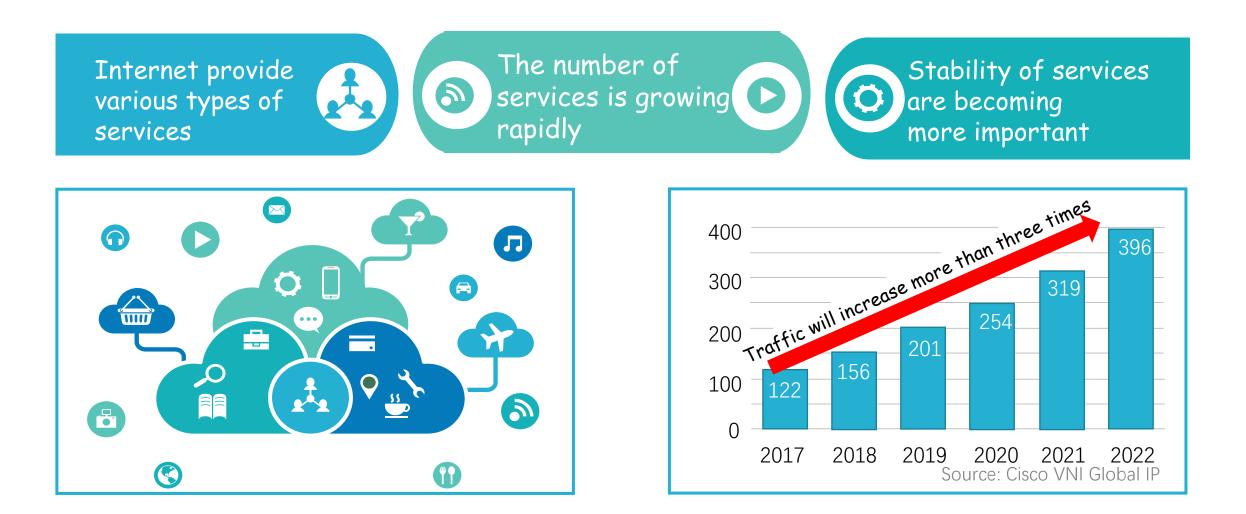


LogAnomaly: Unsupervised Detection of Sequential and Quantitative Anomalies in Unstructured Logs

Weibin Meng, Ying Liu, Yichen Zhu, Shenglin Zhang, Dan Pei Yuqing Liu, Yihao Chen, Ruizhi Zhang, Shimin Tao, Pei Sun and Rong Zhou

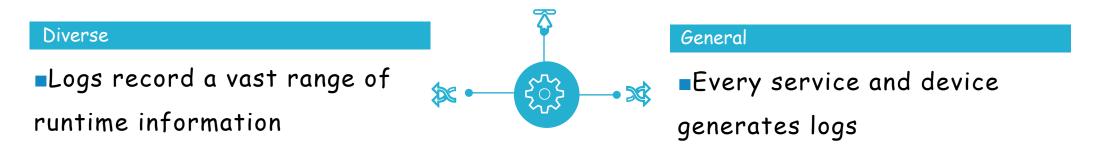


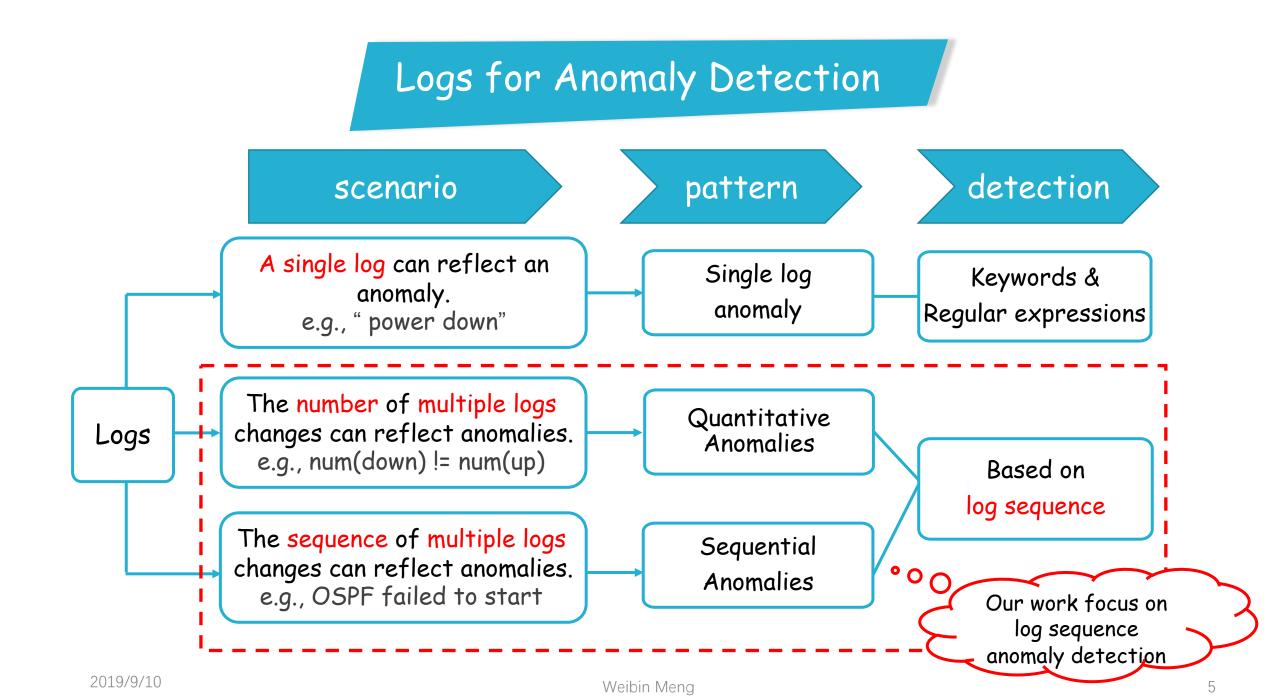
Internet Services

Anomaly Detection

Anomalies will impact revenue and user experience.

Anomaly detection plays an important role in service management.


Delta Says <u>Computer Breakdown</u> Cut Revenue by \$100 Million Michael Sasso September 2, 2016 — 9:05 AM EDT Updated on September 2, 2016 — 9:17 AM EDT Craf Delta Air Lines Inc. said the computer failure that caused 2.300 flight cancellations last month cut sales about \$100 million and reduced a key revenue figure. 120% 1 Passenger revenue for each seat flown a mile, an industry benchmark, fell 9.5 percent in August, in part because of the outage and subsequent recovery efforts, the carrier said 19...... in a statement Friday. The breakdown reduced unit revenue, as the measure is also known, by two percentage points, Delta said. Bank of America ⋖ Merrill Lynch The country's second-largest airline earlier forecast that third-quarter unit revenue would fall 4 percent to 6 percent. A power-control module at Delta's Atlanta computer center failed and caught fire Aug. 8, shutting down electricity to the system. About 300 of the airline's 7,000 servers weren't wired to backup power, the company had said.



Logs for Anomaly Detection

Logs are one of the most valuable data for anomaly detection

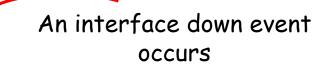
Types	Timestamps	Detailed messages
Switch	Jul 10 19:03:03	Interface te-1/1/59, changed state to down
Supercomputer	Jun 4 6:45:50	RAS KERNEL INFO 87 L3 EDRAM error of action 0x0157 cmceed and corrected over 27362 seconds
HDFS	Jun 8 13:42:26	INFO dfs.DataNode\$PacketResponder.PacketRas09Ser 1 for bloor Jlk 1608999687919862906 terminating
Router	Jul 11 11:05:07	Neighbour(rid:10.231.0.43, addr:10.231.39.01) on Vian23, changed state from Exchange to Loading

The explosion of logse.g., 10T/day in Huawei

An operator has incomplete information of the overall system Not all anomalies are explicitly displayed

• Some anomalies hide in log

<u>Automatically</u> detect anomalies based on <u>unstructured</u> logs


Weibin Meng

Runtime logs: OSPF ADJCHG, Nbr 1.1.1.1 on FastEthernet0/0 from Attempt to Init OSPF ADJCHG, Nbr 1.1.1.1 on FastEthernet0/0 from Init to Two-way OSPF ADJCHG, Nbr 1.1.1.1 on FastEthernet0/0 from Two-way to Exstart OSPF ADJCHG, Nbr 1.1.1.1 on FastEthernet0/0 from Two-way to Exstart

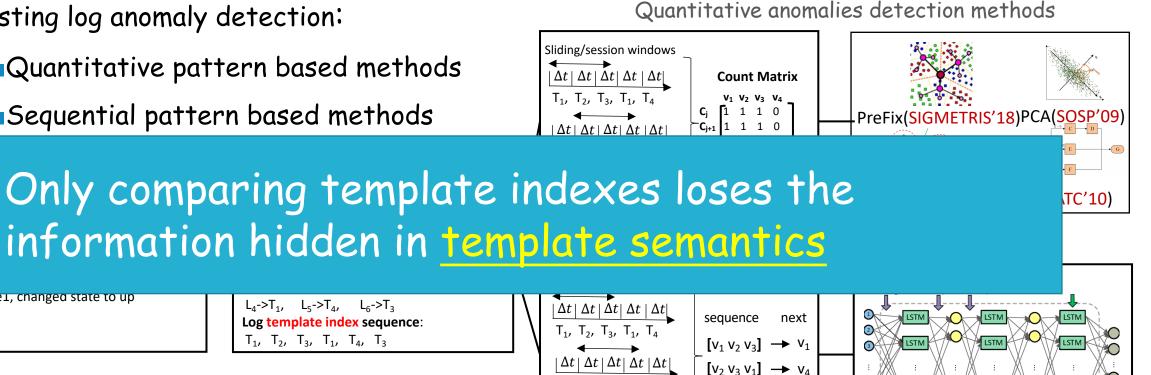
Every log is normal, but OSPF failed to start

Runtime logs:

Line protocol on Interface ae3, changed state to **down** Interface ae3, changed state to **down** Interface ae3, changed state to **up**

Previous studies

Existing log anomaly detection:


Quantitative pattern based methods

 $L_4 \rightarrow T_1$, $L_5 \rightarrow T_4$, $L_6 \rightarrow T_3$

T₁, T₂, T₃, T₁, T₄, T₃

Log template index sequence:

Sequential pattern based methods

 $\begin{bmatrix} V_3 V_1 V_4 \end{bmatrix} \rightarrow V_3$

L₆. Interface ae1, changed state to up

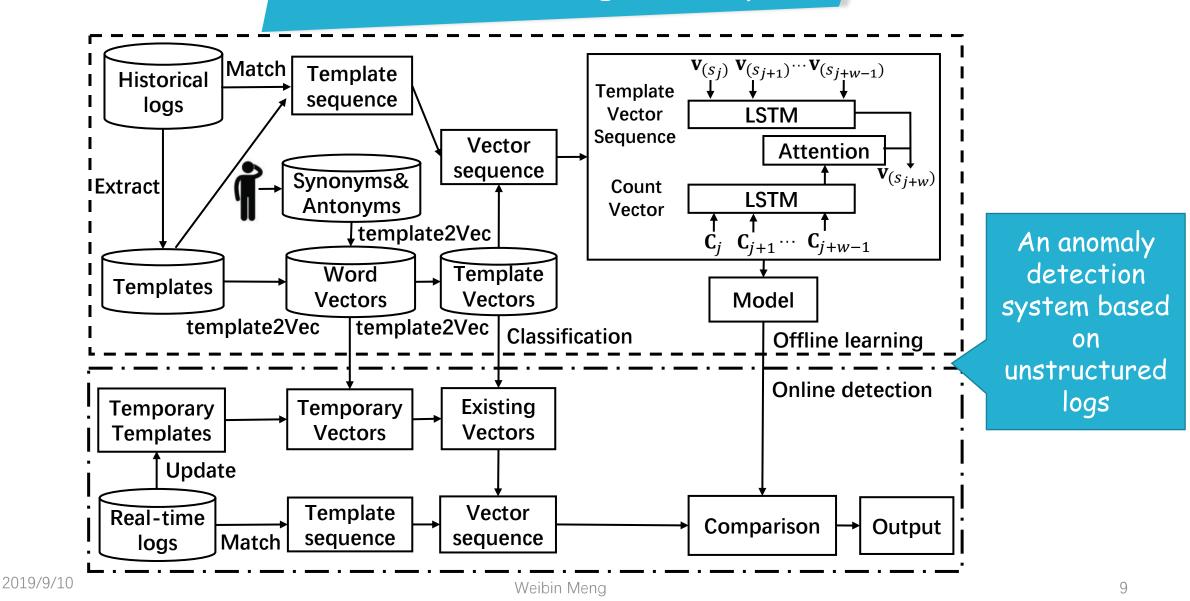
Logs

 L_1 .

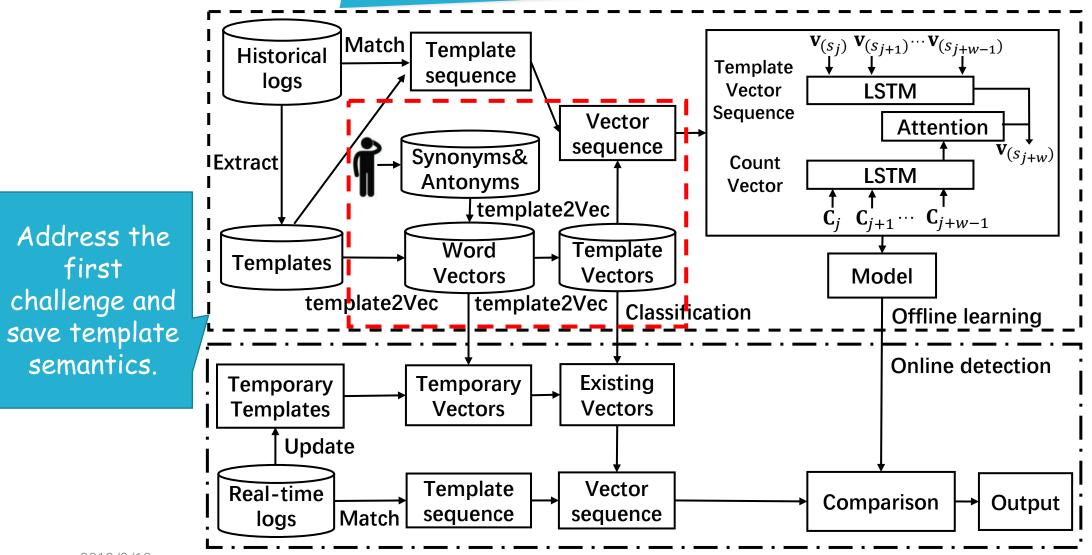
L₂. L₃. L₄. L₅.

Challenges

Valuable information could be lost if only log template index is used.


Some templates are similar in semantics but different in indexes

Services can generate new log templates between two re-trainings


Existing approaches cannot address this problem

Existing methods cannot detect sequential and quantitative anomalies simultaneously.

Overview of LogAnomaly

Template Representation

Template Representations

Insights

Some existing templates have similar semantics

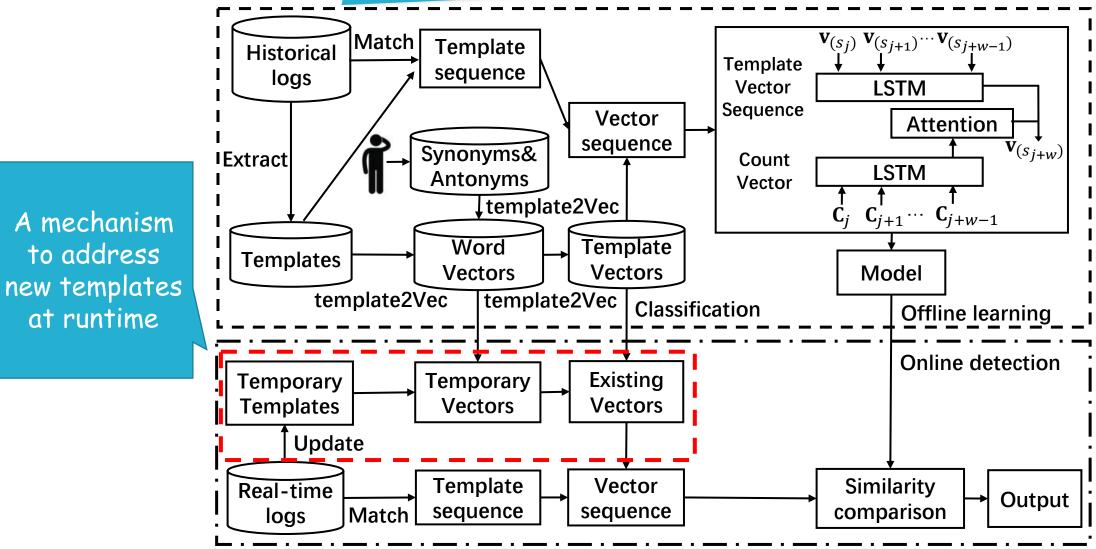
 Some logs containing antonyms look similar but have opposite semantics

Goals

Convert log templates to "soft" representations
Takes antonyms and synonyms into consideration

Logs: 1.Interface ae3, changed state to down 2.Vlan-interface vlan22, changed state to down 3.Interface ae3, changed state to up 4.Vlan-interface vlan22, changed state to up 5.Interface ae1, changed state to down 6.Vlan-interface vlan20, changed state to down 7.Interface ae1, changed state to up 8.Vlan-interface vlan20, changed state to up	Templates:1.Interface *, changed state to down2.Vlan-interface *, changed state to down3.Interface *, changed state to up4.Vlan-interface *, changed state to upLogs>Templates:L1->T1L2->T2L3->T3L4->T4L5->T1L6->T2L7->T3L8->T4
---	---

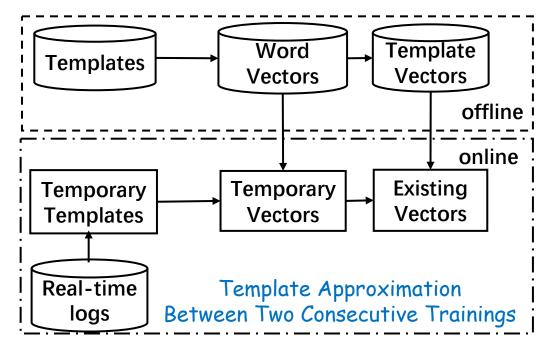
Template2Vec


template2Vec : (template representation method)

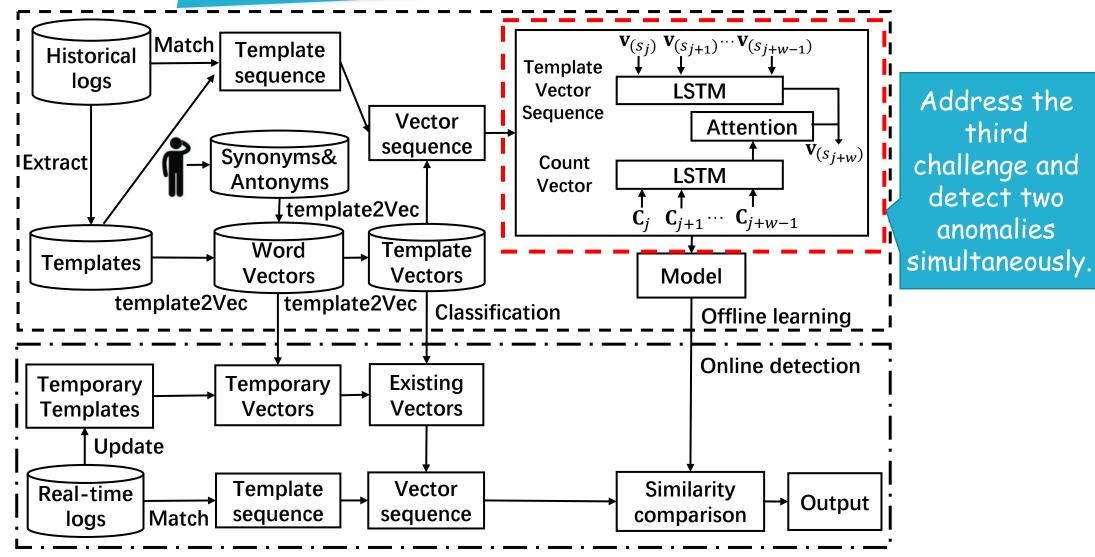
- 1. Construct the set of synonyms and antonyms
 - Combine domain knowledge and WordNet
- 2. Generate word vectors by using dLCE^[1] algorithm
 - dLCE is a distributional lexical-contrast embedding model
- 3. Calculate template vectors.

							S	Synsa	&Ants				Word	vectors	
Relations	Relations Word pairs		Adding methods		Synonyms				Antonyms			Interface	[x1,,xn]]	
			mernoas		Interfa	ice	Vlan-	interf	ace	down	up				
	down	low	WordNet										changed	[x1,,xn]	
Synonyms	Interface	port	Operators		Tem		emp				1)	Template	vectors (3)	
	DOWN	UP	WordNet		T ₁	Inte	erface	* 0	changed	state	to u	p (3	V1	[x1,,xn]	
Antonyms							•••			┛┝┙					
Antonyms	powerDown	powerOn	Operators		T _{n+1}	Inte	erface	* C	changed	state	to u	р	Vn+1	[x1,,xn]	

[1] Kim Anh Nguyen, Sabine Schulte, and Ngoc Thang Vu. Integrating distributional lexical contrast into word embeddings for antonym-synonym distinction. *arXiv preprint arXiv:1605.07766*, 2016. Weibin Meng


Template Approximation

Template Approximation

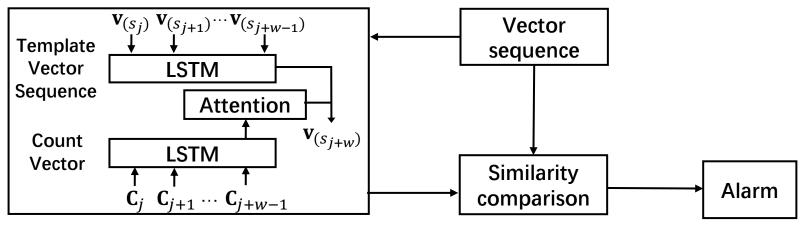

Between two re-trainings

Extract a temporary template for the log of a new type
Map the temporary template vector into one of the existing vector

Weibin Meng

Anomaly Detection

Weibin Meng


Anomaly detection

Sequential pattern (e.g, OSPF starting) Logs: L₁ Interface ae3, changed state to down L_2 Vlan-interface v2, changed state to down L₃ Interface ae3, changed state to up. sequence next L₄ Interface ae1, changed state to down L_5 Vlan-interface v2, changed state to up $[\mathbf{v}_1 \, \mathbf{v}_2 \, \mathbf{v}_3] \rightarrow \mathbf{v}_1$ L₆ Interface ae1, changed state to up $[\mathbf{v}_2 \, \mathbf{v}_3 \, \mathbf{v}_1] \rightarrow \mathbf{v}_4$ Templates (log keys): T₁ Interface *, changed state to down $[\mathbf{v}_3 \, \mathbf{v}_1 \, \mathbf{v}_4] \rightarrow \mathbf{v}_3$ T₂ Vlan-interface *, changed state to down T₃ Interface *, changed state to up T_4 Vlan-interface *, changed state to up **Templates index sequence:** Quantitative pattern (e.g., up = down) T_1 T_2 T_3 T_1 T_4 T_3 Templates vector sequence: $V_1 V_2 V_3 V_1 V_4 V_3$ V_1 V_2 V_3 V_4 $\begin{array}{ccc}1&1&0\\0&1&1\end{array}$ Sliding windows

Anomaly Detection

Combine sequential and quantitative relationship

- Sort probabilities:
 - For a log sequence, we sort <u>the possible next template vector</u> based on their probabilities (of appear in the next log).
- Top k candidates :
 - If the observed next template vector is included in the <u>top k candidates</u> (or similar enough with them), we regard it as normal.

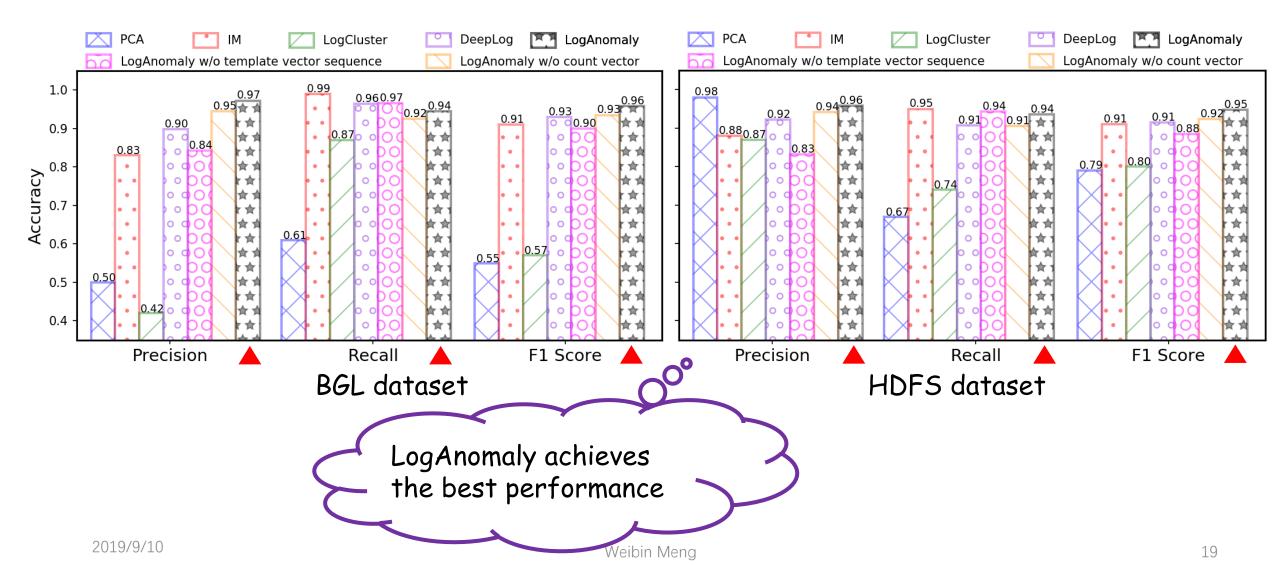
Evaluation Datasets & Baselines

Datasets:

BGL:

 Generated by the Blue Gene/L supercomputer.

■HDFS:


Collected from more than 200 Amazon nodes.

Baselines:

LogCluster (ICSE'16)
Invariants Mining (ATC'10)
PCA (SOSP'09)
Deeplog (CCS'17)

Datasets	Duration	# of logs	# of anomalies
BGL	7 months	4,747,963	348,460 (logs)
HDFS	38.7 hours	11,175,629	16,838 (blocks)

Evaluation of LogAnomaly

Case Study

Dataset

 Logs form an aggregation switch deployed in a top cloud service provider.

Sep 25 00:00

DeepLog

Anomaly description

The traffic forwarded by this switch dropped from 15:00, Oct 13
The services provided by this switch were impacted from 22:15, Oct 13
The switch recovered at 1:16, Oct 14.

Oct 13 22:15

Oct 13 15:59

alarmed

LogAnomaly Servic vere Servid

Oct 10 08:25 13 15:00 Oct 13 ____

Traffic

IM

alarmed alarmed dropped

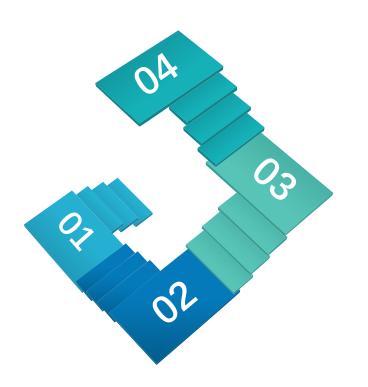
Results

All of LogAnomaly's alarms were during 15:59 ~ 1:16

LogAnomaly successfully detected anomalies and generated no false alarm.

2019/9/10

Beginning



impacted recovered End

Oct 14 01:16

Oct 19 00:00

Conclusion

LogAnomaly

An anomaly detection system based on unstructured logs.

template2Vec

Represent template without losing semantic information.

Template Approximation

Merge templates of new types automatically

Evaluation

Best results on public datasets and real-world switch logs

Thanks

mwb16@mails.tsinghua.edu.cn

Evaluation of Online Detection

# template in	# template in	# unmatched logs by		
training logs	detection logs	training templates		
251	523	299,174		

Table 3: BGL dataset for online detection

Methods	Precision	Recall	F1 score	
DeepLog	0.3817	0.9768	0.5489	
LogAnomaly	0.8039	0.9319	0.8632	

Table 4: Accuracy on online detection

Case in Intro

L₁. 1537885119 IFNET/2/linkDown_active(I):CID=0x807a0405, alarmID=0x0852003; The interface status changes.

L₂. 1537885119 LACP/4/LACP_STATE_DOWN(I): CID=0x804804, PortName=40GE1/0/3; The LACP state is down. Reason = **The interface went down physically**.

L₃. 1537885130 DEVM/3/LocalFaultAlarm_clear(I): CID=0x852003, clearType=

<u>service_resume</u>, The local fault alarm has resumed.

L₄. 1537885135 IFNET/2/linkDown_clear(I): CID=<u>0x807a0405</u>, alarmID=<u>0x0852003;</u> The interface status changes. Physical link is up, mainName=<u>Eth-Trunk104</u>.

L₅. 1539139152 IFNET/2/linkDown_active(I):CID=0x807a0406, alarmID=0x0852007; The interface status changes.

L₆. 1539138152 LACP/4/LACP_STATE_DOWN(I): CID=<u>0x804807</u>, PortName=<u>40GE1/0/3</u>; The LACP state is down. Reason = **No LCAPDUs were received**.

L₇. 1539138164 DEVM/3/LocalFaultAlarm_clear(I): CID=<u>0x852004</u>, clearType=

<u>service_resume</u>, The local fault alarm has resumed.

L₈. 1539138164 IFNET/2/linkDown_clear(I): CID=0x807a0406, alarmID=0x0852007; The interface status changes. Physical link is up, mainName=Eth-Trunk104.