craftsman is elab-
orated in Section IV, and we present the evaluation experi-
ments in Section V. The related works, including Signature-
Tree, STE, LogSimilarity, and the log parsing methods in
other areas, are discussed in Section VI. Finally, we conclude
our paper in Section VII.

II. BACKGROUND
In this section, we first briefly introduce in Section II-A the
architecture of a datacenter network and the important role
that switches and routers play in it, and then describe in
Section II-B network device syslogs in details.

A. DATACENTER NETWORK ARCHITECTURE
Nowadays, computer servers in a datacenter are connected via
a network of commodity Ethernet switches and routers [28].
Figure 1 shows a typical datacenter network architecture [29].
It is comprised of several layers. At the bottom layer, servers
are mounted on racks and connected to a ToR switch via
Ethernet NICs. Tens of ToRs are in turn connected to a
primary aggregation switch and a backup one for redun-
dancy purposes (L2). These two aggregation switches then
forward the traffic from ToRs to access routers (L3), each
of which aggregates traffic forwarded from multiple ToRs,
and route it to core routers. Each datacenter network is con-
nected to other datacenter networks and the Internet via core
routers. Several types of middleboxes, such as load balancers,
VPNs, firewalls, and intrusion detection and prevention sys-
tems (IDPSes), are also deployed in datacenter networks to
improve performance and/or enhance security.

Switches and routers are themost populous type of network
devices in a cloud datacenter. The number of switches and
routers in a datacenter has also grown expolsively recently.
For example, Guo et al. reported that there were tens of
thousands of switches and routers across Microsoft’s data-
centers [1]. Similarly, the tier-1 cloud service provider we are
working with also deploys tens of thousands of switches and

routers that are manufactured by several different vendors.
In this work, we study syslog parsing for the most important
and populous network devices – routers and switches – in
datacenter networks.

B. NETWORK DEVICE SYSLOG
Each network device reports, from time to time, the observed
hardware/software condition or (anomalous) event, in a sys-
log message. Examples of such conditions or events include
state changes of interfaces, links, or neighbors (e.g., the state
of an interface changes from up to down), operational main-
tenance (e.g., operators log in/out), environmental condi-
tion alerts (e.g., high temperature), etc. Although syslogs
are designed mainly for debugging software and hardware
problems, they can also be used for detecting, diagnosing,
and predicting network incidents [4], [5], [8], [9]. Hence,
usually dedicated servers are deployed in a datacenter to
collect syslogs from all its network devices [27].

As can be seen from several example syslogs shown
in Table 1, a syslog message usually has a simple structure
consisting of several fields, including a timestamp recording
when the network device generates the syslog message, a net-
work device ID identifying the network device that generates
the message, a message type that describes the rough char-
acteristics of the message, and a message body depicting the
details of the event. The syntax and semantics of the message
type field and the detailed message field vary with network
device vendors and models [27].

III. INTUITION OF Craftsman
The syslogs of network devices are essentially unstruc-
tured texts in diverse forms. Moreover, a specific IP
address or interface ID that appears in a syslog may never
appear again. Consequently, it is quite difficult, if possible,
to learn failure patterns from raw syslogs for failure detec-
tion/diagnosis/prediction.

As shown in Table 1, each syslog includes a message type
field that describes the schematic characteristics of the event.
However, there can be multiple subtypes in a message type.
For example, although in Table 2 there are 21 syslogs that
belong to the message type ‘‘10OSPF/5/OSPF_NBR_CHG’’
and describe the changes of OSPF neighbors, the detailed
messages can be quite different. The detailed message field of
syslogs is essentially free-form text, and a network device’s
OS usually ‘‘printf’’ed this field with detailed informa-
tion, such as the location (line card/port/interface), pack-
age loss ratio, IP address, etc., as parameters. For instance,
the detailed message field of the syslog message in the
first line of Table 2, i.e., OSPF Neighbor 10.231.51.249
(Vlan-interface03) from Init to Exstart, means that the
event impacts the interface numbered Vlan-interface03 of
the network device with IP address 10.231.51.249, and
thus the state of the OSPF status changes from Init to
Exstart. In other words, the 10.231.51.249 and the Vlan-
interface03 parts are the parameters describing detailed
information (hereafter, we collectively refer to this type of

VOLUME 8, 2020 30247

S. Zhang et al.: Efficient and Robust Syslog Parsing for Network Devices in Datacenter Networks

TABLE 1. Examples of network device syslogs.

TABLE 2. An example of the syslog sequence before a switch failure.

words as parameter words), whereas the rest parts, i.e.,OSPF
Neighbor . . . from Init to Exstart, are predefined outputs by
the network device’s OS and can be used as a subtype for the
syslogs of the message type 10OSPF/5/OSPF_NBR_CHG
(hereafter, we collectively refer to this type of words as tem-
plate words). When we apply the same symbol (e.g., an aster-
isk as shown in Table 3) to mask the variable of the detailed
message field of the 21 syslogs (i.e., IP address or vlan-
interface number), we can see that there are only four different
syslog structures, or subtypes.
However, manually obtaining all subtypes without domain

knowledge is almost impossible because not every part that
should be masked in the detailed message can be as eas-
ily characterizable as the interface number or IP address.
In addition, although part of the syslog subtypes can be
obtained with support from vendors, these subtypes may
change due to software upgrades. Therefore, our objective
is to automatically obtain message templates in which the
need-to-be-masked parts are removed and the message

TABLE 3. Syslog message subtypes of SIF.

subtypes are retained without relying on any domain knowl-
edge. [27]

After investigating thousands of real-world network device
syslogs, we have the following two observations:

• Parameters words are much less than template words.
As shown in Table 2 and Table 3, it is obvious
that, in a syslog message, the number of parameter
words is usually much smaller that that of template
words. For example, in the syslogs of the message type

30248 VOLUME 8, 2020

S. Zhang et al.: Efficient and Robust Syslog Parsing for Network Devices in Datacenter Networks

FIGURE 2. The framework of Craftsman.

‘‘10OSPF/5/OSPF_NBR_CHG’’, there are six template
words, and only two parameter words. It is consistent
with the common practice that the OS of a network
device usually reserves only a small number of positions
for parameters in the ‘‘printf’’ function of a syslog mes-
sage. In addition, the parameter words of different sys-
logs are usually different, whereas the template words of
the syslogs belonging to the same subtype are the same.
Therefore, in a large set of syslogs, parameter words are
much less than template words.

• A message type has a small number of subtypes, and
each subtype has a large number of syslogs. Typically,
there are a limited number (usually < 10) of subtypes in
each message type. That is because a message type usu-
ally includes a small number of different events, which
are sketched out by subtypes or templates. Moreover,
in a large cloud datacenter, there are a quite large number
of syslogs belonging to the same message type. As a
result, a subtype usually has a great many syslogs.

IV. FRAMEWORK OF Craftsman
Our objective in syslog parsing is to automatically, accurately,
and efficiently learn template and subtype information from
syslogs without relying on any domain knowledge, and effi-
ciently match syslogs to their templates. As aforementioned,
three syslog parsing methods, i.e., SignatureTree, STE, and
LogSimilarity, were proposed. However, they are not well
suited for our application scenario because of their low accu-
racy in template (or subtype) learning, or their inefficiency
in template matching, or their inability to be incrementally
retrained.

Inspired by the Frequent Pattern Tree (FP-tree) [30],
which is designed for storing compressed, crucial information
about frequent patterns in database, we propose Craftsman,
an incrementally retrainable technique with high accuracy
in template (subtype) learning, and high efficiency in tem-
plate matching. Craftsman constructs a prefix-tree structure
to encode and learn message templates. Intuitively, a syslog
subtype, or a template, is usually the longest combination of
words with high frequency (see Section III for more details),
and thus learning a template can be transformed to identifying
such longest combination of frequent words from syslogs.

In addition, motivated by the excellent performance of prefix-
tree in packet forwarding [31], we believe that the prefix-tree
structure is extremely efficient in matching syslogs to their
templates. Craftsman is, to the best of our knowledge, the first
framework that leverages the idea of prefix-tree and frequent
patterns to achieve an accurate, efficient, and incrementally
retrainable log parsing method.

Figure 2 shows the architecture of Craftsman. For a given
switch model, Craftsman learns templates from historical
syslogs, and builds a template library, based on which Crafts-
man matches historical syslogs to template sequences. If a
realtime syslog message cannot match any template in the
template library, Craftsman will incrementally learn a tem-
plate from it and extend the library. Otherwise, Craftsman
will match the realtime syslogs to template sequences. Both
template learning and template matching should be efficient
because of the large number (say tens of millions) of syslogs
generated everyday in a large datacenter.

In the following, we first introduce the design and
construction of the prefix-tree in Section IV-A, and then
demonstrate how Craftsman facilitates incremental template
learning in Section IV-B. We then describe how Craftsman
support efficient template matching in Section IV-C. Finally,
we show the space complexity of Craftsman in Section IV-D.

A. DESIGN AND CONSTRUCTION OF PREFIX-TREE

Algorithm 1 Prefix-Tree Construction in Craftsman [27]
Input: A message set DM containing all the different sys-

logs of a specific message type, and a threshold k
Output: A prefix-tree, T
1: Scan the message set DM once
2: Calculate the support for each word in I
3: Let L be the list of words in the descending order of their

supports
4: Create the root of T and label it as the message type
5: for each message in DM do
6: Sort its words according to their order in L
7: Let the sorted word list be [p|P], where p is the first

element and P is the remaining list
8: Call insert_tree([p|P],T)
9: end for
10: for Child C in T do
11: if C has more than k children then
12: Eliminate all the children of C
13: end if
14: end for
15: return T

Let I = a1, a2, . . . , am be the set of distinct words that
occur in a message setDM = 〈M1,M2, . . . ,Mn〉, where each
Mi is a syslog message. The support (i.e., the frequency of
occurrences) of a word combination (i.e., a set of words) A,
is the number of distinct messages containing A in DM . A is
considered a template if A is occurring frequently (i.e., with
a large support) [27].

VOLUME 8, 2020 30249

S. Zhang et al.: Efficient and Robust Syslog Parsing for Network Devices in Datacenter Networks

FIGURE 3. An example of constructing a prefix-tree. ‘‘IP (*)’’ denotes the IP address is 10.231.*.249, and ‘‘Interface (*) denotes the
interface is Vlan-interface*’’.

The second column of Table 4 shows an exam-
ple syslog message set DM = 〈M1,M2, . . . ,M13〉,
in which every message belongs to the message type
‘‘10OSPF/5/OSPF_NBR_CHG’’. The prefix-tree for this
DM is constructed, using the algorithm shown in Algorithm I,
as follows [27].

First, our prefix-tree construction algorithm scans DM
once (line 1 in Algorithm I), and derives a list L of
words in the descending order of their frequency of occur-
rences. Clearly, the words and their frequency in L is listed
in Table 5. [27]
Then, we create the root of a tree which is labeled with

the message type, which in this case is ‘‘10OSPF/5/OSPF_
NBR_CHG’’, as shown in Figure 3 (a). Our prefix-
tree construction algorithm scans DM for a second time
(lines 5 through 9 in Algorithm I). The parsing of M1
leads to the construction of the first path/branch of the
tree: 〈‘‘OSPF’’, ‘‘Neighbor’’, ‘‘from’’, ‘‘to’’, ‘‘Exstart’’,
‘‘Init’’, ‘‘10.231.51.249’’ (IP (51)), ‘‘Vlan-interface03 (Inter-
face (03))’’〉 (a word in a prefix-tree is called the nword
of the node containing the word). Note these words are
ordered according to the order of the words in L. When M2

is parsed, since its ordered word list 〈‘‘OSPF’’, ‘‘Neigh-
bor’’, ‘‘from’’, ‘‘to’’, ‘‘Full’’, ‘‘Loading’’, ‘‘10.231.53.249’’
(IP (53)), ‘‘Vlan-interface07 (Interface (07))’’〉 shares a com-
mon prefix 〈‘‘OSPF’’, ‘‘Neighbor’’, ‘‘from’’, ‘‘to’’〉 with
the existing path/branch, a new branch 〈‘‘Full’’, ‘‘Load-
ing’’, ‘‘10.231.53.249’’ (IP (53)), ‘‘Vlan-interface07 (Inter-
face (07))’’〉 is created as a subtree of node 〈‘‘to’’〉. The rest
11 messages in Table 4 are parsed similarly, resulting in the
final prefix-tree shown in Figure 3 (b).

Finally, we prune the tree until it satisfies the following
node degree constraint (lines 10 through 14 in Algorithm I).
Intuitively, as mentioned in Section III, there should be only
a small number of subtypes for each message type, and,
for each subtype, there should be many different syslogs
that match to it. Therefore, if a node has too many children
(say exceeding a threshold k , and operators empirically set
5 ≤ k ≤ 10), all its children (or subtrees) are deleted from
the tree and the node will become a leaf itself. In the pruned
prefix-tree, each root-to-leaf path is a message template
(i.e., type + subtype). For example, 〈‘‘OSPF’’, ‘‘Neighbor’’,
‘‘from’’, ‘‘to’’, ‘‘Exstart’’, ‘‘Init’’〉 is a message template,
as shown in Figure 3 (b). [27]

30250 VOLUME 8, 2020

S. Zhang et al.: Efficient and Robust Syslog Parsing for Network Devices in Datacenter Networks

TABLE 4. Different messages belonging to message type ‘‘10OSPF/5/OSPF_NBR_CHG’’ in Table 2, and the words ordered according to L.

TABLE 5. The words and their frequency in L.

Definition 1 ([27]): As illustrated by the above example,
given a specific message type, the prefix-tree is defined as
follows:

1) Its root is labeled by the message type, and each root-
to-leaf path corresponds to a message template.

2) Each non-root node in the prefix-tree has only one
attribute/field, namely nword , which registers which
word this node represents.

It remains to describe the function insert_tree([p|P],T) in
Algorithm 1. It works as follows. If @N ,
N .nword = p.nword , and N is a child of T , then create
a new node N , and make it a child of T . If P 6= 8, call
insert_tree(P,N) recursively [27].

Note that as shown in Figure 3 (b), a prefix-tree is built
for each message type, and the parameters of syslogs are
removed by pruning nodes from a prefix-tree. Although we
use IP addresses and interface numbers as examples to illus-
trate the framework of Craftsman, Craftsman is also capable
of removing other types of parameters that varies from one

syslog message to another including software module IDs,
physical locations, the number of sessions, etc.

B. INCREMENTAL TEMPLATE LEARNING
As mentioned earlier, for a given message type, new sub-
types of messages can emerge due to software or firmware
upgrades, and new templates need to be generated for
these messages to match to. As shown in Figure 3 (a)
and Algorithm 1, this is accomplished via inserting new
nodes/branches to the prefix-tree. It is also clear from
Algorithm 1 that such insertions can be done incremen-
tally, by scanning only the recently arrived syslogs (after
the software or firmware upgrade) twice. More specifically,
when a new message Mnew that does not match any template
arrives, a new branch is inserted into the prefix-tree by call-
ing insert_tree() (line 8) in Algorithm 1. Please note that,
if one or more words in Mnew do not exist in L, we will add
these words to the tail of L. When a network device starts to
generate new subtypes of messages, it is highly likely that, in
one day, these messages will contain enough number (more

VOLUME 8, 2020 30251

S. Zhang et al.: Efficient and Robust Syslog Parsing for Network Devices in Datacenter Networks

FIGURE 4. The prefix-tree after Mnew is added.

than the pruning threshold k) of distinct parameter words
(such as ‘‘10.231.55.249’’, ‘‘Vlan-interface07’’ in Figure 3)
as the children of a node, so that this node becomes a leaf
itself after the pruning [27].

We illustrate this incremental learning process by
an example shown in Figure 4. Suppose that a new
message Mnew = ‘‘OSPF 1 Neighbor 10.231.53.249
(Vlan-interface23) from ExStart to Down’’ arrives, and that
right before this arrival, the prefix-tree is the one shown in
Figure 3 (b), but with all leaf nodes (‘‘10.231.53.249 (IP
(53))’’, ‘‘Vlan-interface03 (Interface (03))’’, etc.) pruned.
Then the newly arrived message Mnew results in the inser-
tion of the branch (‘‘Down’’→‘‘10.231.53.249’’→‘‘Vlan-
interface23’’) to the prefix-tree, and the new branch
(‘‘10.231.53.249’’→‘‘Vlan-interface23’’) will eventually be
pruned as explained earlier.

Although SignatureTree is also designed based on the tree
structure, it is trained based on all the historical syslogs, rather
than trained incrementally. Each node in a SignatureTree is a
combination of words, rather than a word alone. It is diffi-
cult, if not impossible, to improve SignatureTree to support
incremental training.

C. TEMPLATE MATCHING
Now a historical/recent syslogmessage can bematched to a

specific template, which is usually represented as a numerical
value. The process of matching a syslog message to its tem-
plate is illustrated in Algorithm 2. At first, we sort the words
in the syslog message based on L (line 2 in Algorithm 2).
After that, wematch each word to the nword in the prefix-tree
until the leaf node is reached (line 4 to line 15 in Algorithm 2).
Obviously, the template of the syslog message is the same as
that of the leaf node (line 16 in Algorithm 2). If the syslog
message cannot match any template, a new template should
be learned for it (line 12 to line 14 in Algorithm 2).
Matching a syslogmessage to its template using Craftsman

is extremely efficient. Suppose that the height of the prefix-
tree is H (H ≤ 10 in general), the computational complexity
of Algorithm 2 is O(H × k) (recall that typically k < 10).
However, if we compare every word of a syslog message to

Algorithm 2Matching a Syslog Message to Its Template
Input: A prefix-tree T , and a syslog messageM
Output: The template ID ofM
1: current_node = the root of T
2: S = the list of words inM , which is sorted based on L
3: current_word = the first word in S
4: while current_node is not a leaf do
5: for each child of current_node do
6: if child .nword = current_word then
7: current_node = child
8: current_word = the next word in S
9: break
10: end if
11: end for
12: if current_node remains unchanged then
13: return A new template should be generated forM
14: end if
15: end while
16: return the template ID of the leaf node

all the words of each template, which is the method used in
STE, the computational complexity will beO(H×logH×U),
where U is the number of templates and usually U ≥ 300.
Moreover, the computational complexity of LogSimilarity in
matching a syslog message to its template is O(H × U).
Therefore, matching syslogs to templates using Craftsman is
much more efficient than using STE or LogSimilarity.

Considering the large number (tens of millions in general)
of syslogs generated per day in a large datacenter, an efficient
template matching approach is really important. As demon-
strated in Section V-B, compared to STE and LogSimilarity,
Craftsman consumes much less computational resources in
matching syslogs to templates in practice.

D. SPACE COMPLEXITY
We now discuss the space complexity of Craftsman. Obvi-
ously, Craftsman consumes the maximum memory when a
prefix-tree is fully constructed (lines 9 in Algorithm I) before
its children are eliminated (we refer to this prefix-tree as a
full prefix-tree hereafter). This is because after the children
are eliminated, the pruned prefix-tree that needed to be stored
in memory has no node with too many (> k) children.
A full prefix-tree consists of two parts: a pruned prefix-tree

which denotes the set of log templates, and many eliminated
children representing the parameters of logs. In the worst
case, each template denotes a separate root-to-leaf path of a
pruned prefix-tree, and there are no two templates share the
same node in the tree. Consequently, the pruned prefix-tree
as well as the template set consume the same size of memory.
Usually, the template set contains less than 10,000 templates,
and each template has less than 20 words. That is, the mem-
ory consumed by the pruned prefix-tree is smaller than that
consumed by 10, 000 × 20 words. This is a small memory
space considering today’s server memory.

30252 VOLUME 8, 2020

S. Zhang et al.: Efficient and Robust Syslog Parsing for Network Devices in Datacenter Networks

Apart from the pruned prefix-tree, we should also con-
sider the memory consumed by those eliminated parameter
words. Empirically, there are usually less than 10, 000, 000
parameter words in a full prefix-tree, which consumes a
small memory space comparing with the total memory size
of servers.

In conclusion, a full prefix-tree, which consumes the max-
imum memory in Craftsman’s process of template learn-
ing, consumes a small memory space considering today’s
server memory. When Craftsman is applied to match logs
to templates, it only has to store a pruned final prefix-tree
in memory, which consumes much less memory than its
corresponding full prefix-tree.

V. EVALUATION
In this section, we evaluate and compare the performance
of Craftsman to those of SignatureTree, STE and LogSim-
ilarity, which were proposed to parse syslogs for network
devices, using syslogs collected from real-world sources.
We evaluate the accuracy of these four techniques in
Section V-A, and compare their efficiency in template match-
ing in Section V-B. Then the advantage of incremental learn-
ing of Craftsman is demonstrated in Section V-C, followed
by the evaluation of space complexity in Section V-D and
the comparison of the failure prediction results using the four
techniques to parse logs in Section V-E. In the end, we show
Craftsman’s generality in Section V-F.

In cooperation with a a tier-1 cloud service provider,
we collect all syslogs over a two-year period from all
2,223 switches of a specific (switch) model across more than
10 datacenters owned by this cloud service provider. Among
the above switches, 131 ones suffered from 228 failures
during that two-year-period.

The implementation of Craftsman is publicly available
at [23], and we hope that researchers can better understand
the performance of Craftsman using this implementation.

A. EVALUATION OF TEMPLATE LEARNING ACCURACY
As mentioned earlier, three techniques were proposed in
previous works for parsing syslogs for network devices,
i.e., SignatureTree [8], STE [9], and LogSimilarity [4]. In
addition, we propose a novel template extraction technique,
i.e., Craftsman, for accurately, efficiently, and incrementally
learning templates from syslogs. After analyzing the four
techniques, we believe that Craftsman and SignatureTree are
more accurate in template extraction than STE and LogSimi-
larity in our scenario (see Section VI-A for more details). To
demonstrate our analysis, we here compare the accuracy of
the four techniques using real-world switch syslogs [27].

Learning templates from syslogs is equivalent to classi-
fying syslogs based on the events they represent. Since the
network operators analyze switch syslogs every day, they are
really familiar with the event that a given syslog message
represents. Therefore, we can use the manual classification
results of syslogs by network operators as the ground truth.
As aforementioned, we pick one switch model and all the

FIGURE 5. Comparison of the rand indexes of Craftsman, SignatureTree,
STE and LogSimilarity across four message types.

switches of this switch model, and analyze all the syslogs
of these switches. That is, billions of syslogs are analyzed
for the above switches, and thus manually classifying all
the syslogs is prohibitive. Thereby, we randomly collect a
sample of the syslogs for the evaluation as follows. We first
randomly pick four message types (see Table 1 for defini-
tions) from all switches. For each message type, we randomly
collect 500 syslogs. The network operators then manually
classify the syslogs based on the event each message rep-
resents. Considering the large number of the syslogs that
should be manually classified (2000), this is a large amount
of work. After that, we run Craftsman, SignatureTree, STE,
and LogSimilarity to learn the templates of these syslogs,
respectively [27].

We apply the Rand index [32] technique to quantitatively
compare the accuracy of the four techniques. Rand index
is a popular technique for evaluating the similarity between
two data clustering techniques. We evaluate the accuracy of
each technique by calculating the Rand index between the
manual classification results and the templates learned by the
technique. Specifically, among the template learning results
of a specific technique for a givenmessage type, we randomly
select twomessages, i.e., x and y, and define true positive (tp),
true negative (tn), false positive (fp), and false negative (fn) as
follows:
• tp: x and y are manually classified into the same cluster
and they have the same template;

• tn: x and y are manually classified into different clusters
and they have different templates;

• fp: x and y are manually classified into different clusters
and they have the same template;

• fn: x and y are manually classified into the same cluster
and they have different templates;

Then the Rand index can be calculated using the above terms
as follows:

Rand index =
tp+ tn

tp+ tn+ fp+ fn
(1)

[27]
Figure 5 shows the Rand indexes of Craftsman, Signature-

Tree, STE, and LogSimilarity across the above four message

VOLUME 8, 2020 30253

S. Zhang et al.: Efficient and Robust Syslog Parsing for Network Devices in Datacenter Networks

TABLE 6. Comparison of the template matching time of Craftsman,
SignatureTree, STE and LogSimilarity for 10 million syslogs.

types. Note that all the parameters of the four methods are
set best for accuracy. For example, the pruning threshold
of Craftsman is set as k = 6 through all the evaluation
experiments in Section V. Both Craftsman and SignatureTree
have averaged close-to-one Rand indexes and perform supe-
rior across all the four message types. In contrast, STE and
LogSimilarity achieve relatively low averaged Rand indexs,
i.e., 62.10% and 59.31%, respectively. This is because STE
cannot match some specific syslogs to any template, and
LogSimilarity may match some specific syslogs of differ-
ent subtypes to the same template (see Section VI-A for
more details). Craftsman and SignatureTree are both word
frequency based techniques, i.e., both Craftsman and Signa-
tureTree are constructed based on the frequency of words
in messages. As a consequence, the templates extracted by
Craftsman and SignatureTree are almost identical. How-
ever, as shown in Section V-C, Craftsman can construct
a prefix-tree and learn templates incrementally, whereas
SignatureTree cannot. [27]

B. EVALUATION OF TEMPLATE MATCHING EFFICIENCY
As mentioned in Section IV-C, theoretically, Craftsman and
SignatureTree, both of which are with the prefix-tree struc-
ture, are much more efficient than STE and LogSimilarity in
template matching. To demonstrate how Craftsman improves
the efficiency of template matching (compared to STE and
LogSimilarity) in practice, we use Craftsman, SignatureTree,
STE, and LogSimilarity to match randomly selected 10 mil-
lion historical syslogs, and compute howmuch time it takes to
complete the template matching.We apply 10 million syslogs
because a large cloud datacenter usually generates tens of
millions of network device syslogs everyday, and thus tens
of millions of syslogs have to match templates for anomaly
detection, diagnosis or prediction. Note that matching histor-
ical syslogs does not need to retrain the model.

We implement Craftsman, SignatureTree, STE and
LogSimilarity in C++, and deploy them on the same server
(CPU information: 12 Intel(R) Xeon(R) CPU E5645 @
2.40GHz) with a single thread. The CPU utilization remains
100% while the process of each technique is running so
that we can use the total time to evaluate the computational
efficiency of these log parsing methods [33].

Table 6 shows the time consumed for Craftsman,
SignatureTree, STE, and LogSimilarity in matching
10 million historical syslogs, respectively. More specifically,
compared to LogSimilarity and STE, Craftsman respec-
tively improves the computational efficiency by 6.88 and
10.25 times. Thanks to the prefix-tree structure, Craftsman
is extremely efficient in matching syslogs to templates in
practice. Because SignatureTree also leverages the prefix-
tree structure, it has the same template matching time with

TABLE 7. Comparison of the log parsing (i.e., template learning and
matching) time per day for Craftsman, SignatureTree, STE and
LogSimilarity.

Craftsman. However, Craftsman is muchmore efficient in log
parsing (including template learning and template matching)
than SignatureTree, as described in Section V-C.

C. EVALUATION OF INCREMENTAL LEARNING
As aforementioned in Section IV-B, Craftsman learns tem-
plates in an incremental manner, and thus when new subtypes
of syslogs occur, it is not necessary that the template library
has to be rebuilt and all the historical syslogs have to rematch
the new templates. To demonstrate how Craftsman’s incre-
mental learning accelerate log parsing (i.e., template learning
and matching) in practice, we here compare the log parsing
time of Craftsman, SignatureTree, LogSimilarity and STE.
Specifically, we collect all the syslogs of the last day in the
two-year period, and apply the above four methods to learn
and match templates. The experimental setup is the same as
that in SectionV-B. Since it is often the case that new subtypes
of syslogs can be generated everyday, the template library
should be rebuilt, and all the historical syslogs should rematch
the new templates for SignatureTree and STE per day, but not
for Craftsman and LogSimilarity. [27]

Table 7 shows the time consumed for template learning
and matching per day for Craftsman, SignatureTree, STE,
and LogSimilarity. Both Craftsman and LogSimilarity are
incrementally retrainable, and thus they can incrementally
learn the template library, and match only one-day’s worth
of syslogs to the templates. However, both STE and Signa-
tureTree have to rebuild the template library, andmatch all the
historical syslogs, i.e., two-year’sworth of syslogs to the tem-
plates. Hence Craftsman and LogSimilarity consume much
less time compared to STE and SignatureTree. More specif-
ically, Craftsman improves the computational efficiency by
730 times compared to SignatureTree. In addition, because
STE is neither incrementally retrainable nor efficient in tem-
plate matching, it consumes 6847 times more computational
resources than Craftsman [27].

D. EVALUATION OF SPACE COMPLEXITY
As is discussed in Section IV-D, Craftsman is not only effi-
cient in learning templates and matching logs to templates,
but also consumes small memory space. To demonstrate the
space complexity of Craftsman, we use the same dataset on
the same server with that of the evaluation experiments in
Section V-B. We monitor the memory consumed by each
method in learning templates and matching logs to templates,
and record the memory values every second.

Table 8 lists the maximum and average memory con-
sumed by each method, respectively. We can see that Crafts-
man, Signature Tree, and LogSimilarity all consume a

30254 VOLUME 8, 2020

S. Zhang et al.: Efficient and Robust Syslog Parsing for Network Devices in Datacenter Networks

TABLE 8. Comparison of the memory consumed by Craftsman,
SignatureTree, STE and LogSimilarity for 10 million syslogs.

small memory space considering the large memory of mod-
ern servers. Specifically, they consumes about 60-120 MB
memory, whereas a today’s server usually has tens to hun-
dreds of GB memory. Because for each log, STE has to store
the position of every word as well as the log’s length, it con-
sumes much more memory than the other three methods. In
addition, both Craftsman and Signature Tree use the same
prefix-tree structure to learn and store templates, thus they
have the same space complexity.

E. EVALUATION OF FAILURE PREDICTION ACCURACY
Since Craftsman, SignatureTree, STE and LogSimilarity are
all log parsing techniques for failure diagnosis or prediction,
we evaluate the four techniques based on not only template
learning results, but also failure prediction results follow-
ing [13], [14]. In the previous work [5], we proposed a sys-
log based failure prediction framework, PreFix, to determine
whether a switch failure will occur in the near future during
runtime. PreFix has been demonstrated with high accuracy in
predicting switch failures using real-world data. In addition,
HSMM is also a popular failure prediction technique used for
predicting failures based on logs [16]. It was demonstrated
with high accuracy using data collected from commercial
cellular networks. Therefore, we apply PreFix and HSMM
as the failure prediction techniques to demonstrate the log
parsing performance of Craftsman, SignatureTree, STE, and
LogSimilarity, and how they impact the performance of fail-
ure prediction. The parameters of PreFix and HSMM are set
follows [5] and [16], respectively.

A system’s capability to predict failure is usually assessed
by the following three intuitive metrics: Precision,Recall
and F1 measure [16], [34]. Hence we use these metrics to
evaluate the performance of each technique. For a time bin,
according to the ground truth provided by network operators,
we know the outcome as either an ominous time bin or a non-
ominous one (the definition of ominous time bins and non-
ominous time bins follows [5]). For each technique, we label
its outcome as a true positive (TP), true negative (TN), false
positive (FP), and false negative (FN). True positives are omi-
nous time bins that are accurately determined as such by the
technique, and true negatives are time bins that are accurately
determined as non-ominous. If the technique determines that
a time bin is an ominous one when, in fact, it is actually
non-ominous, we then label the outcome as a false positive.
False negatives are ominous time bins that are incorrectly
missed by the technique. We calculate the Precision, Recall
and FPR as follows: Precision = TP

TP+FP , Recall =
TP

TP+FN ,
F1 mesure = 2∗Precision∗Recall

Precision+Recall [27].
We use the k-fold cross validation model to evaluate the

four techniques [35]. k-fold cross validation is a model

FIGURE 6. The PRCs of Craftsman, SignatureTree, STE, and LogSimilarity,
using PreFix and HSMM as the failure prediction method, respectively.

validation technique that provides an insight on how a pre-
diction model will generalize to an independent dataset [36].
In k-fold cross-validation, the time bins are randomly parti-
tioned into k equal sized subsamples. In each cross-validation
process, a single subsample is used as the validation data
to test the prediction technique, and the remaining k − 1
subsamples are used for training the technique. The cross-
validation process is repeated k times so that each of the k
subsamples is used exactly once as the validation data. We
then average the k results to generate a single estimation. The
benefit of k-fold cross-validation is that all time bins are used
for both training and validation, and each time bin is used
for validation exactly once. Since 10-fold cross-validation is
commonly used, we also apply it in our evaluation [35].

Figure 6 shows the precision recall curves (PRCs) of
the failure prediction results by PreFix and HSMM, using
Craftsman, SignatureTree, STE, and LogSimilarity to parse
logs, respectively. Because the templates extracted by Crafts-
man and SignatureTree are almost identical, they have the
same PRCs. Through the PRCs, we can see that applying
Craftsman for learning templates achieves significantly better
failure prediction accuracy than applying STE and LogSim-
ilarity, whether using PreFix or HSMM as the failure
prediction system.

To intuitively compare the best accuracy of Craftsman,
SignatureTree, STE, and LogSimilarity, Table 9 shows the
Precision,Recall and F1 measure when the prediction sys-
tems (PreFix and HSMM) achieve the best F1 measure.
When using PreFix to predict switch failures, Craftsman
(as well as SignatureTree) achieves higher precision and
higher recall than STE and LogSimilarity, respectively. As a
result, Craftsman improves PreFix’s prediction accuracy

VOLUME 8, 2020 30255

S. Zhang et al.: Efficient and Robust Syslog Parsing for Network Devices in Datacenter Networks

TABLE 9. Precision, Recall and F 1 measure of Craftsman, SignatureTree, STE and LogSimilarity.

TABLE 10. Summary of the syslog datasets for demonstrating Craftsman’s generality.

(F1 measure) by 13.07% (as compared to LogSimilarity)
to 35.42% (as compared to STE). With HSMM as the fail-
ure prediction method, whereas the four techniques achieve
approximate Recalls, Craftsman and SignatureTree improve
the Precision of the failure prediction system by 202% (as
compared to LogSimilarity) to 253% (as compared to STE)
and the F1measure by 155% (as compared to LogSimilarity)
to 188% (as compared to STE).

F. EVALUATION OF GENERALITY
The above evaluation experiments have demonstrated Crafts-
man’s superior performance in parsing network device logs.
However, can Craftsman be applied in other types of
logs, e.g., logs of servers (supercomputers), distributed sys-
tems, applications? To study how general Craftsman is,
we apply five large log datasets, ranging from supercom-
puters (Blue Gene/L and High Performance Cluster) to stan-
dalone software (Proxifier) to distributed systems (HDFS and
Zookeeper). As concluded in [37], IPLoM [24], LKE [25] and
LogSig [26] are three widely-employed log parsers in parsing
logs for servers, distributed systems and applications (more
detailed information can be seen in Section VI-B). Therefore,
we compare Craftsman with the above three methods.

Table 10 summarizes the five large log datasets that
are used to evaluate Craftsman’s generality. These datasets
have a total of 16,441,570 log messages. We collect the
above five open log datasets with the generous support from
their authors. Specifically, HDFS logs are collected from
a node cluster of Amazon EC2 platform with 203 server
nodes [38]. The dataset of BGL is collected from a
BlueGene/L supercomputer system, which has 131,072 pro-
cessors and 32,768 GB memory [39]. In addition, HPC is
an open dataset collected from a high performance cluster of
Los Alamos National Laboratory with 49 nodes (6,152 cores
and 128 GB memory per node). The dataset of Zookeeper is
collected from a Zookeeper installation on a node cluster with
32 server nodes, and the dataset of Proxifier is from a desktop
software Proxifier [37]. All the above five open datasets have
released the log message subtypes (see Table 3 for more

FIGURE 7. Rand indexes of Craftsman, LogSig, IPLoM, and LKE on the
datasets of HDFS, BGL, HPC, Zookeeper and Proxifier.

details) which sketch out the events that the logs represent.
We use these message subtypes (events) as the ground truth
to evaluate the accuracy of each log parsing method.

As is with Section V-A, we use Rand index to quantita-
tively compare the accuracy of the above five log parsing
methods. Please note that we run the experiments of LKE
and LogSig 10 times to avoid bias (of clustering). Since
the other methods are deterministic, we run them once. The
implemented prototypes of Craftsman, LogSig, IPLoM, and
LKE are running on the same experimental setup as described
in Section V-B. In addition, as with the existing works [26],
[37], from each dataset, we randomly pick 2000 log mes-
sages to evaluate each method’s accuracy (as measured by
Rand index), for the reason that training LKE and LogSig on
large dataset consumes too much time. For example, it takes
about 5.38 days to train LKE by parsing all the BGL data.
That is, 10 times of log parsing will consume more than
53 days, which makes the training nearly infeasible.

Figure 7 shows the Rand indexes of Craftsman, LogSig,
IPLoM, LKE on the datasets of HDFS, BGL, HPC,
Zookeeper and Proxifier, respectively. Craftsman achieves
an average Rand indexes of 96.25% on the five datasets,
which is the highest among the five log parsing methods.

30256 VOLUME 8, 2020

S. Zhang et al.: Efficient and Robust Syslog Parsing for Network Devices in Datacenter Networks

TABLE 11. The log parsing (including template learning and matching)
time and memory cosumed per day of Craftsman, LogSig, IPLoM, and LKE
on the BGL dataset.

This demonstrates that it can be used to parse logs not only
for network devices, but also for servers (supercomputers),
distributed systems and applications. Because LogSig, and
LKE all rely on well-studied data mining models, rather
than the heuristic rules extracted from the characteristics
of log messages, they perform not good on one or more
datasets. On the contrary, both Craftsman and IPLoM lever-
age the heuristic rules, and they achieve superior overall
accuracy (the averaged Rand indexes of IPLoM is 93.86%).
The comparison results are consistent with the conclusion
in [37] that it is important for log parsing methods to exploit
the special characteristics of log data.

Although LogSig, IPLoM, and LKE achieve relatively
high accuracy on some dataset, none of these methods is
incrementally retrainable. That is to say, if new subtypes
of logs (events) occur (because of software updates, etc.),
we have to rebuild the template library and rematch all the
historical log messages to the newly generated templates.
Take the BGL dataset as an example. The dataset contains
the log data of 214 days. Because usually new subtypes of
logs (events) occur everyday, the model has to be retrained
and all the logs should rematch the new templates per day for
LogSig, IPLoM, and LKE. However, Craftsman is incremen-
tally retrainable, and thus only the newly added logs should
rematch templates everyday. As shown in the second line of
Table 11, it takes Craftsman much less time to log parsing
(including template learning and matching) per day on the
BGL dataset than LogSig, IPLoM, and LKE.

We also compare the memory consumed for the above
four methods as shown in the third (maximum memory)
and fourth (average memory) lines of Table 11. As is with
Section V-D, we carefully monitor the memory consumed by
each method when they are used to parse logs for the BGL
dataset, and record the memory values per second. Craftsman
consumes much less memory compared with LogSig, IPLoM
and LKE on the BGL dataset. It demonstrates that Craftsman
is efficient in space complexity for diverse types of logs.

In conclusion, because Craftsman leverages the heuristic
rules extracted from the characteristics of logmessages, and it
is incrementally retrainable, it achieves superior performance
not only on network device logs, but also on other types of
log data. In other words, Craftsman is general enough to be
applied to parse diverse types of log data.

VI. RELATED WORKS
Using log files for failure detection, diagnosis and detection
has been widely applied in ISP networks [13], [16], comput-
ers [14], [17]–[21], [40], [41], and online ad services [42].
Liang et al. investigated the RAS event logs and developed

three simple failure prediction techniques based on not only
the characteristics of failure events, but also the correlation
between failure events and non-failure events [40]. Realizing
the the importance of the sequential feature of log files to
failure prediction, Fronza et al. used random indexing (RI) to
represent the sequence of operations extracted from logs, and
then applied weighted support vector machine to associate
sequences to the class of failures or that of non-failures [41].
Salfner et al. applied HSMM to recognize the patterns of logs
that indicate an imminent failure directly [16].

A. LOG PARSING METHODS FOR NETWORK DEVICES
Syslog parsing techniques for network devices including
routers and switches have been well studied in [4], [8], [9].
Specifically, inspired by the signature abstraction applied in
spam detection, Qiu et al. proposed SignatureTree [8]. The
idea behind this technique is that a syslog message subtype is
usually a combination of words with high frequency. There-
fore, for syslogs that belong to a givenmessage type, the tech-
nique constructs a SignatureTree whose root node is the
message type and the child nodes are arranged on the basis of
the frequency of the combinations of words in syslogs. Using
the frequency of the combinations of words rather than that of
words themselves leads to that SignatureTree is not incremen-
tally retrainable. That is, we have to retrain the SignatureTree,
learn the templates, and match all the historical syslogs when
new subtypes of syslogs occur (probably due to upgrades).
Considering the large number of syslogs generated every day
(tens of millions) and the long period of historical syslogs
(two years), relearning the templates and rematching all the
historical syslogs to templates does consume a huge amount
of computational resources. Therefore, SignatureTree is not
suitable for learning templates in our scenario [27].

In addition, Kimura et al. presented an STE approach
that extracts log message templates using a statistical clus-
tering algorithm [9]. The high level idea is that template
words appear more frequently than parameter words, and
that syslogs that belong to the same subtype usually have
similar structures with the positions of words. Specifically,
for a word w that appears in the x-th position of a syslog
message that contains L words, the word score for w is
Score(w, x,L) = Probability(w|x,L). Then using clustering
techniques, STE classifies words with high word scores into
template words. However, STE can miss some templates, and
thus some subtypes of syslogs cannot match any templates.
For example, suppose that the syslogs that belong to sub-
types U0,U1, . . . ,Un have the same number of words. If the
syslogs that belong to U0 occur much less often than those
belonging to U1,U2, . . . ,Un, each of the template words in
U0 will have a relatively small word score, and thus it will be
classified into parameter words. Thereby, syslogs belonging
toU0 cannotmatch any template. As a result, as the evaluation
experiments show in Sections V-A, STE has a relatively low
accuracy. Moreover, STE is neither incrementally retrainable
nor efficient in template matching [27].

VOLUME 8, 2020 30257

S. Zhang et al.: Efficient and Robust Syslog Parsing for Network Devices in Datacenter Networks

To learn templates in an incremental manner,
Kimura et al. [4] developed an online message template
extraction technique, named LogSimilarity. In this technique,
they first classified words into five classes on the basis of
the tendency to constitute a log template: only symbols,
only letters, only symbols and letters, only numbers and
letters, and only numbers or numbers and symbols. When
a new syslog message arrives, according to the number of
words in different classes in the message, the technique will
assign this message to an existing template cluster or create
a new template cluster from this message. In this technique,
message templates are learned on the basis of the classes of
words rather than the words themselves, and thus syslogs that
belong to different subtypes can be easily assigned to the same
template cluster. For example, the syslogs of message type
‘‘10OSPF/5/OSPF_NBR_CHG’’ in Table 2 can be assigned
to one or two template clusters in this technique, rather than
the four clusters shown in Table 3 [27].

B. LOG PARSING METHODS FOR SERVERS
(SUPERCOMPUTERS), DISTRIBUTED SYSTEMS AND
APPLICATIONS
Data driven log parsing methods have been widely
studied to automatically parse logs of servers, distributed
systems and applications [24]–[26], [43]. These methods
leverage data mining techniques to extract templates from log
messages.

To the best of our knowledge, SLCT [43] is the first work
aiming to automatically parse logs, and it has been widely
applied in log mining tasks [44]. Motived by association
rule mining, SLCT passes over logs twice with three steps:
(1) word vocabulary construction, (2) cluster candidates con-
struction, and (3) log template generation.

IPLoM [45] is designed based on the heuristic rules
extracted from the characteristics of log messages. It has also
been widely used in log mining studies [46]. IPLoM parses
logs by hierarchically partitioning logmessages through three
steps: (1) partition by event size, (2) partition by token posi-
tion, (3) partition by search for mapping, and (4) log template
generation.

LKE [25] is a log parsing technique developed by
Microsoft, which has been used in unstructured log min-
ing [25]. It is designed based on both clustering models and
heuristic rules. Similarly, it has three steps in parsing logs
including (1) log clustering, (2) cluster splitting, and (3) log
template generation.

LogSig [26] is a data mining based log parsing method that
has been demonstrated in [47]. It parses logs through a three-
step process: (1) word pair generation, (2) log clustering, and
(3) log template generation.

None of the above methods is incrementally retrainable,
and thus if they are applied to parse logs for a large volume of
network device syslogs with a long period, they will consume
too much computational resources. Consequently, they are
not suitable in our scenario.

VII. CONCLUSION
In this paper, we propose a novel syslog parsing technique,
Craftsman, to accurately, efficiently and incrementally learn
templates for network devices in distributed systems. We
evaluate and compare the performance of Craftsman to
those of SignatureTree, STE and LogSimilarity using real-
world network device syslogs collected from more than
10 datacenters over a two-year period. Both Craftsman and
SignatureTree achieve much higher accuracy than STE and
LogSimilarity. Our experiments also show that Signature-
Tree, STE and LogSimilarity consume much more com-
putational resources than Craftsman, as they are either not
incrementally retrainable, or inefficient in template matching.
Moreover, we apply Craftsman to parse diverse types of logs,
and Craftsman achieves good performance across all types
of logs. In summary, the evaluation results clearly demon-
strate the benefits of Craftsman: highly accurate, extremely
efficient in template matching, incrementally retrainable and
very general to diverse types of logs.

Although Craftsman is efficient and robust in log parsing,
it has the following three limitations: (1) Although Craftsman
fully uses the syntax information of logs, it does not under-
stand or utilize the semantics information of logs or tem-
plates. (2) It cannot find similar templates and merge them to
reduce the total number of templates. (3) It is trained and used
for log parse on one certain type of logs (e.g., switch logs),
and thus cannot be used for cross-type log parse. Therefore,
in the future we will apply the methods in natural language
processing (say word embedding methods) to address the
above three limitations.

APPENDIX
EXTENSIONS FROM THE CONFERENCE VERSION
A preliminary version of this submission has appeared in the
following conference paper: Shenglin Zhang, Weibin Meng,
Jiahao Bu, Sen Yang, Ying Liu, Dan Pei, Jun (Jim) Xu,
Yu Chen, Hui Dong, Xianping Qu, Lei Song. Syslog Process-
ing for Switch Failure Diagnosis and Prediction in Datacenter
Networks. IEEE/ACM International Symposium on Quality
of Service (IWQOS), 2017. This submission differs from the
conference version as follows.

1) We introduce the term ‘‘syslog parsing’’, which
includes not only the template learning as described in
the conference version, but also the template matching
as described in this version. In other words, Crafts-
man cares about both template learning and template
matching, and the later one is newly added in this
version.

2) We elaborate the intuition of Craftsman in Section III.
After investigating thousands of real-world network
device syslogs, we have the following two observa-
tions: (a) parameters words are much less than template
words, and (b) a message type has a small number of
subtypes, and each subtype has a large number of sys-
log messages. Based on these observations, we design

30258 VOLUME 8, 2020

S. Zhang et al.: Efficient and Robust Syslog Parsing for Network Devices in Datacenter Networks

Craftsman to accurately, efficiently, and incrementally
parse syslogs.

3) We introduce how to efficiently match a syslog mes-
sage to its template in Section IV-C. The computational
complexity of template matching using Craftsman is
O(H × k), where H is the height of the Craftsman and
usually H ≤ 10, and k is the threshold of Craftsman
pruning and usually k ≤ 10. Therefore, matching
a syslog message to its template using Craftsman is
extremely efficient.

4) We leverage real-world data to evaluate Craftsman’s
efficiency in template matching in Section V-B. Specif-
ically, we compare the running time of Craftsman
in template matching to that of SignatureTree, STE,
and LogSimilarity. The evaluation experiments demon-
strate that Craftsman respectively improves the compu-
tational efficiency by 6.88 and 10.25 times compared to
LogSimilarity and STE.

5) We theoretically demonstrate the space complexity
of Craftsman in Section IV-D, and apply real-world
logs to prove this in Section V-D. Craftsman con-
sumes about 120MB memory when it is used to
parse 10 million logs, which is quite a small memory
space considering the large memory space of today’s
servers.

6) We leverage both PreFix and HSMM to show how
Craftsman improves the accuracy of failure prediction
in Section V-E. In addition to HSMM, we also apply
PreFix, which was proposed by us recently, to demon-
strate how Craftsman improves the performance of
failure prediction.

7) We apply new datasets and new baseline methods to
demonstrate Craftsmans’s generality in Section V-F.
To demonstrate howCraftsman is general to other types
of logs, we apply it to parse five types of logs, and
compare it with three widely-used log parsing meth-
ods designed for servers (supercomputers), distributed
systems and applications.

8) We try our best to improve the presentation quality
of this paper. The paper has been carefully revised
thoroughly. For example, in Section III and Section IV
we apply new examples of syslog messages to bet-
ter demonstrate the intuition, the process of prefix-
tree construction, and the benefit of incremental
learning.

REFERENCES
[1] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu,

V.Wang, B. Pang, H. Chen, Z.-W. Lin, and V. Kurien, ‘‘Pingmesh: A large-
scale system for data center network latency measurement and analysis,’’
in Proc. ACM Conf. Special Interest Group Data Commun. (SIGCOMM),
2015, pp. 139–152.

[2] P. Gill, N. Jain, and N. Nagappan, ‘‘Understanding network failures in data
centers: Measurement, analysis, and implications,’’ in Proc. SIGCOMM,
2011, pp. 350–361.

[3] Y. Wu, M. Zhao, A. Haeberlen, W. Zhou, and B. T. Loo, ‘‘Diagnos-
ing missing events in distributed systems with negative provenance,’’
ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 4. ACM, 2014,
pp. 383–394.

[4] T. Kimura, A. Watanabe, T. Toyono, and K. Ishibashi, ‘‘Proactive failure
detection learning generation patterns of large-scale network logs,’’ in
Proc. IEEE 11th Int. Conf. Netw. Service Manage. (CNSM), Nov. 2015,
pp. 8–14.

[5] S. Zhang, Y. Liu, W. Meng, Z. Luo, J. Bu, S. Yang, P. Liang, D. Pei,
J. Xu, and Y. Zhang, ‘‘Prefix: Switch failure prediction in datacenter
networks,’’ in Proc. ACM SIGMETRICS, Irvine, CA, USA, Jun. 2018,
pp. 1–29.

[6] S. Zhang, Y. Liu, D. Pei, Y. Chen, X. Qu, S. Tao, Z. Zang, X. Jing,
and M. Feng, ‘‘FUNNEL: Assessing software changes in Web-based
services,’’ IEEE Trans. Services Comput., vol. 11, no. 1, pp. 34–48,
Jan. 2018.

[7] S. Zhang, Y. Liu, D. Pei, Y. Chen, X. Qu, S. Tao, and Z. Zang, ‘‘Rapid
and robust impact assessment of software changes in large Internet-
based services,’’ in Proc. CONEXT, Heidelberg, Germany, Dec. 2015,
pp. 1–13.

[8] T. Qiu, Z. Ge, D. Pei, J. Wang, and J. Xu, ‘‘What happened in my
network: Mining network events from router syslogs,’’ in Proc. 10th ACM
SIGCOMM Conf. Internet Meas. (IMC), 2010, pp. 472–484.

[9] T. Kimura, K. Ishibashi, T. Mori, H. Sawada, T. Toyono, K. Nishimatsu,
A. Watanabe, A. Shimoda, and K. Shiomoto, ‘‘Spatio-temporal factor-
ization of log data for understanding network events,’’ in Proc. IEEE
INFOCOM, Apr. 2014, pp. 610–618.

[10] X. Zhang, Z. Li, J. Chen, X. He, R. Yao, J.-G. Lou,M. Chintalapati, F. Shen,
D. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang, and
Q. Cheng, ‘‘Robust log-based anomaly detection on unstable log data,’’ in
Proc. 27th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw.
Eng., 2019, pp. 807–817.

[11] W. Meng, Y. Liu, S. Zhang, D. Pei, H. Dong, L. Song, and X. Luo,
‘‘Device-agnostic log anomaly classification with partial labels,’’ in
Proc. IEEE/ACM 26th Int. Symp. Quality Service (IWQoS), Jun. 2018,
pp. 1–10.

[12] W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen, R. Zhang,
S. Tao, and P. Sun, ‘‘Loganomaly: Unsupervised detection of sequential
and quantitative anomalies in unstructured logs,’’ in Proc. 28th Int. Joint
Conf. Artif. Intell. (IJCAI), Int. Joint Conf. Artif. Intell. Org., vol. 7, 2019,
pp. 4739–4745.

[13] F. Salfner and S. Tschirpke, ‘‘Error log processing for accurate fail-
ure prediction,’’ in Proc. 1st USENIX Conf. Anal. Syst. Logs (WASL),
2008, pp. 1–8.

[14] Z. Zheng, Z. Lan, B. H. Park, and A. Geist, ‘‘System log pre-processing
to improve failure prediction,’’ in Proc. IEEE/IFIP Int. Conf. Dependable
Syst. Netw. (DSN), Jun. 2009, pp. 572–577.

[15] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu, ‘‘Tools
and benchmarks for automated log parsing,’’ in Proc. 41st Int. Conf. Softw.
Eng., Softw. Eng. Pract., 2019, pp. 121–130.

[16] F. Salfner andM.Malek, ‘‘Using hidden semi-Markov models for effective
online failure prediction,’’ in Proc. 26th IEEE Int. Symp. Reliable Distrib.
Syst. (SRDS), Oct. 2007, pp. 161–174.

[17] E. W. Fulp, G. A. Fink, and J. N. Haack, ‘‘Predicting computer system
failures using support vector machines,’’WASL, vol. 8, p. 5, Dec. 2008.

[18] M. Du, F. Li, G. Zheng, and V. Srikumar, ‘‘Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,’’ in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., 2017, pp. 1285–1298.

[19] M. Du and F. Li, ‘‘Spell: Online streaming parsing of large unstruc-
tured system logs,’’ IEEE Trans. Knowl. Data Eng., vol. 31, no. 11,
pp. 2213–2227, Nov. 2019.

[20] B. Debnath, M. Solaimani, M. A. G. Gulzar, N. Arora, C. Lumezanu, J. Xu,
B. Zong, H. Zhang, G. Jiang, and L. Khan, ‘‘LogLens: A real-time log
analysis system,’’ in Proc. IEEE 38th Int. Conf. Distrib. Comput. Syst.
(ICDCS), Jul. 2018, pp. 1052–1062.

[21] K. Zhang, J. Xu, M. R. Min, G. Jiang, K. Pelechrinis, and H.
Zhang, ‘‘Automated it system failure prediction: A deep learning
approach,’’ in Proc. IEEE Int. Conf. Big Data (Big Data), Dec. 2016,
pp. 1291–1300.

[22] A. A.Mahimkar, H. H. Song, Z. Ge, A. Shaikh, J.Wang, J. Yates, Y. Zhang,
and J. Emmons, ‘‘Detecting the performance impact of upgrades in large
operational networks,’’ in Proc. SIGCOMM, New Delhi, India, Aug. 2010,
pp. 303–314.

[23] The Publicly Available Implementation of Craftsman. [Online]. Available:
https://github.com/slzhangsd/Craftsman

[24] A. A.Makanju, A. N. Zincir-Heywood, and E. E.Milios, ‘‘Clustering event
logs using iterative partitioning,’’ in Proc. 15th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, 2009, pp. 1255–1264.

VOLUME 8, 2020 30259

S. Zhang et al.: Efficient and Robust Syslog Parsing for Network Devices in Datacenter Networks

[25] Q. Fu, J.-G. Lou, Y. Wang, and J. Li, ‘‘Execution anomaly detection in
distributed systems through unstructured log analysis,’’ in Proc. 9th IEEE
Int. Conf. Data Mining (ICDM), Dec. 2009, pp. 149–158.

[26] L. Tang, T. Li, and C.-S. Perng, ‘‘Logsig: Generating system events from
raw textual logs,’’ in Proc. 20th ACM Int. Conf. Inf. Knowl. Manage., 2011,
pp. 785–794.

[27] S. Zhang, W. Meng, J. Bu, S. Yang, Y. Liu, D. Pei, J. Xu, Y. Chen,
H. Dong, and X. Qu, ‘‘Syslog processing for switch failure diagnosis and
prediction in datacenter networks,’’ in Proc. IEEE/ACM 25th Int. Symp.
Quality Service (IWQoS), Jun. 2017, pp. 1–10.

[28] M. Al-Fares, A. Loukissas, and A. Vahdat, ‘‘A scalable, commodity data
center network architecture,’’ in Proc. SIGCOMM, Seattle, WA, USA,
Aug. 2008, pp. 63–74.

[29] R. Potharaju and N. Jain, ‘‘Demystifying the dark side of the middle:
A field study of middlebox failures in datacenters,’’ in Proc. Conf. Internet
Meas. Conf. (IMC), 2013, pp. 9–22.

[30] J. Han, J. Pei, and Y. Yin, ‘‘Mining frequent patterns without can-
didate generation,’’ ACM SIGMOD Rec., vol. 29, no. 2, pp. 1–12,
2000.

[31] K. Sklower, ‘‘A tree-based packet routing table for Berkeley unix,’’ inProc.
USENIX Winter, 1991, pp. 93–99.

[32] W. M. Rand, ‘‘Objective criteria for the evaluation of clustering
methods,’’ J. Amer. Stat. Assoc., vol. 66, no. 336, pp. 846–850,
Dec. 1971.

[33] M. Yamada, A. Kimura, F. Naya, and H. Sawada, ‘‘Change-point detection
with feature selection in high-dimensional time-series data,’’ in Proc. 23rd
Int. Joint Conf. Artif. Intell., 2013, pp. 1827–1833.

[34] F. Salfner, M. Lenk, and M. Malek, ‘‘A survey of online failure prediction
methods,’’ ACM Comput. Surv., vol. 42, no. 3, p. 10, 2010.

[35] G. McLachlan, K.-A. Do, and C. Ambroise, Analyzing Microarray Gene
Expression Data, vol. 422. Hoboken, NJ, USA: Wiley, 2005.

[36] R. Kohavi, ‘‘A study of cross-validation and bootstrap for accuracy esti-
mation and model selection,’’ in Proc. 14th Int. Joint Conf. Artif. Intell.
(IJCAI), vol. 2, 1995, pp. 1137–1143.

[37] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu, ‘‘An evaluation study on log
parsing and its use in log mining,’’ in Proc. 46th Annu. IEEE/IFIP Int.
Conf. Dependable Syst. Netw. (DSN), Jun. 2016, pp. 654–661.

[38] W. Xu, L. Huang, A. Fox, D. Patterson, andM. I. Jordan, ‘‘Detecting large-
scale system problems by mining console logs,’’ in Proc. ACM SIGOPS
22nd Symp. Oper. Syst. Princ., 2009, pp. 117–132.

[39] A. Oliner and J. Stearley, ‘‘What supercomputers say: A study of five
system logs,’’ in Proc. 37th Annu. IEEE/IFIP Int. Conf. Dependable Syst.
Netw. (DSN), Jun. 2007, pp. 575–584.

[40] Y. Liang, Y. Zhang, M. Jette, A. Sivasubramaniam, and R. Sahoo, ‘‘Blue-
gene/l failure analysis and prediction models,’’ in Proc. Int. Conf. Depend-
able Syst. Netw. (DSN), Jul. 2006, pp. 425–434.

[41] I. Fronza, A. Sillitti, G. Succi, M. Terho, and J. Vlasenko,
‘‘Failure prediction based on log files using Random Indexing and
Support Vector Machines,’’ J. Syst. Softw., vol. 86, no. 1, pp. 2–11,
Jan. 2013.

[42] M. Shatnawi and M. Hefeeda, ‘‘Real-time failure prediction in online ser-
vices,’’ in Proc. IEEE Conf. Comput. Commun. (INFOCOM), Apr. 2015,
pp. 1391–1399.

[43] R. Vaarandi, ‘‘A data clustering algorithm for mining patterns from event
logs,’’ in Proc. 3rd IEEE Workshop IP Oper. Manage. (IPOM), Apr. 2003,
pp. 119–126.

[44] R. Vaarandi, ‘‘Mining event logs with slct and loghound,’’ in Proc. Netw.
Oper. Manage. Symp. (NOMS), 2008, pp. 1071–1074.

[45] A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, ‘‘A lightweight
algorithm for message type extraction in system application logs,’’
IEEE Trans. Knowl. Data Eng., vol. 24, no. 11, pp. 1921–1936,
Nov. 2012.

[46] A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, ‘‘Fast entropy based
alert detection in super computer logs,’’ in Proc. Int. Conf. Dependable
Syst. Netw. Workshops (DSN-W), Jun. 2010, pp. 52–58.

[47] L. Tang, T. Li, L. Shwartz, F. Pinel, and G. Y. Grabarnik, ‘‘An integrated
framework for optimizing automatic monitoring systems in large it infras-
tructures,’’ in Proc. 19th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, 2013, pp. 1249–1257.

SHENGLIN ZHANG (Member, IEEE) received
the B.S. degree in network engineering from the
School of Computer Science and Technology,
Xidian University, Xi’an, China, in 2012, and the
Ph.D. degree in computer science from Tsinghua
University, Beijing, China, in 2017. He is cur-
rently an Assistant Professor with the College of
Software, Nankai University, Tianjin, China. His
current research interests include failure detection,
as well as diagnosis and prediction in data center
networks.

YING LIU (Member, IEEE) received the B.S.
degree in information engineering, the M.S.
degree in computer science, and the Ph.D. degree
in applied mathematics from Xidian University,
in 1995, 1998, and 2001, respectively. She made
her postdoctoral research at the Department of
Computer Science and Technology, Tsinghua Uni-
versity, from 2001 to 2003, where she is currently
an Associate Professor with the Institute for Net-
work Sciences and Cyberspace. Her research inter-

ests include multicast routing, network architecture, and router design and
implementation.

WEIBIN MENG received the B.S. degree
in software engineering from Jilin University,
Changchun, China, in 2016. He is currently pursu-
ing the Ph.D. degree with the Department of Com-
puter Science and Technology, and the Institute
for Network Sciences and Cyberspace, Tsinghua
University, Beijing, China. His research interests
include anomaly detection, Syslog analysis, and
failure prediction in datacenter networks.

JIAHAO BU received the B.S. degree in electronic
engineering from Tsinghua University, Beijing,
China, in 2016, where he is currently pursuing
the master’s degree with the Department of Com-
puter Science and Technology, and the Institute for
Network Sciences and Cyberspace. His research
interests include deep generative model and semi-
supervised learning in KPI anomaly detection.

30260 VOLUME 8, 2020

S. Zhang et al.: Efficient and Robust Syslog Parsing for Network Devices in Datacenter Networks

SEN YANG received the B.S. degree in electronic
engineering from Shanghai Jiao Tong University,
in 2010, the M.S. degree in electronics and com-
munication engineering from Shanghai Jiao Tong
University, in 2013, the M.S. degree in electri-
cal and computer engineering from the Georgia
Institute of Technology, in 2013, and the Ph.D.
degree in electrical and computer engineering
from the Georgia Institute of Technology, in 2018.
He is currently a Research Scientist at Facebook,

Inc. His research interests include network management and scheduling
in general.

YONGQIAN SUN received the B.S. degree in
statistical speciality from Northwestern Polytech-
nical University, Xi’an, China, in 2012, and the
Ph.D. degree in computer science from Tsinghua
University, Beijing, China, in 2018. He is cur-
rently an Assistant Professor with the College of
Software, Nankai University, Tianjin, China. His
research interests include anomaly detection, root
cause localization, and high performance switch-
ing in the datacenter.

DAN PEI (Senior Member, IEEE) received the
B.E. and M.S. degrees in computer science from
the Department of Computer Science and Tech-
nology, Tsinghua University, in 1997 and 2000,
respectively, and the Ph.D. degree in computer
science from the Computer Science Department,
University of California, Los Angeles (UCLA),
in 2005. He is currently an Associate Professor
with the Department of Computer Science and
Technology, Tsinghua University. His research

interest includes network and service management in general. He is a Senior
Member of the ACM.

JUN (JIM) XU (Senior Member, IEEE) received
the Ph.D. degree in computer and information
science from The Ohio State University, in 2000.
He is currently a Professor with the College of
Computing, Georgia Institute of Technology. His
current research interests include data streaming
algorithms for the measurement and monitoring
of computer networks and hardware algorithms,
and data structures for high-speed routers. He
received the US National Science Foundation

(NSF) CAREER Award, in 2003, the ACM Sigmetrics Best Student Paper
Award, in 2004, and the IBM Faculty Awards, in 2006 and 2008, respec-
tively. He was named an ACM Distinguished Scientist, in 2010.

YUZHI ZHANG received the B.S. and M.S.
degrees in computer science from the Department
of Computer Science and Technology, Tsinghua
University, in 1985 and 1987, respectively, and the
Ph.D. degree in computer science from the Insti-
tute of Computing Technology, Chinese Academy
of Sciences, in 1991. He is currently the Dean
of the College of Software, Nankai University,
and is also a distinguished professor. His research
interests include deep learning and other aspects
of artificial intelligence.

LEI SONG received the B.S. degree in information
security from the School of Computer Science,
Wuhan University, Wuhan, China, in 2009. He is
currently a Senior Engineer with Baidu, Inc.

MING ZHANG received the B.S. degree in com-
puter software from the School of Computer Sci-
ence, Beijing University of Technology, Beijing,
China, in 2001. He is currently an Engineer with
China Construction Bank.

VOLUME 8, 2020 30261

