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Abstract—Internet-based services monitor and detect anoma-
lies on KPIs (Key Performance Indicators, say CPU utilization,
number of queries per second, response latency) of their appli-
cations and systems in order to keep their services reliable. This
paper identifies a common, important, yet little-studied problem
of KPI anomaly detection: rapid deployment of anomaly detection
models for large number of emerging KPI streams, without manual
algorithm selection, parameter tuning, or new anomaly labeling for
any newly emerging KPI streams. We propose the first framework
ADS (Anomaly Detection through Self-training) that tackles the
above problem, via clustering and semi-supervised learning. Our
extensive experiments using real-world data show that, with the
labels of only the 5 cluster centroids of 70 historical KPI streams,
ADS achieves an averaged best F-score of 0.92 on 81 new KPI
streams, almost the same as a state-of-art supervised approach,
and greatly outperforming a state-of-art unsupervised approach
by 61.40% on average.

I. INTRODUCTION

Internet-based services (e.g., online games, online shopping,
social networks, search engine) monitor KPIs (Key Perfor-
mance Indicators, say CPU utilization, number of queries per
second, response latency) of their applications and systems in
order to keep their services reliable. Anomalies on KPI (e.g.,
a spike or dip in a KPI stream) likely indicate underlying
failures on Internet services [1]–[5], such as server failures,
network overload, external attacks, and should be accurately
and rapidly detected.

Despite the rich body of literature in KPI anomaly detec-
tion [2], [6]–[12], there remains one common and important
scenario that has not been studied or well-handled by any
of these approaches. Specifically, when large number of KPI
streams emerge continuously and frequently, operators need to
deploy accurate anomaly detection models for these new KPI
streams as quickly as possible (e.g., within 3 weeks at most),
in order to avoid that Internet-based services suffer from false
alarms (due to low precision) and/or missed alarms (because
of low recall) and in turn impact on user experience and
revenue. Large number of new KPI streams emerge due to the
following two reasons. First, new products can be frequently
launched, such as in gaming platform. For example, in a top
gaming company G studied in this paper, on average over
ten new games are launched per quarter, which results in
more than 6000 new KPI streams per 10 days on average.
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Second, with the popularity of DevOps and micro-service,
software upgrades become more and more frequent [13], many
of which result in the pattern changes of existing KPI streams,
making the previous anomaly detection algorithms/parameters
outdated.

Unfortunately, none of the existing anomaly detection ap-
proaches, including traditional statistical algorithms, super-
vised learning, and unsupervised learning, are feasible to
deal with the above scenario well. For traditional statistical
algorithms [6]–[9], to achieve the best accuracy, operators have
to manually select an anomaly detection algorithm and tune
its parameters for each KPI stream, which is infeasible for the
large number of emerging KPI streams. Supervised learning
based methods [2], [10] require manually labeling anomalies
for each new KPI stream, which is not feasible for the
large number of emerging KPI streams either. Unsupervised
learning based methods [11], [12] do not require algorithm
selection, parameter tuning, or manual labels, but they either
suffer from low accuracy [14] or require large amounts of
training data for each new KPI stream (e.g., six months
worth of data) [12], which do not satisfy the requirement of
rapid deployment (e.g., within 3 weeks) of accurate anomaly
detection.

In this paper, we propose ADS, the first framework that
enables the rapid deployment of anomaly detection models
(say at most 3 weeks) for large number of emerging KPI
streams, without manual algorithm selection, parameter tuning,
or new anomaly labeling for any newly emerging KPI streams.

Our idea of ADS is based on the following two observations.
(1) In practice, many KPI streams (e.g., the number of queries
per server in a well load balanced server cluster) are similar
due to their implicit associations and similarities, thus poten-
tially we can use the similar anomaly detection algorithms
and parameters for these similar KPI streams. (2) Clustering
methods such as ROCKA [15] can be used to cluster many
KPI streams into clusters according to their similarities. The
number of clusters are largely determined by the nature of
the service (e.g., shopping, gaming, social network, search)
and the type of KPIs (e.g., number of queries, CPU usage,
memory usage), but not by the scale of the entire system.
Thus for a given service, the number of clusters can be orders
of magnitude smaller than the number of KPI streams, and
there is a good chance that a newly emerging KPI stream falls
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into one of the existing clusters resulted from historical KPI
streams.

Utilizing the above two observations, ADS proposes to (1)
cluster all existing/historical KPI streams into clusters, (2)
manually label the anomalies of all cluster centroids, (3) assign
each newly emerging KPI stream into one of the existing
clusters, and (4) combine the data of the new KPI stream
(unlabeled) and it’s cluster centroid (labeled) and use semi-
supervised learning [16] to train a new model for each new
KPI stream. During semi-supervised learning, ADS’s base
model is supervised learning such as [2], thus is able to avoid
algorithm selection and parameter tuning. Semi-supervised
learning can train a new model for a new KPI stream using
an existing labeled KPI stream as long as these two KPI
streams have similar data distribution, which is the case since
they are in the same cluster. This way, ADS enjoys the
benefits of supervised learning, yet only needs to label a
much smaller number of historical KPI streams (i.e., cluster
centroids) without labeling new KPI streams. Unsupervised
learning based methods are not selected as the base model
of ADS due to low accuracy [14] or the requirement of long
period of data for each new KPI stream (e.g., six months worth
of data) [12], but they are nonetheless compared with ADS in
Section IV.

The contributions of this paper are summarized as follows:

• To the best of our knowledge, this paper is the first to
identify the common and important problem of rapid
deployment of anomaly detection models for large num-
ber of emerging KPI streams, without manual algorithm
selection, parameter tuning, or new anomaly labeling for
any newly generated KPI streams, and proposes the first
framework ADS that tackles this problem.

• To the best of our knowledge, this paper is the first
to apply semi-supervised learning to the KPI anomaly
detection problem. We adopt a robust semi-supervised
learning model, contrastive pessimistic likelihood estima-
tion (CPLE), which is suitable for KPI anomaly detection
and only requires similar (not necessarily the same) data
distribution between the existing labeled KPI stream and
the new KPI stream.

• We conduct extensive experiments using 70 historical KPI
streams and 81 new KPI streams from a top global online
game service G. With the labels of only the 5 cluster
centroids of 70 historical KPI streams, ADS achieves an
averaged best F-score of 0.92 on 81 new KPI streams, al-
most the same as the state-of-art supervised approach [2]
which requires the labels for all 81 new KPI streams, and
greatly outperforms an unsupervised approach Isolation
Forest [14] by 360% and the state-of-art unsupervised
approach Donut [12] by 61.40% on average.

The rest of this paper is organized as follows. In Section II,
we review the background, related works and motivation. The
framework of ADS is introduced in Section III. We report the
experimental results of evaluating ADS in Section IV. Finally,
we give a conclusion of this paper in Section V.
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Fig. 1: Examples of anomalies in KPI streams. The red parts
in the KPI stream denote anomalous points, and the orange
part denotes missing points (filled with zeros).

II. BACKGROUND

A. Anomaly Detection for KPI Streams

A KPI stream of an Internet-based service is a time series
with the format of (timestamp, value). It is essentially monitor-
ing data collected from Simple Network Management Protocol
(SNMP), syslogs, web access logs or other data sources [17]–
[19]. It can be denoted as xt−m+1, . . . , xt, where xi is a
monitoring value at time i, i ∈ [t−m+ 1, t], t is the present
time, and m is the length of the KPI stream.

Anomalous data points of a KPI stream usually have dif-
ferent data characteristics from those of normal data points.
For example, a spike, a level shift or a dip in a KPI stream
likely indicates an anomaly. Figure 1 shows three examples
of anomalies in KPI streams. Anomaly detection for the
KPI stream xt−m+1, . . . , xt is to determine whether xt is an
anomalous data point (let yt = 1 denote an anomalous data
point and yt = 0 denote a normal one).

Most anomaly detection algorithms, including traditional
statistical algorithms, supervised learning based methods and
unsupervised learning based methods, compute an anomaly
score for a data point to denote how likely this data point
is anomalous. Operators then set a threshold to determine
whether each data point is anomalous or not. That is, only
if the anomaly score at time t exceeds this threshold, xt will
be regarded as an anomalous data point.

From the above definition, we can see that anomaly detec-
tion for a KPI stream is essentially a two-class classification
problem – classifying a data point into an anomalous data point
or a normal one. Consequently, we can use the intuitive classi-
fication metrics of two-class classification methods, including
precision, recall, and F-score, to evaluate the performance of
anomaly detection algorithms.

B. Anomaly Detection Methods for KPI Streams

Anomaly detection for KPI streams deals with the task
of recognizing unexpected data points from normal behavior.
Over the years, diverse traditional statistical algorithms have
been applied for KPI anomaly detection, including SVD [6],
Wavelet [7], ARIMA [8], Time Series Decomposition [1],
Holt-Winters [9], etc. Each of the above algorithms computes
an anomaly score for each data point in a KPI stream on
the basis of simple statistical assumptions. To achieve the
best accuracy, operators have to manually select an anomaly
detection algorithm and tune its parameters for each KPI
stream. Since it is often the case that a large number of newly
emerging KPI streams have to be carefully monitored [13],



manual algorithm selection and parameter tuning for every
newly emerging KPI stream becomes infeasible.

To address the problem posed by algorithm selection and
parameter tuning, several supervised learning based methods
such as EGADS [10] and Opprentice [2] have been proposed.
For each KPI stream, these methods learn (traditional statisti-
cal) algorithm selection and parameter tuning from operators’
manual labels of KPI anomalies. Obviously, manual anomaly
labeling for a large number of newly emerging KPI streams
is not feasible either.

Unsupervised learning has emerged as a promising field in
KPI anomaly detection. For example, isolation based meth-
ods [11] and variational autoencoders (VAE) [12] are applied
in detecting anomalies in (KPI) streams. These methods are
trained without manual labels, and thus they can be applied
for large volume of KPI streams. However, isolation based
methods suffer from low accuracy [14] (see Section IV-C
for more details). In addition, Donut [12], which is based
on VAE, requires a long period (say six months) of training
data for newly emerging KPI streams. During this period, the
Internet-based services may suffer from false alarms (due to
low precision) and/or missed alarms (because of low recall)
and in turn impact user experience and revenue.

As discussed above, existing anomaly detection algorithms
for KPI streams suffer from manual algorithm selection and
parameter tuning (traditional statistical algorithms), or manual
anomaly labeling (supervised learning based methods), or low
accuracy in real-world Internet-based service (unsupervised
learning based methods like isolation forests [11]), or long
period of training time for newly generated KPI streams
(unsupervised learning based methods like Donut [12]).

Semi-supervised learning [16] is halfway between super-
vised and unsupervised learning. It uses unlabeled data to
modify either parameters or models obtained from labeled
data alone to maximize the learning performance. [20]–[22]
use semi-supervised learning for anomaly detection in other
domains, but are not designed for KPI streams (time series).

C. Clustering of KPI Streams

Millions of KPI streams bring a huge challenge to KPI
anomaly detection. Luckily, many KPI streams are similar
because of their implicit associations and similarities. For
example, Figure 2 shows two KPI streams of response latency
collected from two different applications, and these two KPI
streams are quite similar in shape. If we can identify similar
KPI streams, and group the huge volume of KPI streams into a
few clusters, we can reduce the overhead in anomaly detection.

Time series clustering is a popular field which has caught
lots of attention in the past 20 years. [23] summarized a
large number of methods on this topic, most of which are
designed for smooth and idealized data. However, the large
number of spikes, dips and level shifts in KPI streams can
significantly change the shape of KPI streams. Therefore, the
above methods do not perform good for KPI streams.

In this work, we adopt ROCKA [15], a rapid clustering
algorithm for KPI streams based on their shapes. It applies

Application A

Application B

Fig. 2: The response latency streams of two different applica-
tions.

moving average to extract baselines which successfully reduce
the biases of noises and anomalies. In addition, it uses shape-
based distance as the distance measure, and reduces its algo-
rithm complexity to O(m log(m)) using Fast Fourier Trans-
form. Finally, it uses DBSCAN to cluster KPI streams and
chooses the centroid for every cluster. Extensive experiments
in [15] have demonstrated ROCKA’s superior performance in
clustering KPI streams for large Internet-based services. Please
note that applying ROCKA to cluster KPI streams is not our
contribution.

III. FRAMEWORK OF ADS

As aforementioned, we propose ADS, a semi-supervised
learning based anomaly detection framework for KPI streams,
to tackle the problem of rapid deployment of anomaly de-
tection models for large number of emerging KPI streams,
without manual algorithm selection, parameter tuning, or new
anomaly labeling for any newly generated KPI streams.

Figure 3 shows the framework of ADS. For historical KPI
streams, ADS preprocesses them with filling missing points
and standardization, clusters the preprocessed KPI streams
using ROCKA (Section III-A), and extracts features (namely,
output results of different anomaly detection algorithms and
parameters) for the KPI streams on cluster centroids (Sec-
tion III-B). Similarly, when a new KPI stream is generated,
ADS preprocesses it, and classifies it into one of the above
clusters (Section III-A), after which the features of this new
KPI stream are extracted (Section III-B). Based on the features
of the new KPI stream, and the features and labels of the new
KPI stream’s cluster centroid, ADS trains a semi-supervised
learning model using the CPLE algorithm (Section III-C).
Finally, ADS detects anomalies in the new KPI stream based on
the above model and the severity threshold (aThld henceforth).

A. Preprocessing and Clustering

In Internet-based services, monitoring system malfunctions
and/or operator misconfigurations, though occur infrequently,
can lead to missing points in KPI streams. These missing
points can bring significant biases to ADS. Therefore, we fill
these missing points using linear interpolation following [15].
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Fig. 3: The framework of ADS

In addition, to make KPI steams of different amplitudes
and/or length scales comparable, we also standardize KPI
streams. This way, different KPI streams are clustered based
on their shapes, rather than the absolute values of amplitudes
and/or length scales.

As discussed in section II-C, ADS adopts ROCKA [15] to
group KPI streams into a few clusters, and obtains a centroid
KPI stream for each cluster.

B. Feature Extraction

When training based on historical data, since the KPI
stream on the centroid of each cluster represents the cluster’s
characteristics, we extract the features of the KPI stream on
each cluster centroid. In addition, when training based on
new data, we extract the features of the newly generated KPI
stream. The features of the new KPI stream, the features and
the anomaly labels of the new KPI stream’s cluster centroid,
together form the training set.

Here we introduce how to extract features for KPI streams.
As is with [2], we use the output results of different
anomaly detectors (namely, the anomaly severities measured
by anomaly detectors) as the features of KPI streams. This
way, each detector serves as a feature extractor.

When an anomaly detector receives an incoming data point
of a KPI stream, it internally produces a non-negative value,
called severity, to measure how anomalous that data point is.
For example, historical average [24] applies how many times
of standard deviations the point is away from the mean as
the severity, based on the assumption that the KPI stream data
follows Gaussian distribution; Holt-Winters [9] uses a residual
error (namely, the absolute difference between the actual value
and the forecast value of each data point) to measure the
severity. In addition, most anomaly detectors are parameterized
and have a set of internal parameters (say, historical average
has one parameter of window length, and Holt-Winters has
three parameters {α, β, γ}). As a result, both detectors and
their internal parameters decide the severity of a given data
point.

In this work, for each (parameterized) anomaly detector,
ADS samples its parameters to generate one or more “fixed”

anomaly detectors. This way, an anomaly detector with spe-
cific sampled parameters acts as a feature extractor as follows:

A data point
anomaly detector + sampled parameters−−−−−−−−−−−−−−−−−−−−→ feature

The feature extraction, training, and classification (detec-
tion) in ADS are all designed to work with individual data
points, not anomaly windows, so that the semi-supervised
learning algorithm can have enough data for training. Another
benefit of this design choice is that the classifier can detect
anomalies fast on each data point.

TABLE I: Detectors and sampled parameters used in ADS.
Some abbreviations are MA (moving average), EWMA (ex-
ponentially weighted MA), TSD (time series decomposi-
tion), SVD (singular value decomposition), win(dow), and
freq(uency).

Detectors / #Configurations Sampled Parameters
Simple threshold [25] / 1 none
Diff / 3 last-point, last-day, last-week
Simple MA [26] / 5

win = 10, 20, 30, 40, 50 pointsWeighted MA [27] / 5
MA of diff / 5
EWMA [27] / 5 α = 0.1, 0.3, 0.5, 0.7, 0.9
TSD [1] / 1

win = 1 weekTSD MAD / 1
Historical average [24] / 1
Historical MAD / 1
Holt-Winters [9] / 43 = 64 α, β, γ = 0.2, 0.4, 0.6, 0.8
SVD [6] / 5× 3 = 15 #row =10, 20, 30, 40, 50 points,

#column =3, 5, 7
Wavelet [7] / 3× 3 = 9 win = 3, 5 ,7 days, freq = low,

mid, high
ARIMA [8] / 1 Estimation from data

In total: 14 detectors / 117 configurations

Following [2], we implement 14 widely used anomaly
detectors in ADS. All the 14 anomaly detectors and their
sample parameters are shown in Table I.

C. Semi-Supervised Learning

After extracting features of anomaly detectors for both the
labeled KPI streams on cluster centroids and the unlabeled



new KPI stream, we try to learn a model which is based on
both labeled and unlabeled data, namely a semi-supervised
learning model.

As is summarized in [16], different semi-supervised learning
models have different advantages and disadvantages. Among
these methods, self-training based methods [20] apply an
existing model to “label” unlabeled data, and employ the
newly labeled data together with the actual labeled data to
retrain the model until the prediction result no longer changes
or iteration ends.

In this work, we adopt CPLE [28], an extension model
of self-training. CPLE is a resilient semi-supervised learning
framework for any supervised learning classifier (base-model
henceforth) including random forest, SVM, decision tree, etc.
It takes the prediction probabilities of base-model as input to
fully utilize the unlabeled data. CPLE has the three following
advantages:

• CPLE is flexible to change base-model, so we can set
its base-model to achieve the best accuracy in anomaly
detection.

• CPLE needs low memory complexity, as opposed to
graph-based methods [29] which needs O(n2) memory
complexity.

• CPLE is more robust than other semi-supervised learning
algorithms because it needs no strong assumptions such
as (1) the accurate estimation for data distribution of
labeled and unlabeled data (as required by expectation
maximization algorithms with generative mixture mod-
els [30]) and (2) low density (as required by transductive
SVM [31]).

• CPLE supports incremental learning. Therefore, when
more and more data points are added to a KPI stream,
we can continuously train ADS to improve its accuracy.

ADS applies CPLE to detect anomalies for KPI streams as
follows. For a base-model (a supervised learning based binary
classifier) f(x) with parameter vector θ, it can be denoted with
the form f(x; θ) ∈ {0, 1}. Then the probability that a base-
model deems a data point as anomalous is g(x; θ) = p(f =
1|x, θ), where g(x; θ) ∈ [0, 1]. In addition, the negative log
loss for binary classifiers takes on the general form:

J(y,p) = logp(y|p)

=
1

N

N∑
i=1

[yi log pi + (1− yi) log(1− pi)]
(1)

where N is the number of the data points in the KPI streams
of training set, yi is the label of the i-th data point and pi is the
i-th discriminative likelihood (DL) [32]. Usually, a machine
learning model is aiming to maximize the negative log loss.

For the unlabeled data points in the training set (namely, the
data points of the newly generated KPI stream), we randomly
assign a weight qi to the i-th data point. The objective of
CPLE is to minimize the function

E(q, θ|X,U) = J(y′,g(U; θ))− J(y, g(X; θ)) (2)

where X is the data set of labeled data points, U is the one
of unlabeled data points, and y′ = H(q), where

H(qi) =

{
1 if qi ≥ 0.5

0 if qi < 0.5
(3)

where i ∈ {1, ..., |U |}.
This way, (the parameter vector θ of) the base-model, which

serves as the anomaly detection model, is trained based on
(X ∪U) using actual and hypothesized labels (y ∪ y′), as
well as the weights of data points w, where

wi =

{
1 if xi ∈ X

0 qi otherwise
(4)

where i ∈ {1, ..., |U |}.
In this work, we apply random forest as the base-model

of CPLE because of its simplicity, parallelization, and low
memory usage, similar to Opprentice [2]. We do not claim
the adoption of random forest model as our contribution.

IV. EVALUATION

To evaluate the performance of ADS, we have conducted
extensive experiments using real-world data collected from a
top global online game service. We first introduce the data
set (Section IV-A) and metrics (Section IV-B) used for the
evaluation experiments. Then, we compare the performance
of ADS with that of supervised learning based method such as
Opprentice, and unsupervised learning based method including
iForest and Donut (Section IV-C). Finally, to highlight the
importance of semi-supervised learning, we compare ADS with
the combination of ROCKA and Opprentice (Section IV-D).

A. Data Set

We randomly pick 70 historical KPI streams for clustering
and 81 new ones for anomaly detection from a top global
online game service. These KPI streams are of the most
important three KPIs, including success rate, number of online
players and latency. Table II lists the detailed information of
the 81 new KPI streams, including the number, interval and
length of the KPI streams of each KPI. In addition, it also
lists the averaged number and percentage of anomalous data
points per KPI stream of each KPI, respectively.

Note that the KPI streams of the same KPI may have
very different shapes and thus belong to different clusters.
Therefore, experienced operators first manually group the 70
historical KPI streams into five clusters according to their
shapes, and then classify the new 81 KPI streams into the
five clusters. This serves as the ground truth for clustering.

As mentioned in Section III-A, in this work we apply
ROCKA to cluster KPI streams. Based on the manual clus-
tering results by operators, we find that ROCKA accurately
groups all the 70 historical KPI streams into the right cluster.
In addition, ROCKA successfully classifies all the 81 new KPI
streams into the correct cluster.

To evaluate the performance of anomaly detection methods,
operators also manually label anomalous data points for the



TABLE II: Description of the new 81 KPI streams

KPI # KPI
streams

Interval
(minute)

Length
(month)

#/percentage of anomalous
data points per KPI stream

Latency 19 5 1 150/1.7%
# online players 58 5 1 72/0.83%

Success rate 4 5 1 84/0.97%

81 new KPI streams, as well as the 5 historical KPI streams
that are on cluster centroids (calculated using ROCKA). Note
that we focus on anomaly detection on newly emerging KPI
streams in this work, and thus only the new 81 KPI streams are
used for the following evaluation experiments. Therefore, there
is no need to manually labeling the remaining 65 historical
KPI streams.

As aforementioned, more than 6000 new KPI streams are
produced per 10 days. However, manually clustering and
labeling anomalies for thousands of KPI streams is infeasible,
considering the long period of KPI streams (one month).
Therefore, we randomly selected 151 KPI streams in our
evaluation. We believe that the 151 KPI streams are sufficient
to evaluate ADS’s performance.

B. Evaluation Metrics

In real applications, the human operators generally do not
care about the point-wise metrics. Therefore, we use a simple
strategy following [12]: if any point in an anomaly segment
in the ground truth can be detected by a chosen threshold,
we say this segment is detected correctly, and all points
in this segment are treated as if they can be detected by
this threshold. Meanwhile, the points outside the anomaly
segments are treated as usual. The precision, recall, F-score
and best F-score are then computed accordingly.

As is with [12], we apply the best F-score as the metric
to evaluate anomaly detection methods. The best F-score in-
dicates the best possible performance of an anomaly detection
method on a particular testing set, given an optimal global
threshold. In practice, the best F-score is mostly consistent
with Area Under the (ROC) Curve (AUC).

Note that in Section IV-C and Section IV-D, we tune aThld
based on the labels of the testing set (namely, the back
40% of every new KPI stream) to obtain the best F-score.
Although it is not entirely practical in real-world applications,
it fully compares the best performance of ADS, iForest, Donut,
Opprentice and the combination of ROCKA and Opprentice.

C. Evaluation of The Overall Performance

To evaluate the performance of ADS in anomaly detection
for KPI streams, we calculate its best F-score, and compare it
with that of iForest [11], Donut [12] and Opprentice [2].

For each of the 81 new KPI streams, we train ADS using
the features extracted from the front 60% of it, as well as
the features and manual labels of its cluster centroid (KPI
stream). Then we use this ADS model to detect anomalies on
the back 40% of this new KPI stream. As for iForest, Donut
and Opprentice, we divide each new KPI stream (of the 81
KPI streams) into training set and testing set, whose ratios are
(front) 60% and (back) 40%, respectively.

0.0 0.2 0.4 0.6 0.8 1.0
F-score
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Fig. 4: CDFs of the best F-scores of each new KPI stream
using ADS, iForest, Donut and Opprentice, respectively.

Figure 4 shows the cumulative distribution functions (CDFs)
of the best F-scores of each KPI stream (of the new 81 KPI
streams) using the above four methods. Note that in this CDF
figure, being closer to the upper left means worse performance,
and being closer to the bottom right means better performance.
We can see that both ADS and Opprentice perform superior
in detecting anomalies for KPI streams, with 80% of best F-
scores over 0.8. Their performance is much better than that
of iForest and Donut, for the following reasons: (1) iForest
is sensitive to noises in the training set because it does not
utilize any labels [11]. (2) Donut is a deep Bayesian model,
which requires a lot of training data to get good results (say
six months worth of KPI streams) [12]. However, as Table II
shows, we have to train the model using 60% of one month,
namely 18 days, worth of newly emerging KPI streams, which
is a too small amount of training data for Donut.

To intuitively compare the best F-scores of ADS, iForest,
Opprentice and Donut, we list the average best F-scores of
the above four methods on the five clusters in TABLE III,
respectively. ADS and Opprentice perform well across all
the five clusters and much better than iForst and Donut,
demonstrating that it is important to utilize anomaly labels in
anomaly detection for newly emerging KPI streams. Specifi-
cally, ADS improves the average best F-score by 61.40% (as
opposed to Donut) to 360% (as opposed to iForest).

Although the supervised learning based method, Opprentice,
performs similarly to ADS, it needs much more labeling
works. For example, in this setting, ADS is trained based
on only five labeled KPI streams on cluster centroids, while
Opprentice is trained using all the 81 labeled KPI streams.
As aforementioned, over 6000 new KPI streams are produced
per 10 days in the studied online gaming service. Manually



TABLE III: Average best F-scores of ADS, iForest, Opprentice, Donut and ROCKA+Opprentice in the five clusters, respectively

Cluster # KPI streams ADS iForest Donut Opprentice ROCKA + Opprentice
A 7 0.91 0.33 0.42 0.90 0.67
B 9 0.91 0.21 0.37 0.91 0.88
C 8 0.95 0.22 0.28 0.98 0.94
D 53 0.93 0.19 0.67 0.94 0.90
E 4 0.67 0.13 0.45 0.71 0.66

Overall 81 0.92 0.20 0.57 0.93 0.87

TABLE IV: The new KPI streams where ADS performs
significantly better than ROCKA + Opprentice

KPI stream ID ADS ROCKA + Opprentice
α 0.86 0.62
β 0.91 0.20
γ 0.72 0.46
δ 0.80 0.55
... ... ...

labeling all the newly emerging KPI streams to detect KPI
anomalies is infeasible in practice. Consequently, Opprentice
is not appropriate for our scenario.

D. Evaluation of CPLE

To the best of our knowledge, this is the first work to
apply semi-supervised learning to the KPI anomaly detection
problem. We adopt a robust semi-supervised learning model,
CPLE, which is suitable for KPI anomaly detection and only
requires similar (not necessarily the same) data distribution
between the existing labeled KPI stream and the new KPI
stream.

To evaluate the performance of CPLE, we compare the
performance of ADS, which is the combination of ROCKA
and CPLE, to that of the combination of ROCKA and a state-
of-art supervised learning method – Opprentice [2] (ROCKA
+ Opprentice henceforth). We set up ROCKA + Opprentice as
follows. We first apply ROCKA to group the 70 historical KPI
streams into five clusters, and classify the 81 new KPI streams
into these clusters. For each cluster, we train Opprentice using
the features and manual labels of its centroid KPI streams.
After that, we detect anomalies for the back 40% of each new
KPI stream using the Opprentice model trained based on this
new KPI stream’s cluster centroid.

TABLE III compares the average best F-scores of ADS
and ROCKA + Opprentice on each cluster. We can see that
ADS outperforms ROCKA + Opprentice on every cluster, and
greatly outperforms it by 35.82% on cluster A. TABLE IV
lists the new KPI streams where ADS performs significantly
better than ROCKA + Opprentice, and the best F-scores of the
above two methods on these KPI streams, respectively.

Here we explain why ADS performs better than ROCKA +
Opprentice. KPI stream clustering methods such as ROCKA
usually extract baselines (namely underlying shapes) from
KPI streams and ignore fluctuations. However, the fluctuations
of KPI streams can impact anomaly detection. For example,
Figure 5 shows the new KPI stream α, and the KPI stream
on the its cluster centroid. KPI stream α and the centroid KPI
stream have very similar baselines, but they have different

The KPI stream on the centroid

KPI stream α

Fig. 5: The anomaly detection results of ROCKA + Opprentice
on KPI stream α, and α’s cluster centroid KPI stream. The
red data points are anomalous determined by ROCKA +
Opprentice while in actual they are normal.
fluctuation degrees, which is not uncommon in practice. This
lead to that ROCKA + Opprentice, which is trained based only
on the centroid KPI stream, generates a lot of false alarms.

ADS addresses the above problem effectively using semi-
supervised learning. In other words, it learns not only from the
labels of the centroid KPI stream, but also from the fluctuation
degree of the new KPI stream. This is consistent with the
observation that the model trained based on both labeled and
unlabeled data should not be worse than the one trained based
only on the labeled data [28].

The experiment results strongly demonstrate ADS’s robust-
ness in KPI anomaly detection.

V. CONCLUSION

To the best of our knowledge, this paper is the first to iden-
tify the common and important problem of rapid deployment
of anomaly detection models for large number of emerging
KPI streams, without manual algorithm selection, parameter
tuning, or new anomaly labeling for any newly generated KPI
streams. We propose the first framework ADS that tackles this
problem via clustering and semi-supervised learning, which
is the first time that semi-supervised learning is applied to
KPI anomaly detection. Our extensive experiments using real-
world data show that, with the labels of only the 5 cluster
centroids of 70 historical KPI streams, ADS achieves an aver-
aged best F-score of 0.92 on 81 new KPI streams, almost the
same as the state-of-art supervised approach [2], and greatly
outperforms an unsupervised approach Isolation Forest [14] by
360% and the state-of-art unsupervised approach Donut [12]
by 61.40% on average.



We believe that ADS is a significant step towards practical
anomaly detection on large-scale KPI streams in Internet-
based services. In the future, we plan to adopt more advanced
techniques (e.g. transfer learning [33]) to further improve
ADS’s performance.
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