
FUNNEL: Assessing Software Changes
in Web-Based Services

Shenglin Zhang, Ying Liu,Member, IEEE, Dan Pei, Senior Member, IEEE, Yu Chen,

Xianping Qu, Shimin Tao, Zhi Zang, Xiaowei Jing, and Mei Feng

Abstract—The detection of performance changes in software change roll-outs in Internet-based services is crucial for an operations

team, because it allows timely roll-back of a software change when performance degrades unexpectedly. However, it is infeasible to

manually investigate millions of performance measurements of many roll-outs. In this paper, we present an automated tool, FUNNEL,

for rapid and robust impact assessment of software changes in large Internet-based services. FUNNEL automatically collects the

related performance measurements for each software change. To detect significant performance behavior changes, FUNNEL adopts

singular spectrum transform (SST) algorithm as the core algorithm, uses various techniques to improve its robustness and reduce its

computational cost, and applies a difference-in-difference (DiD) method to differentiate the true causality from the random correlations

between the performance change and the software change. Evaluation through historical data in real-word services shows that

FUNNEL achieves accuracy of more than 99.7 percent. Compared with previous methods, FUNNEL’s detection delay is 38.02 to 64.99

percent shorter, and its computation speed is 4.59-7,098 times faster. In real deployment, FUNNEL achieves a 98.21 percent precision,

high robustness, fast detection speed, and shows its capability in detecting unexpected behavior changes.

Index Terms—Software change, performance change, singular spectrum transform, difference in difference

Ç

1 INTRODUCTION

IN large web-based services such as search engine, online
shopping, and social networking, the operations team

needs to frequently conduct software changes, i.e., software
upgrades and configuration changes, in order to deploy
new features, fix bugs, and improve service performance.
Although each software change is extensively tested on test-
beds before deployment, errors and bugs may still occur
in the operational environment because of diverse hard-
ware/software systems, complex interactions, and the large
scale of devices [1], [2]. Therefore, the operations team typi-
cally deploys software changes using a “Dark Launching”
[3] approach. Instead of rolling out a software change to all
servers at one time, the operations teamdeploys the software
change on a subset of servers at the beginning and continu-
ously monitors a predefined list of Key Performance Indica-
tors (KPIs) to determine the impact of the software change.
The KPIs cover a wide range of performances, including
user-perceived issues (e.g., Web page response delay),

service performance (e.g., advertisement click count), hard-
ware health (e.g., servermemory utilization), and so on.

If the KPIs on the server subset perform as expected, the
software change will be rolled out to all servers. Otherwise,
the software change should be rolled back as soon as
possible. Generally, service performance degradation may
induce poor user experience [1], [2] or revenue drop [4], [5].

Thus it is important to detect significant KPI changes rap-
idly, whether positive or negative, to allow a timely roll-
back. However, the operations team generally assesses the
impact of software changes manually in Web-based serv-
ices, which has been demonstrated to be error-prone,
cumbersome, and almost impossible to scale to a larger size.
As a result, some critical issues caused by software changes
may fly under the operations team’s radar, hurting the
applications performance and user experience [1], [2].

In this study, we focus on software changes and their
impact on KPIs. Our objective is to build an automated tool
that detects behavior changes rapidly and accurately in a
broad range of KPIs after a software change, and accurately
determines whether the behavior changes are caused by the
software change. Usually, KPI changes caused by software
changes include level shifts, e.g., a sudden increase in mem-
ory utilization, or ramp-ups/ramp-downs, e.g., a deteriorat-
ing condition. Similar to [6], we focus on level shifts and
ramp up/downs induced by software changes in this paper.
How to reduce the detection delay, i.e., the delay between
the occurrence of a KPI change and its detection is a real
challenge for Web-based services for both scalability and
robustness reasons. First, the impact of a software change can
be observed in any of the huge number of KPIs of the services
and servers that share the same spatial scope with the soft-
ware change. In our studied scenarios, there are hundreds,
even thousands, of KPIs that should be monitored after each

� S. Zhang and Y. Liu are with the Institute for Network Sciences and
Cyberspace, and the Tsinghua National Laboratory for Information
Science and Technology, Tsinghua University, Beijing 100084, China.
E-mail: slzhangsd@gmail.com, liuying@cernet.edu.cn.

� D. Pei is with the Department of Computer Science and Technology, and
the Tsinghua National Laboratory for Information Science and
Technology, Tsinghua University, Beijing 100084, China.
E-mail: peidan@tsinghua.edu.cn.

� Y. Chen, X. Qu, S. Tao, and Z. Zang are with the Baidu, Inc., Beijing
100085, China. E-mail: chenyu034@hotmail.com, {quxianping, taoshimin,
zangzhi}@baidu.com.

� X. Jing and M. Feng are with the PetroChina, Inc., Beijing 100007, China.
E-mail: {jxw, fm}@petrochina.com.cn.

Manuscript received 3 Nov. 2015; revised 26 Jan. 2016; accepted 3 Mar. 2016.
Date of publication 9 Mar. 2016; date of current version 2 Feb. 2018.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSC.2016.2539945

34 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 11, NO. 1, JANUARY/FEBRUARY 2018

1939-1374� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

single software change that has occurred, while there are
tens of thousands of software changes occurring every day
in our scenario. This forces the operations team to monitor
several million KPIs every day. The large scale of the prob-
lem calls for an algorithm with low computation overhead.
Second, with the requirement of short detection delay, we do
not have the luxury of using data smoothing and aggregation
to achieve robustness any more, and the behavior change
detectionmethod should be quite robust [7].

To the best of our knowledge, in the literature there exists
no rapid and robust method for impact assessment of soft-
ware changes in large Web-based services. There exists several
studies of impact assessment in the area of network infra-
structure [6], [7]. However, the CUmulative SUM (CUSUM)
used in [6] suffers from long detection delay [7], because the
cumulative sum may take a long time before it exceeds the
threshold. Multiscale Robust Local Subspace (MRLS)
method applied in [7] achieves low detection delay, but the
iteration of Singular Value Decomposition (SVD) used in
subspace computation with l1-norm exhibits high computa-
tional complexity [8]. While it works in [7] for thousands of
time-series metrics in backbone networks, MRLS would
spend too much computational resources for millions of
KPIs in Web-based services, and is hence not feasible in our
scenario. The iteration of SVD is essential to MRLS for
improving robustness, and it is hardly possible to reduce
the computation overhead of MRLS.

Singular Spectrum Transform (SST) [9] has emerged as a
popular performance change detection method recently.
SST has been demonstrated to be accurate with short detec-
tion delay [10], [11]. However, based on SVD, SST still suf-
fers from high computational cost [12], and its accuracy
degrades fast in the face of noises [13]. KPIs in Web-based
services are quite diverse intrinsically, exhibiting various
characteristics including strong seasonality (e.g., Web page
view count), high variability (e.g., server CPU context
switch count), and stationarity (e.g., server memory utiliza-
tion). In addition, the baseline used to compare the perfor-
mance after software changes may be contaminated by the
impact of previous software changes and/or other factors,
as is the case in large infrastructure networks [7].

In this paper, we designed and implemented FUNNEL,
an automated tool for assessing the impact of software
changes rapidly and robustly in large Web-based services.
For a given software change, FUNNEL automatically deter-
mines the correct spatial scope of the impact, collects a
broad range of KPIs, detects KPI changes, and determines
the KPI changes caused by software changes. FUNNEL
adopts matrix compression and implicit inner product cal-
culation to reduce SST’s computation overhead. The short
detection delay and the low computational cost of the
improved SST make timely mitigation possible when FUN-
NEL is deployed online. Furthermore, FUNNEL improves
the robustness for SST, making it work quite well across
diverse types of KPIs, especially variable KPIs.

In addition to software changes, other factors including
seasonality, network hardware breakdowns, malicious
attacks, etc., can also give rise to KPI changes. The impact of
other factors can over-shadow the assessment of software
changes [14]. To achieve the accurate inference of the impact
of software changes, it is non-trivial for the operations team

to exclude KPI changes caused by other factors. However,
neither CUSUM and MRLS, nor the improved SST can
exclude the KPI changes induced by other factors. FUNNEL
uses a classic method, difference in difference (DiD) [15],
[16], [17], to solve the problem by comparing the relative
performance between the treated group and the control
group. DiD compares the KPIs of service processes and
servers in which the software changes have been conducted
(hereafter, collectively referred to as tservers/tinstances,
where “t” stands for “treated”) with the KPIs of service pro-
cesses and servers of the same service (a server is usually
dedicated to a specific service in our context) without the
software change (hereafter, collectively referred to as cser-
vers/cinstances, where “c” stands for “control”). If the opera-
tions team conducts the software change without using the
Dark Launching method, and there is no server/process in
cservers/cinstances, FUNNEL compares the impacted KPIs
related to the software change with historical measurements
of KPIs to exclude seasonality. FUNNEL adopts a relatively
long baseline to address baseline contamination (in our pro-
totype implementation, KPIs of 30 days before the day of
software change are used to construct the baseline) [7].
Moreover, the large number of KPIs of cservers/cinstances
also alleviates the impact of baseline contamination.

Our main contributions can be summarized as follows:

1) We identify the problem of rapid, robust, and auto-
mated impact assessment of software changes in
large Web-based services, and its research challenges in
terms of scalability, robustness, detection delay, and
computation cost.

2) We propose FUNNEL, the first approach in the liter-
ature that addresses the above challenges. The
core idea of FUNNEL is to use SST, a rapid change
point detection algorithm, as our algorithm basis. To
reduce SST’s computation overhead, FUNNEL
adopts matrix compression and implicit inner prod-
uct calculation. To improve the robustness for SST
against noises, FUNNEL uses a DiD method to com-
pare with various control groups.

3) Evaluation through historical data shows that FUN-
NEL performs significantly better than CUSUM [6]
and MRLS [7], and the operational experiences of
real deployment show FUNNEL’s good performance
and value. We conducted extensive evaluations
using manually labeled KPIs collected from 144 dif-
ferent software changes in real-world Web-based
services. Specifically, FUNNEL achieved an accuracy
of more than 99.7 percent, a detection delay that is
58.82 percent of that of MRLS and 33.76 percent of
that of CUSUM. In addition, FUNNEL is more than
7,000 times faster than MRLS in computational
speed, and over four times faster than CUSUM. Fur-
thermore, we have deployed the prototype of FUN-
NEL to dozens of real-world Web-based services.
FUNNEL achieved a 98.21 percent precision based
on one week’s observation. A few representative
cases were presented to show FUNNEL’s robust-
ness, detection speed, and capability to detect unex-
pected KPI changes. In one specific case, FUNNEL
reduced the detection delay of one important

ZHANG ET AL.: FUNNEL: ASSESSING SOFTWARE CHANGES IN WEB-BASED SERVICES 35

incident to less than 10 minutes, far less than the 1.5
hour used in manual assessment.

The rest of the paper is organized as follows. We provide
an introduction to software change and KPI in Section 2,
and describe the design of FUNNEL in Section 3. The evalu-
ation of FUNNEL is presented in Section 4, followed by a
description of the deployment of FUNNEL and case studies
in Section 5. Finally, we review related works in Section 6
and conclude our paper in Section 7.

2 SOFTWARE CHANGES AND KPIS

In this section, we provide a brief introduction of software
changes and KPIs.

2.1 Scope of Studied Software Changes

In this paper, we focus on two types of software changes on
servers in large web-based services, software upgrades and
configuration changes, for the following three reasons. (1) The
operations team typically care about the unexpected conse-
quences that are potentially due to these planned changes;
(2) These changes are controllable by the operations team via
command line interfaces and observable in logs; (3) We have
observed that these two types constitute more than 90 per-
cent of the tens of thousands of software changes in our data.

Software upgrades. With the current rapid evolution of the
Internet, new features are continuously being deployed with
software upgrades. The operations team also conducts soft-
ware upgrades to fix bugs or improve service performance.
In a large service, it is often the case that one software
upgrade implements multiple features or bug fixes, and
FUNNEL considers such a software upgrade as a whole.
FUNNELdecideswhether thewhole software upgrade intro-
duces any KPI change but does not attempt to distinguish
which individual feature or bug fix introduces KPI changes.
In addition, the web services in our scenario usually trigger a
software upgrade when operators try to patch the software,
and thuswe classify the patches as software upgrades.

Configuration changes. Using command line interfaces, the
operations team can change the configurations by using
specific commands. The configuration change can be in the
operating system (OS) or infrastructure software (e.g., a con-
figuration change in Apache), service configuration (e.g., an
increase in the number of threads in a service process by
command lines), deployment scale (e.g., an increase in the
number of servers where a service is deployed), or data
source (e.g., an update to the strategy that calculates the
valid page view counts).

With above focuses, the following perspectives are out of
scope for this paper.

1) We do not consider the software changes on the net-
work devices such as routers and switches, which
have been already studied in depth in [6], [7], [14];

2) We do not consider software changes that were
external to the company, e.g., a change in a peer
company, since these changes might be invisible to
the studied company’s operations team.

3) We do not explicitly consider the interactions across
multiple concurrent or consecutive software changes
on a same server, which can be considered as one
combined change as a straw man approach.

More detailed studies along the last three directions are left
as future work.

2.2 KPI

In the studied Web-based services, there are hundreds of
thousands of servers providing various types of services.
Each service (e.g., search, web mail, social networking) runs
on one or more servers with a specific process on each
server. An instance denotes a process of a specific service on
a specific server. A KPI is a performance metric of a given
server/service/process. There are three types of KPIs that need
to be monitored for software changes assessment: server
KPIs, instance KPIs and service KPIs. The operations team
deploys an agent on each server to monitor the status of
each instance and collect the KPIs of all instances continu-
ously. For example, immediately after the process serves a
customer with some web page view, the page view count
is incremented and a new page view response delay is
recorded. In addition, by analyzing server log files that
record the system status, the agent is able to periodically
collect server KPIs, such as CPU utilization, memory utiliza-
tion, and NIC throughput. A service KPI is an aggregation
of all instance KPIs in the service. Fig. 1 shows an example
of the relationship among service (search engine service),
server (server 1, server 2, . . . , server n), instance (instance 1,
instance 2, . . . , instance n) and KPI (page view count, page
view response delay, access failure count, CPU utilization,
memory utilization, and NIC throughput).

After collecting the measurements of KPIs of servers and
instances, the agent on each server delivers the measure-
ments via datacenter networks to a centralized Hadoop-based
database, which also stores the service KPIs aggregated
based on the KPIs of the instances. The database also pro-
vides a subscription tool for other systems, such as FUN-
NEL, to periodically receive the subscribed measurements
based on the server, instance, and service. The data collec-
tion interval at the servers is typically 1 minute, and thus
the time granularity of the input KPI measurements of
FUNNEL is 1 minute. If we set the time granularity of the
KPI measurements larger, the detection delay of FUNNEL
will be larger. Although the accuracy of FUNNEL may be
impacted by the time granularity of the measurements [18],
the accuracy of FUNNEL is relatively good (see Section 4.2)
with the time granularity of 1 minute, we set the time granu-
larity of the KPI measurements as 1 minute. Within one sec-
ond, the measurements subscribed by FUNNEL are pushed
to FUNNEL via datacenter networks.

Fig. 1. The relationship among service, server, instance and KPI.

36 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 11, NO. 1, JANUARY/FEBRUARY 2018

In large services, there might exist some KPIs of dubious
quality. To the best of our knowledge, there is no previous
work on eliminating low-quality KPIs in web-based serv-
ices. In this paper, we do not focus on eliminating low-qual-
ity KPIs either. FUNNEL detects all KPI changes in the
impact set regardless of the quality of the KPI, and delivers
the results to the operations team. The operations team will
then determine whether the performance changes in the
low-quality KPIs are induced by the software change or not.

As described in [19], even the operations team does not
know exactly what is a “good” threshold for a specific KPI,
e.g., due to seasonal variation. Therefore, it is difficult to
obtain the expected values from the operations team for
FUNNEL, and we do not give a threshold for any KPI in
this paper.

2.3 KPI Changes

A KPI change is defined as a non-transient change (e.g., last-
ing more than 7 minutes1) in a KPI that is introduced by
a software change. In this paper, we focus on behavior
changes evidenced by individual KPI time series. As Fig. 2
shows, the changes can be either level-shifts immediately
after software changes, or ramp ups or downs that ensue
gradually over time after the software changes.

Behavior changes in KPIs can validate the expected
impacts, e.g., a decrease in CPU utilization after a configura-
tion change aimed to increase efficiency, or show the unex-
pected impact occurrences, e.g., a sudden increase in page
view response delay after a software upgrade.

The assessment of any single software change should be
in a low-computational way, for the following two reasons.
(1) Hundreds to thousands of KPIs should be detected after
a single software change; (2) The operations team should
assess tens of thousands of software changes every day.

3 FUNNEL DESIGN

Recall that our aim is to provide an automatic tool for rapid
and robust impact assessment of software changes. To
achieve this goal, we designed FUNNEL, which is com-
posed of two main components, as shown in Fig. 3.

Impact set identification. In the studied search engine com-
pany, the operations team names the services based on the
service hierarchy. We believe this practice is not uncommon
in other companies. FUNNEL derives the relationship
among services using the naming rules. Inspired by [7],
FUNNEL automatically identifies the impact set, that is, the
set of servers, instances, and services that may be impacted
(Section 3.1) based on the change deployment logs and the
relationships among services,.

Performance change detection and determination. FUNNEL
uses an SST based performance change detection method.
It improves the robustness of SST (Section 3.2.2) and
introduces matrix compression and implicit inner product
calculation to solve the high computational cost of SST
(Section 3.2.3). The improved SST can detect KPI changes
rapidly and robustly (step 2 in Fig. 3). FUNNEL then
determines whether the changes are caused by software
changes. If the KPI is not the KPI of affected services (serv-
ices that are related to the service where the software
change is deployed) (step 5 in Fig. 3) and if the operations
team rolls out the software change using Dark Launching
(step 8 in Fig. 3), FUNNEL excludes the impact of other
factors (step 10 in Fig. 3) by applying a DiD method
(Section 3.2.4) using KPIs of cservers and cinstances (step 9
in Fig. 3). Otherwise, based on the DiD method, FUNNEL
uses historical measurements of KPIs (step 6 in Fig. 3) to
exclude the impact of seasonality (Section 3.2.5), i.e., the
time of day and the day of week effects (step 7 in Fig. 3).

3.1 Impact Set Identification

The effect scopes of different types of software changes are
different: some are local, e.g., a configuration change aimed
at balancing traffic only influences the performance of the
servers where the change is conducted, while others are
global, e.g., an upgrade in an advertising system can have
an impact on almost all types of web-based services. A
false impact scope of a software change may give rise to
delayed detection after a performance degradation or a
large number of false alarms.

Fig. 2. Examples of level shift and ramp up/down.

Fig. 3. FUNNEL design.

1. The threshold for transient changes is subjective in reality. It may
be related to the tolerance level or the sensitivity of the operations
team, or the nature of the web-based services. In this paper, choosing 7
minutes as the threshold for non-transient KPI changes is based on the
experience of the operations team.

ZHANG ET AL.: FUNNEL: ASSESSING SOFTWARE CHANGES IN WEB-BASED SERVICES 37

It is straightforward to identify the impact scope of a soft-
ware change on servers because only the performance of the
servers where the software change is conducted can be
directly affected. Therefore, the impact set of servers con-
sists of tservers, i.e., the servers on which the software
change is deployed. The set of tservers is directly obtained
from the software change logs.

As Fig. 4 shows, for a software change deployed on Ser-
vice A, suppose that Service A has multiple instances
ðA1; A2; . . . ; AnÞ, Service A is related to Service B and Service
D (i.e., Service A send requests and responses to Service B
and Service D, and the relationships among services are
available to the operations team), and Service B is related to
Service C. We refer to service A as the changed service, and
service B, service C and service D as the affected services. For
a specific software change deployed on ðA1; A2; . . . ; AmÞ,
ðA1; A2; . . . ; AmÞ are the tinstances, and Amþ1; . . . ; An are the
cinstances, which are the service A’s instances running on the
servers on which the change is not deployed yet. The impact
set consists of the tinstances, the changed service, and the
affected services. We do not include any instances of the
affected services in the impact set because it is unlikely that
any instance KPI of the affected services is individually
affected for load balancing reason. Instead, they are more
likely to be affected by the same impact. Thus, including
their aggregation, i.e., the affected service KPI in the impact
set, is sufficient for studying the impact of software changes
on the affected services.

Except for the affected services, the elements in the impact
set all belong to one service. The operations team usually do
not deploy two software changes in one service at the same
time based on common practice (to avoid complications).
Therefore, except for the affected services all the elements in
the impact set of a specific software change are not likely to
be impacted by other software changes. For the affected serv-
ices in the impact set, if they are the affected services or the
changed services of other software changes, the operations
team can manually determine the cause of the behavior
changes in the affected serviceswhen the results are delivered
by FUNNEL to them.

In addition, it is possible that two services share the same
network infrastructure, such as TOR, aggregation switch,
access router. However, based on intuition and the opera-
tions team’ experience, even if some two services share the
same network infrastructure, the KPIs of one service is little
impacted by the other service. Therefore, we do not con-
sider the interference of services that share the same net-
work infrastructure.

FUNNEL investigates all the KPIs in the impact set
automatically. A time-series is constructed for each KPI by

dividing the original event series into equal time-bins. One
min is used as the time-bin in FUNNEL since our goal is to
achieve a rapid impact assessment of software changes.

3.2 Change Detection and Determination

For a given time series of KPIs, our mission is to determine
whether behavior changes (level shifts, ramp up/downs)
exist and whether they are caused by software changes. Our
objective is to provide a rapid and robust KPI change detec-
tion and determination tool, which goes beyond traditional
change detection methods that compare means, medians,
distributions, etc., before and after software changes. For
example, the CUSUM approach used in [6] suffers from low
accuracy in the face of KPIs with strong seasonality. In addi-
tion, its long detection delay also makes the CUSUMmethod
unsuitable for our scenario. What’s more, when applying a
simple moving average method to detect the KPI changes
after a software change, we find that if we set the threshold
to be small, there will be too many false positives, while if
we set the threshold to be large, the detection delay will be
too large, and it is hardly possible that we can find a balance.

SST, which is based on SVD, has been shown to be accu-
rate and rapid in performance change detection in other
research fields [10], [11]. SST projects training data into a
normal subspace and finds the difference between the nor-
mal subspace and the data that needs to be tested. However,
SST suffers from low accuracy in the case of normal sub-
space contamination. Since the training data may contain
outliers as a result of previous software changes, network
device breakdowns, network attacks, etc., baseline contami-
nation often occurs in practice. In addition, due to the com-
plexity of SVD, SST suffers from high computational cost.

Our core idea is to improve the robustness and reduce
the computational cost of SST, and then combine the
improved SST with DiD to determine the impact of software
changes. We first provide a brief description of SST’s detec-
tion of performance changes.

3.2.1 SST: Singular Spectrum Transform

SST [11] is based on SVD of the Hankel matrix [20], and its
main idea is to find the difference before and after a point
xðiÞ at time t. Specifically, the algorithm compares a repre-
sentation of the dynamics of a few points before xðiÞ and a
few points after xðiÞ. The difference is normalized by xsðiÞ.

The dynamics of the points before xðiÞ can be denoted by
a Hankel matrix:

BðtÞ ¼ ½qðt� dÞ; . . . ; qðt� 1Þ�; (1)

where qðtÞ ¼ ½xðt� wþ 1Þ; . . . ; xðtÞ�T , andv and d are the size
and the number of the overlappingwindows respectively .

To find the singular values and vectors of the Hankel
Matrix, SVD is used:

BðtÞ ¼ UðtÞSðtÞV ðtÞT ; (2)

where SðtÞ is the singular value matrix and Sði� 1;

i� 1Þ � Sði; iÞ � Sðiþ 1; iþ 1Þ, and UðtÞ and V ðtÞT are uni-
tary matrixes. The columns of UðtÞ are the eigenvectors of

BðtÞBðtÞT . The first h eigenvectors of UðtÞ (UhðtÞ) are used to
denote the past change pattern.

Fig. 4. Example of service relationship.

38 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 11, NO. 1, JANUARY/FEBRUARY 2018

Then, for the future points of xðiÞ, a similar procedure is
used to find the largest change in the dynamics by
concatenating g overlapping windows of size v, starting at
r points after xðiÞ:

AðtÞ ¼ ½rðtþ rÞ; . . . ; rðtþ rþ g � 1Þ�; (3)

where rðtþ rÞ ¼ xðtþ rÞ; . . . ; xðtþ rþ v� 1ÞT .
The eigenvector bðtÞ, which represents the direction of

the maximum change in the future of the time-series, is:

AðtÞAðtÞTur ¼ mug; (4)

bðtÞ ¼ ur
g ; (5)

where g ¼ argmin
i
ðmiÞ.

Then, the projection of bðtÞ onto Uh is used to quantify
the discordance between bðtÞ and Uh:

aðtÞ ¼ UhðtÞTbðtÞ
kUhðtÞTbðtÞk

: (6)

The change score is calculated as the cosine of the angle
between aðtÞ and bðtÞ as:

xsðtÞ ¼ 1� aðtÞTbðtÞ: (7)

The intuition behind the algorithm is that bðtÞ is in or
very near to the direction of the maximum change in the
past denoted by Uh when there is no change in the time-
series.

SST suffers from three problems as follows.

1) Five different parameters (r, g, h, d, v) must be speci-
fied in SST. Domain knowledge can help find proper
values for d and v, but fails in choosing the other
parameters;

2) SST degrades fast in terms of accuracy when the
input time-series includes significant noises [13];

3) SST is based on SVD which suffers from high
computational cost, and thus SST is not computa-
tionally efficient and not suitable for KPI change
detection when the number of KPIs is large [12].

3.2.2 Improving the Robustness of SST

In this section, we describe our approach to addressing the
first two aforementioned problems. Our approach is moti-
vated by the study reported in [13].

As suggested in [12], [13], we set r ¼ 0, g ¼ d, and since a
value of 3 or 4 is suitable for h even when v is on the order
of 100 empirically, we set h ¼ 3.

To estimate the change score around every point and
alleviate the impact of noises in the time series, we attempt
to use more information from the future matrix AðtÞ than

SST does by utilizing the h eigenvectors of AðtÞAðtÞT with
the smallest corresponding eigenvalues (�1:h), rather than
using only the first one.

Based on Eq. (4), the eigenvector biðtÞ is calculated as:

biðtÞ ¼ ug
i ; (8)

where i � h, and �j�1 � �j � �jþ1 for 1 � j � w.

The change score of the point xðiÞ at time t is calculated:

x̂ðtÞ ¼
Ph

i¼1�i � ’iðtÞPh
i¼1�i

; (9)

where

’iðtÞ ¼ 1�
X
j¼1

h

ðbiðtÞuT
j Þ2; (10)

where uj is the column of Uh. As described in [12], Eq. (10) is
consistent with Eq. (7).

To alleviate the effect of noise like spikes induced by
busty workloads [21] on the final change score, we then fil-
ter the sections where the median and the median abso-
lute deviation (MAD) of x̂ðtÞ remain nearly constant. The
intuition behind the filtering step is that the accuracy of
SST is reduced mainly when the noise takes over the
original signal in the time-series. Since the mean and
standard deviation for Gaussian distribution are not very
robust in the presence of large changes or outliers, we
use the median and MAD rather than the mean and stan-
dard deviation [13]. The combination of median and
MAD has been proved to be a more robust approach
even when outliers occur [7]. The change score ~xðtÞ is
then updated:

~xðtÞ ¼ x̂ðtÞ � jmedianaðtÞ �medianbðtÞ j
� j

ffi
MADaðtÞ

p
�

ffi
MADbðtÞ

p
j ;

(11)

where medianaðtÞ and medianbðtÞ are the medians of xðtÞ in
the time-series of length ð2v� 1Þ before and after the point
xðiÞ at time t, respectively, and

MADaðtÞ ¼ medianðxiaðtÞ �medianaðtÞÞ; (12)

where xiaðtÞ is the time-series of length ð2v� 1Þ before xðiÞ
at time t. It is similar toMADbðtÞ.

3.2.3 Reducing the Computational Cost of SST

In addition to the robustness problem, SST also suffers from
high computation cost because of the SVD procedure and
thus its direct deployment in our scenario is not feasible.
This section summarizes the work in [12]. First, we applied
the Implicit Krylov Approximation (IKA) algorithm to
reduce the computation cost for SST. The essence of the IKA
algorithm is matrix compression and implicit inner product
calculation, and the efficiency of the algorithm was demon-
strated in [12].

First, let C ¼ BðtÞBðtÞT , and h < k < v; k 2 N . Since it
is empirically true that the change score is not very sensi-
tive to d [12], we set d ¼ w as the IKA algorithm requires,
and then, we get g ¼ d ¼ v. In addition, suppose that
Tk is a k-dimensional tridiagonal matrix; a1; . . . ; ak and
b1; . . . ; bk�1 are the diagonal and subdiagonal elements of
Tk. At each time t, we first compute biðtÞ, and then run
Lanczos (C;biðtÞ; k) [22] to obtain Tk as Algorithm 1
describes. Using the QL iteration [23], the eigenvectors of
the tridiagnal matrix Tk can be calculated extremely fast.
Based on the h top eigenvectors x1; . . . ; xl of Tk, we can
obtain ’iðtÞ as:

ZHANG ET AL.: FUNNEL: ASSESSING SOFTWARE CHANGES IN WEB-BASED SERVICES 39

’iðtÞ ’ 1�
X
j¼1

h

xj
2: (13)

Then the change score can be calculated by Eqs. (9) and (11).

Algorithm 1. Lanczos(C; biðtÞ; k)
Input:

C 2 Rv�v

biðtÞ 2 Rv

h < k < v; k 2 N
1: r0 ¼ biðtÞ; b0 ¼ 1; q0 ¼ 0; s ¼ 0.
2: while s < k do
3: qsþ1 ¼ rs=bs;
4: s ! sþ 1;
5: as ¼ qTs Cqs;
6: rs ¼ Cqs � asqs � bs�1qs�1;
7: bs ¼ krsk;
8: end while
9: return fa1; . . . ; akg and fb1; . . . ; bk�1g
Output:

Tk

Based on [12], the dimension of the Krylov subspace k
can be set as:

k ¼ 2h; h 2 even
2h� 1; h 2 odd:

�
(14)

For a service that needs quick mitigation on false soft-
ware changes, v can be set to a small value such as 5. For a
service that needs more precise assessment of software
changes, v can be set to a lager value such as 15.

3.2.4 Excluding Other Reasons for Non-Affected-

Service KPIs in Dark Launching

In addition to software changes, the KPI changes can also be
induced by other factors including seasonality, network
attacks, etc. The impact of these factors can over-shadow
the impact assessment of software changes.

To solve this problem, motivated by [14], [24], [25], we
apply a split testing method to compare the relative perfor-
mance of the treated group (KPIs of servers/services/
instances in the impact set) and the control group (KPIs of
cservers/cinstances). The intuition behind the comparison is
that other factors except software changes influence both
the treated group and the control group.

Treated group and control group. In Dark Launching, the
operations team first deploys the software change on a sub-
set of servers and instances, and then, rolls it out to all serv-
ers and instances that belong to the same service. It is
straightforward to identify the control group and the
treated group of servers based on the software change logs.
The KPIs of tservers constitute the treated group of servers,
while the KPIs of cservers, i.e., servers that belong to the
same service as tservers but without software changes, con-
stitute the control group of servers. Since the KPI of the
changed service is an aggregation of the KPIs of the tinstances,
determining the relative performance of the tinstances is suf-
ficient: if no performance changes in tinstances are caused
by software changes, it is not necessary to study the impact
on the changed service. Therefore, the treated group of service

consists of the KPIs of tinstances, while the control group of
services is constituted of KPIs of cinstances, i.e., instances
that belong to the same service as tinstances but without soft-
ware changes. This is based on the four following observa-
tions about web-based services.

1) Instances and servers that belong to the same service
exhibit high-level spatial correlation or statistic
dependency because of the similarity in traffic load,
memory usage, etc., thanks to load balancing;

2) It is very likely that any non-software change factors
will introduce similar performance impact on all
servers and instances of the same service;

3) A performance change induced by the software
change introduces a relative difference in performance
between the treated group and the control group;

4) As studied in [26], [27], only a small fraction (less
than 3 percent) of edge links are hotspots in datacen-
ter networks. In other words, a small fraction of serv-
ers are hotspots. Even though there are KPIs of
hotspot servers in the control group, most of the
KPIs in the control group are not of hotspot servers.
We use the average of all of the KPIs in the control
group to eliminate performance changes caused by
other factors, and the large number of KPIs in the
control group can alleviate the impact of hotspots.

The operation team’s commonpractice is not to deploy two
software changes in a specific service at the same time. Fur-
thermore, the KPIs of a specific control group all belong to a
specific service. Therefore, KPIs in the control group are very
unlikely to be impacted by some other software changes.

For each affected service, if it is influenced by software
changes, all of its instances will be affected. Therefore,
there are no cinstances for affected services. We exclude the
“Full Launchin” and other reasons for affected services in
Section 3.2.5.

DiD method. DiD is one of the most popular tools in
econometrics [16] and health care [17] for evaluating the
effects of interventions that are instituted at a particular
point in time. In this study, DiD is used to compare changes
over time in the treated group with those over time in the
control group, and to attribute the difference-in-differences
to the effects of software changes. DiD is based on the
assumption that, in the absence of software changes, the dif-
ference between the average KPIs for the treated group and
those for the control group remains stable over time.
Although [14] argued that DiD suffered from low accuracy
in impact assessment of changes in cellular networks, it
turns out to perform quite well in our scenario because the
treated group and the control group exactly follow the
above assumption.

The basic DiD framework can be described as follows.
Let Y ði; tÞ be the KPI i at time t. The performance is
observed in a pre-software-change period t ¼ 0, with length
v as described in Section 3.2.1, and in a post-software-
change period t ¼ 1 with length v. Some fraction of KPIs
are exposed to the software change between these two peri-
ods. If KPI i has been exposed to the software change prior
to period t, then Dði; tÞ ¼ 1, and Dði; tÞ ¼ 0 otherwise. In
other words, those KPIs with Dði; 1Þ ¼ 1 are in the treated
group, and those KPIs with Dði; 1Þ ¼ 0 are in the control

40 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 11, NO. 1, JANUARY/FEBRUARY 2018

group. Obviously, Dði; 0Þ ¼ 0 for all i, because the KPIs are
exposed to the software change only after the first period.

To obtain the standard errors and significance levels for
the DiD estimator, a linear parametric model is used [15]:

Y ði; tÞ ¼ uðtÞ þ a �Dði; tÞ þ �ðiÞ þ yði; tÞ; (15)

where uðtÞ is a time-specific parameter, a denotes the impact
of software changes, and �ðiÞ is an KPI-specific parameter.
yði; tÞ is a transient shock at each period, i.e., t ¼ 0; 1, with
mean zero. A sufficient condition for determination using
DiD is P ðDði; 1Þ ¼ 1jyði; tÞÞ ¼ P ðDði; 1Þ ¼ 1Þ.

Then, the impact estimator of software change, a, is:

a ¼ fE½Y ði; 1ÞjDði; 1Þ ¼ 1� � E½Y ði; 1ÞjDði; 1Þ ¼ 0�g
�fE½Y ði; 0ÞjDði; 1Þ ¼ 1� � E½Y ði; 0ÞjDði; 1Þ ¼ 0�g ; (16)

where Eð�Þ denotes the expectation.
If the KPI changes are caused by factors excluding soft-

ware changes, then there is no change in the relative perfor-
mance between the treated group and the control group,
thus the DiD impact estimator, a, should be near zero.
Therefore, if a � 0, we consider that the performance
changes are not induced by software changes. If a 	 0 or
a
 0, then we consider that there is a relative increase or
decrease in the treated group as compared to the control
group, and the likelihood that the performance changes are
caused by a software change is high.

Empirically, for a service which is sensitive to KPI
change, such as advertisement, online shopping, the thresh-
old of a can be set to a small value like 0.5. Otherwise, the
threshold can be set larger.

3.2.5 Excluding Other Reasons for Related Services

and Full Launching Manner

For affected services, there are no cservers or cinstances. More-
over, if the operations team deploys software changes on all
servers at one time (i.e., Full Launching), the control group
is also empty. In addition to software changes, seasonality
may also give rise to KPI changes [7], [14], [28]. Thus, we
need to exclude KPI changes induced by seasonality. For a
specific KPI of servers/services/instances in the impact set,
FUNNEL compares the measurements of KPI around the
software change and the KPI measurements in the same
period of day but on historical days, since seasonality
impacts the KPI measurements around the software change
and the historical KPI measurements similarly.

Treated group and control group. For a given KPI of a
server/service/instance in the impact set, the treated group
consists of the measurements of KPIs around the software
change, while the control group consists of the historical
measurements of KPIs. Specifically, to exclude the perfor-
mance changes due to the time-of-day or day-of-week pat-
tern and exclude the influence of baseline contamination,
we use the measurements of KPIs of 30 days before the
day of the software change to construct the control group.
This is based on the observation that there is almost no
relative performance change between the control group
and the treated group if the performance change is
induced by seasonality.

FUNNEL also applies DiDmethod to compare the relative
performance between the control group and the treated
group. Specifically, t ¼ 0 for a pre-software-change period of
length v as described in Section 3.2.1 in the treated group,
and for the same period of day but on historical days in
the control group. Similarly, t ¼ 1 denotes a post-software-
change period, of lengthv, in the treated group, and the same
period of day but on historical days in the control group.

4 FUNNEL EVALUATION

In this section, we evaluate FUNNEL’s performance. We
compare FUNNEL with other software change assessment
methods including CUSUM [6] and MRLS [7] that have pre-
viously been deployed for upgrade assessment in the net-
work infrastructure. We implemented FUNNEL, CUSUM,
and MRLS with C++. We use the software change and KPI
data from a few real-world Web-based services offered by a
top global search engine. The evaluation using real-world
data is challenging because of the lack of a ground truth [14].
We used manual assessment results by the operations team
as our ground truth for evaluation.

The focus of FUNNEL is to detect KPI behavior changes
in a rapid and robust way, which is achieved by the
improved SST. The introduction of DiD method helps to
determine whether the KPI changes are caused by software
changes, by comparing the performance between the con-
trol/treated group. We decided not to compare FUNNEL
with Litmus because the robust regression approach in Lit-
mus [14] is mainly used for inferring the relative perfor-
mance change between the treated and the control group,
and the comparison adds no additional value.

Our results in this section show FUNNEL performs sig-
nificantly better than CUSUM and MRLS in accuracy, detec-
tion delay, and computational cost.

4.1 Data Sets

In cooperation with the operations team, we randomly
picked 19 moderate-sized services (the manual assessment
efforts for large services would be prohibitive) over a 2-day
period, then we got 6,277 software changes in total. We ran
the algorithm in Section 3.1 to identify the impact set, and
collected the KPI measurements of tservers/tinstances/changed
services/affected services and the KPI measurements of cser-
vers/cinstances. Note that running this algorithm is equally
beneficial to FUNNEL, CUSUM and MRLS, and is not
biased towards FUNNEL. The details of manual inspection
are as follows. For a given software change, first we aggre-
gated the KPIs of tinstances/tservers by calculating the aver-
age measurements of tinstances/tservers. The operations
team then manually inspected whether behavior changes
occurred in the KPIs of the changed service, the affected serv-
ices, and the aggregation KPIs of the tinstances and the tser-
vers around the time of the software change. The operations
team found that in total 83 software changes had behavior
changes in the KPIs of changed service/affected service or
aggregation KPIs of tservers/tinstances shortly after each of
these software changes. For each behavior change, the oper-
ations team then manually inspected the control group and
determined whether it is actually caused by software
change. Eventually, the operations team selected 72 out of

ZHANG ET AL.: FUNNEL: ASSESSING SOFTWARE CHANGES IN WEB-BASED SERVICES 41

6,277 software changes that induced KPI changes. We
admit that behavior changes could occur in one or more
individual KPIs of the tservers/tinstances in the 6,194 (6,277
- 83) software changes. However, manually inspecting all
the KPIs of the 6,194 software changes, i.e., about 600
thousands KPIs, is a huge amount of work. Alternatively,
we randomly selected 72 out of the remaining 6,194 soft-
ware changes. For all selected 72 software changes, the
operations team manually carried out the investigation,
and found that there were no KPI changes induced by the
software changes. We use the 72 software changes that
induced changes in KPIs and the 72 selected software
changes that did not for the evaluation, and the manual
assessment results of the 144 (72 þ 72) software changes
served as the ground truth.

The data used in our evaluation exhibited different char-
acteristics including seasonality, variability, stationarity,
and different levels of baseline contaminations, which pro-
vided a relatively exhaustive validation.

Generally, the CPU context switch count of servers varies
frequently, while the memory utilization remains station-
ary. In addition, both the CPU context switch count and the
memory utilization indicate the health status of servers.
Specifically, the CPU context switch count indicates the
computational efficiency and the number of threads after
software changes, while the memory utilization indicates
whether a software change introduces memory leaking.
Thus we used the CPU context switch count and the mem-
ory utilization as the KPIs of all the servers in the evalua-
tion. The KPIs of a given service/instance are defined by the
operations team and they differ from one service/instance to
another service/instance.

We collectively refer to the combination ðSi; ci; kiÞ as an
item, where Si denotes a software change, ci is a server, ser-
vice, or instance in the impact set, and ki is a KPI of ci.

A total of 9,982 items were included in the evaluation, to
which 144 software changes (described earlier in this sec-
tion), and 931 servers were related. More specifically, the ki
of 931, 931, 8,120 items were CPU context switch count,
memory utilization, KPIs of services/instances, respectively.
In addition, based on the operations team’s assessment,
there were 968 items that had been labelled as having perfor-
mance changes introduced by software changes in the
72 software changes that induced behavior changes.

To show that the software changes we selected were rep-
resentative, we collected all software changes on all services
in the studied company in the same two days period, i.e.,
23,873 software changes, and analyzed whether the distri-
bution of the item number of the 23,873 software changes
were consistent with that of the item number of the studied
144 software changes used in the evaluation. Similarly, we
apply the CPU context switch count and the memory utili-
zation as the KPI of each server, and the KPI of each instance
is predefined by the operations team. Fig. 5 shows the
cumulative distribution functions (CDFs) of the number of
items of each software change in the 23,873 software changes
and each of the 144 software changes used in the evaluation.
We also present the CDFs of the number of servers/instances
of the two sets of software changes. We observe that the set
of the software changes for the evaluation is consistent with
the overall data set for the two day period.

Based on empirical experience, if a software change in
an web-based service has a negative impact, the KPIs usu-
ally change shortly after the software change. The opera-
tions team think that 1 hour is enough for software change
assessment. Among the 144 software changes, 108 were
deployed with Dark Launching, while the remaining 26
were not. If a software change was conducted with Dark
Launching, and the KPIs were not of affected services, we
will construct the treated group using the KPIs of tservers/
tinstances 1 h before and after the software change, and
construct the control group using the KPIs of cservers/cin-
stances in the same period. Otherwise, the treated group
will consist of the measurements of KPIs 1 h before and
after the software change, and the control group will con-
sist of the measurements of KPIs in the same period but on
historical days (30 days).

We constructed a time-series, xð1Þ; xð2Þ; . . . ; xðnÞ, for
each item by dividing the original measurements of KPIs
into equal time-bins of 1 min. Each method took a time win-
dow of xðiÞ; xðiþ 1Þ; . . . ; xðiþW Þ as its input to construct a
matrix (FUNNEL, MRLS) or calculate a cumulative sum
(CUSUM). For a fair comparison of the accuracy among
FUNNEL, CUSUM and MRLS, the length of the sliding
input time window W for each method was set as the one
that achieved the best accuracy (WFUNNEL ¼ 34 (i.e., v in
Section 3.2.3 is set 9), WMRLS ¼ 32;WCUSUM ¼ 60 in our
scenario). The time window moves forward every minute.
For example, FUNNEL first detects and determines perfor-
mance changes for xð1Þ; xð2Þ; . . . ; xð34Þ, and then for xð2Þ;
xð3Þ; . . . ; xð35Þ, etc. Note that the values of other parameters
of CUSUM,MRLS and FUNNEL (a) are also set to the best for
the corresponding algorithm’s accuracy.Webelieve the above
method draws the same conclusion as themethod that chang-
ing the value of the parameters, calculating the accuracies and
plotting the receiver operating characteristic (ROC) curves.

Empirically we set a threshold of 7 minutes in FUNNEL
to declare a change in a time series as a level-shift or ramp-
up/down rather than a one-off event.

4.2 Comparison of Accuracy

We now compare the accuracy of FUNNEL, the improved
SST without DiD, CUSUM, and MRLS. For each item, based
on the ground truth provided by the operations team, we
knew the outcome - either having the KPI changes induced
by software changes or not. For each method, we labelled
its outcome as true positive (TP), true negative (TN), false
positive (FP), and false negative (FN). True positives were

Fig. 5. CDFs of the number of servers/instances and items of each
software change.

42 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 11, NO. 1, JANUARY/FEBRUARY 2018

items with KPI changes caused by software changes that
were accurately determined as such by the method, and
true negatives were items that were accurately determined
as having no KPI changes induced by software changes. If
the method determined a KPI change caused by a software
change while there was no KPI change or the KPI change
was not induced by a software change, we then labelled the
item as a false positive. False negatives were KPI changes
induced by a software change that were incorrectly missed
by the method. We calculated Precision, Recall, true nega-
tive rate (TNR), and Accuracy as: Precision ¼ TP

TPþFP , Recall

¼ TP
TPþFN, TNR ¼ TN

TNþFP , Accuracy ¼ TPþTN
TPþTNþFPþFN [14].

4.2.1 Comparison Results

For each software change and each method, we calculated
the Accuracy, and Fig. 6 shows the CDFs of the Accuracy
across different software changes of the 72 software changes
that induced performance changes as well as the 72 ones
that did not. The improved SST only improved robustness
for SST, and even though it had a small number of false
negatives in the software changes assessment, just like
CUSUM, it failed to exclude the KPI changes induced by
other reasons, i.e., seasonality, thus the improved SST had
relatively low Accuracy. With the introduction of DiD
method to eliminate KPI changes caused by other factors,
FUNNEL achieved fewer false positives and higher Accu-
racy. Because MRLS was designed to detect KPI changes
that included spikes that we did not care about in our

scenario, and variable KPIs occupied a large portion of all
KPIs, MRLS performed poorly in Accuracy.

Based on the characteristics of KPIs, the 9,982 items were
divided into three types: seasonal, stationary, and vari-
able [7]. It is clear that the items with CPU context switch
count were variable, and the items with memory utilization
were stationary. If the KPI of a given item has strong season-
ality, then the item is seasonal. Similarly, the item with KPI
of strong variability is variable, and the rest are stationary.
For items of service, 705 items were seasonal, 2,702 items
were stationary, and 4,713 itemswere variable.

To examine the performance of FUNNEL in handling
seasonal and variable KPIs, we reorganized the above KPI
items based on the KPI types, and then compared different
methods. For each method, we multiplied the TPs, TNs,
FPs, and FNs of the 72 software changes that did not intro-
duce behavior changes with 86 (6,194/72), and added the
result to the TPs, TNs, FPs, and FNs of the 72 software
changes which induced KPI changes. We believe that this
provides a reasonable approximation of real TPs, TNs, FPs,
and FNs. Eventually, we calculated the accuracy, recall,
precision and TNR based on the synthetic true positives,
true negatives, false positives, and false negatives. Table 1
shows the aggregated results for each method and each
KPI type. FUNNEL performed the best across all three
kinds of KPIs. The improved SST, CUSUM and MRLS per-
formed well in the face of stationary KPIs. However,
because CUSUM and the improved SST failed to exclude
the impact of seasonality, they detected performance
changes induced by software changes with low accuracy
when the KPIs had strong seasonality. MRLS was sensitive
to spikes, and it was hardly feasible to modify MRLS to
detect level shifts or ramp up/downs only. Thus a large
portion of the items with variable KPIs were incorrectly
determined as having KPI changes.

4.3 Comparison of Computational Cost

Since millions of KPIs should be monitored to determine
whether they are impacted by software changes, it is impor-
tant that the computational cost of the impact assessment
be relatively low for the sake of scalability and deployabil-
ity. In this section, we compare the computational cost of
FUNNEL, CUSUM, and MRLS.

Fig. 6. CDFs of the precision, recall, TNR and accuracy of each software
change.

TABLE 1
The Precision, Recall, TNR and Accuracy of Seasonal, Stationary and Variable

Data for FUNNEL, Improved SST, CUSUM and MRLS

Algorithm Type Total Precision Recall TNR Accuracy

FUNNEL
Seasonal 28,500 98.28% 100.00% 100.00% 100.00%
Stationary 129,943 100.00% 100.00% 100.00% 100.00%
Variable 215,339 68.47% 99.48% 99.88% 99.88%

Improved SST
Seasonal 28,500 1.10% 100.00% 81.93% 81.96%
Stationary 129,943 14.28% 100.00% 98.44% 98.44%
Variable 215,339 15.04% 99.48% 98.50% 98.50%

CUSUM
Seasonal 28,500 0.76% 84.21% 77.97% 77.98%
Stationary 129,943 10.34% 98.52% 97.78% 97.78%
Variable 215,339 17.92% 96.34% 98.82% 98.81%

MRLS
Seasonal 28,500 100.00% 87.72% 100.00% 99.98%
Stationary 129,943 9.23% 97.33% 97.51% 97.51%
Variable 215,339 0.61% 97.04% 57.85% 57.95%

ZHANG ET AL.: FUNNEL: ASSESSING SOFTWARE CHANGES IN WEB-BASED SERVICES 43

Motivated by the evaluation method presented in [29], all
three methods were deployed on the same server (CPU
information: 12 Intel(R) Xeon(R) CPU E5645 @ 2.40 GHz)
with a single thread. The CPU utilization remained 100 per-
cent while the process of each method was running so that
we could use the total time to evaluate complexity [29].

Table 2 shows the average computational time taken by
FUNNEL, CUSUM and MRLS to detect the KPI changes in
a single time window. With the introduction of matrix com-
pression and implicit inner product calculation, FUNNEL
was highly computational efficient. Specifically, compared
with MRLS, FUNNEL was more than 7,000 times faster in
computational speed. Moreover, FUNNEL reduced 77.42
percent of computational cost as compared to CUSUM.
Suppose that one million KPIs need to be monitored
and determined for the impact assessment of software
changes, the KPIs are collected and detected every min-
ute, and the implementation runs on the same types of
CPU. As the last row in Table 2 shows, if we apply MRLS
as the software change assessment method, we need at
least 47,526 cores, i.e., 3,960 servers if each server has 12
cores. CUSUM needs 31 cores and 3 servers. However,
with FUNNEL, one server is fully capable of detecting
and determining all one million KPIs. FUNNEL is thus
quite competent to assess the impact of software changes
online in large web-based services.

4.4 Comparison of Detection Delay

When detecting level shifts, and ramp up/downs, all detec-
tion methods need some data points (thus time) to finish.
However, rapid detection of performance changes and
determination of software change impacts is quite necessary
for timely damage mitigation for web-based services. In this
section, we compare the detection delay of different meth-
ods and show that FUNNEL has a much lower detection
delay, thanks to the use of SST.

For each item, the operations team labelled the start of
KPI changes (if any, as shown in Fig. 2), which served as the
ground truth information for comparing different methods.
We defined the detection delay as the time between the start
of a KPI change and its detection by a method. Suppose that
a method correctly detects and determines a KPI change
first when the input time window is xðiþ 1Þ; xðiþ 2Þ; . . . ;
xðcÞ; . . . ; xðiþ wÞ, and the KPI change starts at time c, then
the detection delay is ðw� cÞ minute. Note that the detec-
tion delay defined above does not include the delay due to
the computational cost (previously evaluated separately in
Section 4.3). During evaluation, each method is given suffi-
cient CPU power to finish processing one-window’s worth
of data within one time window.

Fig. 7 shows the Complementary Cumulative Distribu-
tion Functions (CCDFs) for the detection delay of FUNNEL,
CUSUM, and MRLS. The median delays were MMRLS ¼
21:3 min, MFUNNEL ¼ 13:2 min, and MCUSUM ¼ 37:7 min.

FUNNEL reduced 38.02 percent of detection delay com-
pared with MRLS, and 64.99 percent for CUSUM.

As aforementioned, in FUNNEL we set a threshold of 7
minutes to declare a change in a time series as a level-shift
or ramp-up/down rather than a one-off event. Occasionally,
MRLS can detect a level shift within 7 minutes, at the cost of
much more false positives. In these cases, FUNNEL is
slower than MRLS as shown in the top left corner of Fig. 7

The distribution of the detection delay for FUNNEL
was more concentrated and the longest detection delay of
FUNNEL was much shorter than that of CUSUM and
MRLS. This gives FUNNEL a very significant advantage,
because a software change may introduce a great loss
due to impairment if an unexpected impact of a software
change causes poor user experience or degraded advertis-
ing income and is detected only after a long delay. Thus, in
terms of detection delay, overall FUNNEL is more suitable
than CUSUM and MRLS for online impact assessment of
software changes in large web-based services.

5 OPERATIONAL EXPERIENCE

We deploy the multi-threaded FUNNEL prototype on one
server with a 12-core Intel(R) Xeon(R) CPU E5645 @ 2.40
GHz. FUNNEL assesses the software changes of a few doz-
ens of services offered by the search engine company.
Table 3 shows some daily statistics for a specific one-week
period which we studied in details in this section.

Ideally, we would like to measure the Accuracy, Preci-
sion, Recall and TNR as in Section 4.2 for this one-week
period. However, it is prohibitive for the operations team to
label more than 2 million KPIs of all services daily. There-
fore, we made a compromise, and only asked operations
team to verify the KPI changes detected by FUNNEL
(10 thousands per day, fourth column in Table 3). This
allows us to calculate Precision ¼ TP

TPþFP , which is shown in
the last column in Table 3.

Based on the operational experience of FUNNEL deploy-
ment, we show four representative cases. We applied the
FUNNEL’s prototype to validate expected performance
changes that were direct outcomes of configuration changes
in the first two cases, and to detect unexpected performance
changes induced by software upgrades in the last two. The

TABLE 2
Comparison of Computational Time

Method FUNNEL CUSUM MRLS

Run time per time window 401.8 ms 1.846 ms 2.852 s
Cores for one million KPIs 7 31 47,526

Fig. 7. CCDFs of detection delay.

TABLE 3
Statistics About the Implementation of FUNNEL

#software
changes

software
changes that
have impact

#KPIs
#KPI

changes Precision

24,119 268 2,256,390 10,249 98.21%

44 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 11, NO. 1, JANUARY/FEBRUARY 2018

cases show that FUNNEL assesses software changes rapidly
(Sections 5.2 and 5.3) and accurately even in the face of vari-
able (Sections 5.1) and seasonal (Sections 5.4) KPIs.

5.1 Robustness to Variable KPIs

Redis is an advanced data structure store which is used as
database, cache and message broker [30]. After a configura-
tion change in the Redis query service, FUNNEL deter-
mined that 16 out of 118 KPIs in the impact set had
behavior changes which were caused by this configuration
change. More specifically, FUNNEL found that immediately
after the configuration change, some Redis servers (class A
Redis servers) witnessed a negative level shift in NIC
throughput as Fig. 8a shows, while in the NIC throughput
of other Redis servers (class B Redis servers) a positive level
shift occurred, as shown in Fig. 8b.

The operations team verified that the configuration
change was aimed at load balancing and achieved the
expected result. Specifically, the Redis query tasks were
assigned to class A Redis servers first. Unless the class A
Redis servers reached the limit of NIC bandwidth capacity,
the query tasks would not be allocated to class B Redis serv-
ers. This led to a situation where the NICs of class A Redis
servers were always busy, while the utilization of theNICs of
class B servers was low, which degraded the performance of
the Redis query service and shortened the life of NICs in class
A Redis servers. The operations team launched a configura-
tion change to balance the traffic between class A and class B
Redis servers. As Fig. 8 shows, the configuration change suc-
cessfully balanced the traffic and had the expected effect.

This case study shows that, although the NIC throughput
had strong variability by its nature, FUNNEL still success-
fully detected and determined the KPI changes induced by
the configuration change, demonstrating FUNNEL’s capa-
bility to handle variable KPIs.

5.2 Rapid Detection of Expected KPI Changes

In the second case, we present the performance of FUNNEL
in assessing a configuration change in the operational
metadata acquisition service. During the deployment of
the FUNNEL’s prototype, there occurred a configuration
change in the operational meta-data acquisition service,
after which FUNNEL identified that there were 44 KPIs in
the impact set, and determined that the configuration
change induced behavior changes in 14 KPIs.

More specifically, FUNNEL detected KPI changes in the
CPU context switch count on servers where the configura-
tion change was deployed, as Fig. 9a shows, as well as the
KPI changes in the query response delay, as Fig. 9b shows.

We delivered the assessment result to the operations
team, and they verified that the result was as expected. Spe-
cifically, the operational metadata acquisition service pro-
vides a query tool that enables the employees in the
company to query the status of any server or service.
The operations team carefully monitors the performance of
the service, and if a performance degradation occurs in the
service, the operators will mitigate it as soon as possible.
The query tool used to deliver the parameters to the opera-
tional metadatan database by using a single thread .But this
caused frequent timeouts after the deployment of the query
tool thus the operations team found that the majority of
delays were induced by this single thread configuration.
Therefore, the operations team launched a new configura-
tion change that would make the query tool multi-threaded,
which naturally caused the symptoms in Fig. 9.

The KPI changeswere detected and determined 7minutes
after the configuration change, showing that FUNNEL is
capable of online impact assessment of software changes.

5.3 Rapid Detection of Unexpected KPI Changes

To see how FUNNEL speeds up the detections of unex-
pected behavior changes, we randomly picked a small frac-
tion of software changes for which FUNNEL does not
directly deliver the detection results to the operations team.
Instead, the operations team independently assess software
changes without the help of FUNNEL. In the below case,
we compare the speed of FUNNEL and manual inspection,
and demonstrate the performance of FUNNEL in detecting
unexpected performance changes

During the deployment of FUNNEL, the operations teams
made a software upgrade aimed at improving the perfor-
mance of the advertising system. Advertising system is a
very large and complex system [4], and in fact 36,752 KPIs are
included in the impact set in the software upgrade according
to FUNNEL. Manually investigating this upgrade’s impact is
infeasible. 10 minutes after the software upgrade, FUNNEL
detected 1,141 KPI changes induced by the software upgrade.
More specifically, as Fig. 10 shows, the normalized ratio of
clicks on advertisements considered as cheats, i.e., clicks on

Fig. 8. KPI changes induced by a configuration change in the Redis
query service.

Fig. 9. KPI change induced by a configuration change in server/service
status acquisition service.

ZHANG ET AL.: FUNNEL: ASSESSING SOFTWARE CHANGES IN WEB-BASED SERVICES 45

advertisements that are not considered as human behavior by
the anti-cheating system, increased dramatically immedi-
ately after the software upgradewas conducted.

Without using FUNNEL, the operations team indepen-
dently found the performance change after 1.5 h and then
quickly fixed the issue. The operations team confirmed that
the occurrence of the unexpected behavior changes due to
the software upgrade was a real significant incident. It was
later carefully investigated. Specifically, the anti-cheating
service injects a check program, which is implemented with
JSON, into every advertisement to determine whether a
click on the advertisement is performed by a human or is a
cheat executed by an automated program. However, the
software upgrade failed to load the JSON program on the
iPhone browsers, i.e., the check program was not effective
for iPhone users. Therefore, all clicks on the advertisements
by iPhone users were considered as cheats, which resulted
in the decline in advertising revenue. The number of cheat-
ing clicks monitored by the anti-cheating service returned
to the normal level after the operations team had remedied
the situation, and thus, a negative level shift occurred 1.5 h
after the software upgrade.

Had the operations team used FUNNEL to assess the
impact of the erroneous software upgrade, they could have
much more timely mitigated the loss caused by the software
upgrade.

5.4 Robustness to Seasonal KPIs

In the last case, we show how FUNNEL performs in the face
of seasonal KPIs. With rapid development of the Internet,
online shopping has witnessed an explosive growth. The
stability of the online shopping service is of vital importance
to guarantee user experience and service income. When the
service is upgraded, the operations team carefully inspects
the KPIs that maybe indicative of performance impairment
or software bugs. Such KPIs should be detected rapidly for
timely mitigation. However, given the large number of KPIs
in the online shopping service (tens of thousands of KPIs
should be monitored), it becomes incredibly challenging to
identify the impact of software upgrades manually. We
applied FUNNEL to detect and determine KPI changes after
a software upgrade in the online shopping service.

As is in Section 5.3, FUNNEL did not deliver the results
to the operations team at first, and the operations team
assessed the software upgrade independently. FUNNEL
detected several KPI changes and determined that these
KPI changes were caused by the software upgrade about 8
minutes after the upgrade. Concretely, the software
upgrade tried to merge multiple mget requests [30] (a
command used to query data from Redis server) into one

mget request, which however, degraded the performance
of Redis proxy in handling mget requests. The computa-
tional resources of Redis servers were then exhausted, and
a large number of web page view timeouts and failures
occurred. As a consequence, the shopping online service
witnessed a degradation in the number of successful
orders and in the income. The operations team detected
the unexpected performance changes and correlated them
to the software upgrade about half an hour after the soft-
ware upgrade.

Fig. 11 shows the normalized number of successful
orders of the shopping service, and FUNNEL detected a
negative level shift in the KPI, and determined that the
behavior changes were caused by the software upgrade.
The KPIs had strong seasonality, but FUNNEL still accu-
rately assessed the impact of the software upgrade, which
demonstrated that FUNNEL performed extremely well
even in the face of seasonal KPIs.

6 RELATED WORK

The impact of software changes has attracted considerable
attention in recent years [6], [7], [14], [31], [32], [33].
Mahimkar et al. [6] developed MERCURY to detect the per-
formance impact of upgrades in large operational networks.
MERCURY uses the CUSUM method to detect behavior
changes in KPIs, and applies statistical rule mining and net-
work configuration to identify commonality across the
behavior changes. PRISM [7] is developed to reduce the
detection delay between the behavior change and the detec-
tion. The MRLS method was developed in PRISM to rapidly
and robustly detect maintenance-induced behavior changes.
However, the MRLS method suffers from high computa-
tional cost, and thus is not appropriate in our scenario. Lit-
mus was developed to address the assessment of changes in
cellular networks where external factors may over-shadow
the assessment [14]. Litmus applies a spatial regression algo-
rithm for the comparison of the treated and the control group.

The detection of behavior changes has a very rich litera-
ture. In [34], Principal Component Analysis (PCA) was
applied for anomaly detection in network. Yamada et al.
proposed a change point detection method, additive Hil-
bert-Schmidt Independence Criterion (aHSIC), which was
based on supervised learning, and used the weighted
sum of the SIC scores for incorporating feature selec-
tion [29]. To detect changes in seasonal time-series,

Fig. 10. The normalized ratio of clicks on advertisements considered as
cheats.

Fig. 11. The normalized number of successful orders.

46 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 11, NO. 1, JANUARY/FEBRUARY 2018

Chef et al. applied a time series decomposition based
method, week-over-week [28].

Split testing, also known as the control/treament test, has
been widely studied in the fields of econometrics [15], [16],
health care [17], and web domains [24], [25]. Web users
were exposed to either the treated group or the control
group in the study reported in [24], [25]. To analyze the
impact of the treatment, the authors recorded the interac-
tions of users and compared the metrics of the treated and
the control group. Stuart et al. [17] applied propensity
scores to address the disadvantage of the DiD algorithm
when the compositions of the control group and the treated
group change over time. However, in our scenario, the com-
positions of the control and the treated group remain
unchanged over time. That is, it is not necessary to intro-
duce propensity scores in FUNNEL.

7 CONCLUSION

Wedesigned and implemented a new tool, FUNNEL, for rap-
idly and robustly assessing the impact of software changes in
large web-based services. For each software change, FUN-
NEL analyzes all the services, processes, and servers that
may be influenced and automatically constructs the impact
set. FUNNEL then detects performance changes in the
impact set rapidly and robustly by improving the robustness
and reducing the computational cost of SST, and determines
performance changes induced by software changes using a
DiD method. We evaluated FUNNEL by comparing it with
CUSUM and MRLS using 144 software changes and showed
that FUNNEL achieved high accuracy with short detection
delay and low computational cost. Operational experiences
of FUNNEL deployment show that FUNNEL can assess the
impact of software changes rapidly and robustly in the face
of seasonary and variable data. Compared to manual efforts,
in one specific case FUNNEL shortens the assessment from
1.5 hours to 10minutes, saving both time andmoney.

ACKNOWLEDGMENTS

The authors are grateful to Bo Wang, Bolin Yang, Wenhui
Xie, Ming Hua, Wei Huang, Xiaoguang Miao, and Jiantao
Chi, for their invaluable help at various stages of this proj-
ect. They strongly appreciate Yosef Azzabi, Dapeng Liu,
Juexing Liao, Beibei Miao, Yongqian Sun, and Xiaohui Nie
for their helpful suggestions and elaborative proofreading.
The work was supported by National Natural Science Foun-
dation of China (NSFC) under Grant Nos. 61472214 and
61402257, the National Key Basic Research Program of
China (973 program) under Grant No. 2013CB329105, the
Tsinghua University Self-determined Project under Grant
No. 2014z21051, the State Key Program of National Science
of China under Grant No. 61233007, the National Natural
Science Foundation of China under Grant No. 61472210, the
National High Technology Development Program of China
(863 program) under Grant No. 2013AA013302.

REFERENCES

[1] (2014). Back up and running [Online]. Available: https://blogs.
dropbox.com/dropbox/2014/01/back-up-and-running/

[2] (2012). Google apps incident report, gmail partial outage
[Online]. Available: http://www.google.com/appsstatus/ir/
plibxfjh8whr44h.pdf

[3] (2008). Facebook chat [Online]. Available: https://www.facebook.
com/note.php?note_id=14218138919

[4] R. Bhagwan, R. Kumar, R. Ramjee, G. Varghese, S. Mohapatra,
H. Manoharan, and P. Shah, “Adtributor: Revenue debugging in
advertising systems,” in Proc. 11th USENIX Conf. Netw. Syst. Des.
Implementation, Apr. 2014, pp. 43–55.

[5] C. Luo, J.-G. Lou, Q. Lin, Q. Fu, R. Ding, D. Zhang, and Z. Wang,
“Correlating events with time series for incident diagnosis,” in
Proc. 20th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
New York, NY, USA, Aug. 2014, pp. 1583–1592.

[6] A. Mahimkar, H. H. Song, Z. Ge, A. Shaikh, J. Wang, J. Yates,
Y. Zhang, and J. Emmons, “Detecting the performance impact of
upgrades in large operational networks,” in Proc. SIGCOMM,
New Delhi, India, Aug. 2010, pp. 303–314.

[7] A. Mahimkar, Z. Ge, J. Wang, J. Yates, Y. Zhang, J. Emmons,
B. Huntley, and M. Stockert, “Rapid detection of maintenance
induced changes in service performance,” in Proc. 7th Conf. Emerg-
ing Netw. Exp. Technol., Tokyo, Japan, Dec. 2011, no. 13, pp. 1–12.

[8] Z. Lin, M. Chen, and Y. Ma, “The augmented lagrange multiplier
method for exact recovery of corrupted low-rank matrices,” arXiv
Preprint arXiv:1009.5055, 2010.

[9] T. Id�e and K. Inoue, “Knowledge discovery from heterogeneous
dynamic systems using change-point correlations,” in Proc. 5th
SIAM Int. Conf. Data Mining, Newport Beach, CA, USA, Apr.
2005, pp. 571–575.

[10] H. Hassani, S. Heravi, and A. Zhigljavsky, “Forecasting european
industrial production with singular spectrum analysis,” Int. J.
Forecasting, vol. 25, no. 1, pp. 103–118, 2009.

[11] V. Moskvina and A. Zhigljavsky, “Change-point detection algo-
rithm based on the singular-spectrum analysis,” Commun. Statist.:
Simul. Comput., vol. 32, no. 2, pp. 319–352, 2003.

[12] T. Id�e and K. Tsuda, “Change-point detection using Krylov sub-
space learing,” in Proc. 7th SIAM Int. Conf. Data Mining, Apr. 2007,
pp. 515–520.

[13] Y. Mohammad and T. Nishida, “Robust singular spectrum trans-
form,” in Proc. 22nd Int. Conf. Indus., Eng. Other Appl. Appl. Intell.
Syst. Next-Gener. Appl. Intell., Jun. 2009, pp. 123–132.

[14] A. Mahimkar, Z. Ge, J. Yates, C. Hristov, V. Cordaro, S. Smith,
J. Xu, and M. Stockert, “Robust assessment of changes in cellular
networks,” in Proc. 9th ACM Conf. Emerging Netw. Exp. Technol.,
Santa Barbara, California, USA, Dec. 2013, pp. 175–186.

[15] O. C. Ashenfelter and D. Card, “Using the longitudinal structure
of earnings to estimate the effect of training programs,” Rev. Econ.
Statist., vol. 67, no. 4, pp. 648–660, Aug. 1985.

[16] W. R. Shadish, T. D. Cook, and D. T. Campbell, Experimental and
Quasi-Experimental Designs For Generalized Causal Inference.
Belmont, CA, USA: Wadsworth, 2002.

[17] E. A. Stuart, H. A. Huskamp, K. Duckworth, J. Simmons, Z. Song,
M. E. Chernew, and C. L. Barry, “Using propensity scores in
difference-in-differences models to estimate the effects of a policy
change,” Health Serv. Outcomes Res. Methodol., vol. 14, no. 4,
pp. 166–182, Aug. 2014.

[18] Q. Wang, Y. Kanemasa, M. Kawaba, and C. Pu, “When average is
not average: Large response time fluctuations in n-tier systems,”
in Proc. 9th Int. Conf. Autonom. Comput., 2012, pp. 33–42.

[19] D. Liu, Y. Zhao, H. Xu, Y. Sun, D. Pei, J. Luo, X. Jing, and M. Feng,
“Opprentice: Towards practical and automatic anomaly detection
through machine learning,” in Proc. ACM Conf. Internet Meas.
Conf., Oct. 2015, pp. 211–224.

[20] N. Aoki, State Space Modeling of Time Series. Cambridge, U.K.:
Cambridge Univ. Press, 1990.

[21] N. Mi, G. Casale, L. Cherkasova, and E. Smirni, “Burstiness in
multi-tier applications: Symptoms, causes, and new models,”
in Proc. 9th ACM/IFIP/USENIX Int. Conf. Middleware, 2008,
pp. 265–286.

[22] G. H. Golub and C. F. Van Loan, Matrix Computaions. Baltimore,
MD, USA: The Johns Hopkins Univ. Press, 2012, vol. 3.

[23] W. H. Press, Numerical Recipes 3rd Edition: The Art of Scientific Com-
puting. Cambridge, U.K.: Cambridge Univ., 2007.

[24] R. Kohavi, A. Deng, B. Frasca, R. Longbotham, T. Walker, and
Y. Xu, “Trustworthy online controlled experiments: Five puzzling
outcomes explained,” in Proc. 18th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, Aug. 2012, pp. 786–794.

[25] R. Kohavi, R. M. Henne, and D. Sommerfield, “Practical guide
to controlled experiments on the web: Listen to your custom-
ers not to the hippo,” in Proc. 13th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, San Jose, CA, USA, Aug. 2007,
pp. 959–967.

ZHANG ET AL.: FUNNEL: ASSESSING SOFTWARE CHANGES IN WEB-BASED SERVICES 47

https://blogs.dropbox.com/dropbox/2014/01/back-up-and-running/
https://blogs.dropbox.com/dropbox/2014/01/back-up-and-running/
http://www.google.com/appsstatus/ir/plibxfjh8whr44h.pdf
http://www.google.com/appsstatus/ir/plibxfjh8whr44h.pdf
https://www.facebook.com/note.php?note_id=14218138919
https://www.facebook.com/note.php?note_id=14218138919

[26] T. Benson, A. Akella, and D. A. Maltz, “Network traffic character-
istics of data centers in the wild,” in Proc. 10th ACM SIGCOMM
Conf. Internet Meas., Melbourne, Australia, Nov. 2010, pp. 267–280.

[27] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken,
“The nature of data center traffic: Measurements & analysis,” in
Proc. 9th ACM SIGCOMM Conf. Internet Meas. Conf., Chicago, Illi-
nois, USA, Nov. 2009, pp. 202–208.

[28] Y. Chen, R. Mahajan, B. Sridharan, and Z.-L. Zhang, “A provider-
side view of web search response time,” in Proc. SIGCOMM, Aug.
2013, pp. 243–254.

[29] M. Yamada, A. Kimura, F. Naya, and H. Sawada, “Change-point
detection with feature selection in high-dimensional time-series
data,” in Proc. 23rd Int. Joint Conf. Artif. Intell., Beijing, China, Aug.
2013, pp. 1827–1833.

[30] (2015). Redis [Online]. Available: http://redis.io/
[31] M. Canini, D. Venzano, P. Pere�s�ıni, D. Kosti�c, and J. Rexford, “A

nice way to test openflow applications,” in Proc. 9th USENIX Conf.
Netw. Syst. Des. Implementation, San Jose, CA, USA, Apr. 2012, p. 10.

[32] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” in Proc. SIGCOMM, Aug.
2012, pp. 323–334.

[33] R. R. Sambasivan, A. X. Zheng, M. De Rosa, E. Krevat, S. Whit-
man, M. Stroucken, W. Wang, L. Xu, and G. R. Ganger,
“Diagnosing performance changes by comparing request flows,”
in Proc. 8th USENIX Conf. Netw. Syst. Des. Implementation, Boston,
MA, USA, Apr. 2011, pp. 43–56.

[34] A. Lakhina, M. Crovella, and C. Diot, “Mining anomalies using
traffic feature distributions,” in Proc. SIGCOMM, Aug. 2005,
pp. 217–228.

Shenglin Zhang received the BE degree in net-
work engineering from the School of Computer
Science and Technology, Xidian University in
2012. He is currently working toward the PhD
degree in the Institute of Network Sciences and
Cyberspace, Tsinghua University. His research
interests include failure detection and prediction
in datacenter networks, BGP AS path behavior,
and P2P optimization.

Ying Liu received the BS degree in information
engineering, MS degree in computer science,
and PhD degree in applied mathematics from
Xidian University in 1995, 1998, and 2001,
respectively. She made postdoctoral research in
the Department of Computer Science and Tech-
nology, Tsinghua University in 2001 to 2003. She
is currently an associate professor in the Institute
for Network Sciences and Cyberspace, Tsinghua
university. Her research interests include multi-
cast routing, network architecture, and router

design and implementation. She is a member of the IEEE.

Dan Pei received the BE and MS degree in com-
puter science from the Department of Computer
Science and Technology, Tsinghua University in
1997 and 2000, respectively, and the PhD degree
in computer science from the Computer Science
Department, University of California, Los Angeles
(UCLA) in 2005. He is currently an associate
professor in the Department of Computer Sci-
ence and Technology, Tsinghua University. His
research interests include network and service
management in general. He is a senior member

of the IEEE and ACM.

Yu Chen received the BS and MS degree in com-
puter science from the Department of Computer
Science and Technology, Peking University in
1998 and 2001, respectively. He used to be a
senior engineer in Baidu, Inc, and he is currently
working in a startup company on education.

Xianping Qu received the BS degree in informa-
tion and computing science from the School of
Mathematical Sciences, Fudan University in
2009. He is currently a senior engineer in Baidu,
Inc. His research interests include monitoring,
anomaly detection, root cause analysis, and
automatic operations of web-based services.

Shimin Tao received the BS degree in public
adminstration management from the College of
Politics & Law and Public Administration, Hubei
University in 2003. He is currently a technical
manager in Baidu, Inc. His research interests
include monitoring, anomaly detection, root
cause analysis, and automatic operations of web-
based services.

Zhi Zang received the BS degree in computer
science from the School of Computer Science
and Technology, Nanjing University in 2005
and the ME degree in computer software and
theory from the Institute of Software, Chinese
Academy of Sciences in 2008. He is currently a
senior engineer in Baidu, Inc. His research
interests include monitoring, anomaly detec-
tion, root cause analysis, and automatic opera-
tions of web-based services.

Xiaowei Jing received the BE degree in com-
puter science and application from the Harbin
University of Science and Technology in 1995
and the MS degree in computer science from the
Harbin Engineering University in 2002. He is cur-
rently a senior engineer in the IT Management
Department, Petrochina, Inc.

Mei Feng received the PhD degree from the
Chemical Process Engineering Department,
Newcastle University in 2001. She is currently a
professor in the Computer Application Depart-
ment, Research Institute of Petroleum Explore
and Development (RIPED). Her research inter-
ests include computer network construction and
information security.

48 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 11, NO. 1, JANUARY/FEBRUARY 2018

http://redis.io/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

